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Role of nonstoquastic catalysts in quantum adiabatic optimization
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The viability of nonstoquastic catalyst Hamiltonians to deliver consistent quantum speedups in quantum
adiabatic optimization remains an open question. The infinite-range ferromagnetic p-spin model is a rare example
exhibiting an exponential advantage for nonstoquastic catalysts over its stoquastic counterpart. We revisit this
model and note how the incremental changes in the ground-state wave function give an indication of how the
nonstoquastic catalyst provides an advantage. We then construct two new examples that exhibit an advantage
for nonstoquastic catalysts over stoquastic catalysts. The first is another infinite range model that is only 2-local,
but also exhibits an exponential advantage, and the second is a geometrically local Ising example that exhibits a
growing advantage up to the maximum system size we study.
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I. INTRODUCTION

Optimization problems appear across a wide range of disci-
plines, and the development of new algorithms to tackle them
is an active area of research. Quantum algorithms hope to
offer advantages over classical algorithms by capitalizing on
nonclassical phenomena to reach the desired solution faster.
One such example is the quantum adiabatic optimization
(QAO) algorithm [1–5], a heuristic quantum algorithm based
on the adiabatic paradigm of quantum computation [6]. The
algorithm uses a time-dependent Hamiltonian that interpolates
from a Hamiltonian Hinitial with an easily prepared ground
state to a Hamiltonian Hfinal, whose ground state encodes
the solution to the optimization problem. By initializing the
system in the ground state of Hinitial and using an interpolation
time, t f , that satisfies the adiabatic condition, the algorithm
is guaranteed by the adiabatic theorem [7–19] to reach the
ground state of Hfinal with high probability. Thus, the scaling
with system size of the algorithm’s runtime t f is given in terms
of the adiabatic condition, which in turn is given in terms of an
inverse power of the minimum ground-state energy gap �min

along the interpolation path [14].
The standard implementation of the QAO algorithm imple-

ments a time-dependent stoquastic Hamiltonian [20,21]. The
partition function associated with a stoquastic Hamiltonian
can always be decomposed into a sum of positive weights
that can be used in a Markov process, and quantum Monte
Carlo algorithms can be used to try to emulate the QAO
algorithm. While no proof exists (for counterexamples, see
Refs. [22,23]), this is often cited as a strong indication that
stoquastic Hamiltonians may not be sufficiently rich to gen-
erate quantum speedups over classical algorithms for generic
optimization problems.

The introduction of more exotic interactions via interme-
diate “catalyst” Hamiltonians [24] is one way to enrich the
QAO algorithm. (We note that another approach is to use
different initial “driver” Hamiltonians [25–27]). The use of

catalyst Hamiltonians has been pursued in several studies
on random Ising optimization problems [28,29], using both
stoquastic and nonstoquastic interactions. While the latter
are known to be necessary to perform universal adiabatic
quantum computation [6], these studies have shown that typi-
cally stoquastic catalysts outperform nonstoquastic ones; i.e.,
stoquastic catalysts tend to make the minimum gap along the
evolution larger than nonstoquastic catalysts do.

However, rare cases exist where the nonstoquastic catalyst
can raise the gap more than the stoquastic catalyst does.
Perhaps the most striking example of this is the case of the
infinite-range ferromagnetic p-spin models [30–33], where
it was observed that for certain parameter choices the non-
stoquastic catalyst can change a first-order phase transition
to a second-order one for odd p > 3. A general mechanism
for this enhancement was provided in Ref. [34] in terms of
a quantum Rayleigh limit, whereby the ground-state profile
coalesces from bimodal to unimodal. This beyond-mean-field
treatment also demonstrated the enhancement for the p = 3
case.

In this work, we revisit the infinite-range ferromagnetic p-
spin models and study them at finite system size. By studying
the behavior of the ground-state wave function along the
interpolation, we are able to gain a new understanding of
why the case with a nonstoquastic catalyst exhibits such a
stark difference relative to its stoquastic counterpart. We then
construct two examples that also exhibit an advantage for
nonstoquastic catalysts over their stoquastic counterparts. The
first example is based on the prototypical large-spin tunneling
problem and corresponds to an infinite-range 2-local model.
It exhibits an exponential advantage for the nonstoquastic
catalyst over its stoquastic counterpart similar to that for
the p-spin model. The second example is a geometrically
local Ising example that exhibits a growing advantage for
the nonstoquastic catalyst over its stoquastic counterpart,
at least up to the maximum size of 24 qubits that we
study.
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II. INFINITE-RANGE FERROMAGNETIC p-SPIN MODELS

In order to solve the infinite-range ferromagnetic p-spin
model with QAO, we take an interpolating Hamiltonian acting
on n qubits of the following form [28,30]:

Hλ(s) = −(1 − s)
n∑

i=1

σ x
i − s

np−1

(
n∑

i=1

σ z
i

)p

+ λ
s(1 − s)

n

(
n∑

i=1

σ x
i

)2

, (1)

where s ∈ [0, 1] is our dimensionless interpolating parameter
and σ x

i and σ z
i are the Pauli x and z operators acting on

the ith qubit. We take the parameter λ to be constant during
the evolution, but its value can be optimized at each size in
order to maximize the minimum gap encountered during the
interpolation. This optimized choice of λ, which we denote
by λopt (we suppress the n dependence) defines an optimal
interpolating protocol. This is analogous to the optimal path
defined in Ref. [34]. The first term in Eq. (1) is the driver
transverse-field Hamiltonian, which is the only term that
is nonzero at s = 0. The second term is the infinite-range
ferromagnetic p-spin model Hamiltonian, which represents
the optimization problem that we wish to solve and is the only
term that is nonzero at s = 1. The last term is the catalyst
Hamiltonian, which is nonzero for s �= 0 and λ �= 0. For
λ � 0, all off-diagonal terms in the matrix representation of
Hλ(s) in the computational basis1 are negative, and we say that
the Hamiltonian is stoquastic [20,21]. For λ > 0, the catalyst
Hamiltonian introduces positive off-diagonal elements in the
matrix representation of Hλ(s), which suggests that Hλ(s) is
nonstoquastic. However, there is a simply single-qubit trans-
formation that makes the Hamiltonian stoquastic.2 Neverthe-
less, while not strictly nonstoquastic, the ground state of Hλ(s)
with λ > 0 in the computational basis can have both positive
and negative amplitudes.

The Hamiltonian in Eq. (1) enjoys several symmetries.
First, it is invariant under the permutation of any group of
qubits. Because the ground state of Hλ(0) is the uniform
superposition state, the QAO algorithm starts within the sub-
space spanned by the completely symmetric states, which
we denote by S , and the evolution under Hλ(s) cannot take
the state out of this subspace. A convenient basis for this
subspace is given by the Dicke states [35], which we denote
by |S, M〉, with S = n/2 and M = −n/2,−n/2 + 1, . . . , n/2,
such that 1

2

∑n
i=1 σ z

i |S, M〉 = M|S, M〉. Second, for p even
the Hamiltonian is also invariant under the transformation by
P = ∏n

i=1 σ x
i , and the ground state of Hλ(0) has an eigenvalue

of 1 under this operator. The evolution is then restricted to the
subspace S ′ spanned by the linear combination of completely

1The computational basis is given by the single qubit basis states
{|0〉, |1〉}, satisfying σ z|0〉 = |0〉 and σ z|1〉 = −|1〉.

2Applying a Hadamard transformation, which rotates the computa-
tional basis from |0〉, |1〉 to |+〉, |−〉, takes σ x

i → τ z
i and σ z

i → τ x
i ,

and the resulting Hamiltonian is stoquastic in the new basis.

(a) (b)

FIG. 1. Scaling of the minimum gap for the infinite-range ferro-
magnetic (p = 6)-spin model with (a) a nonstoquastic catalyst with
optimized λ and (b) a stoquastic catalyst with λ = 0 and λ = −2.
In panel (a), the solid line corresponds to a fit of ∼n−2.17. The inset
shows the optimized values for λ used. The error bars, which are not
visible because they are of the size of the data points, correspond to
our uncertainty in the exact optimum value of λ. In panel (b), the
solid line corresponds to a fit of ∼ exp(−0.21n) and ∼ exp(−0.24n),
respectively.

symmetric states with an eigenvalue of 1 under P. The runtime
scaling for the QAO algorithm is thus given by the minimum
ground-state energy gap �′

min in the S ′ subspace.
We show in Fig. 1 results for p = 6, where in the case of

the nonstoquastic Hamiltonian [λ > 0 in Eq. (1)] the scaling
behavior of �′

min can be polynomial if λ is chosen to be suffi-
ciently large, in agreement with the conclusions of Ref. [30].
This is to be contrasted with the stoquastic case (λ � 0) where
the gap scaling is always exponential. (We find that λ = 0
maximizes the minimum gap for the stoquastic case.)

In order to understand this dramatic difference in scaling
behavior, it is useful to study how the ground-state gap and
the wave function evolve during the interpolation in the S ′
subspace. In Fig. 2(a), we observe the appearance of multiple
local minima in the gap along the interpolation. More local
minima appear in the case of unoptimized λ, as we show
in Appendix A. The local minima are associated with the
addition of pairs of nodes to the ground-state wave function
as we show in Fig. 2(b). Nodes must be added in pairs
because the energy eigenstates within the subspace S ′ must
remain symmetric about M = 0 for p even. For example, at
the first local minimum, the ground state changes from having

(a) (b)

FIG. 2. (a) Energy gap �′ between the ground state and the
first excited state within the subspace S ′ for the infinite-range fer-
romagnetic (p = 6)-spin model. (b) The ground-state wave function
|E0′ (s)〉 within the subspace S ′ in the Dicke basis for the same model.
Results shown are for n = 128 and λ = 2.425.
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(a) (b)

FIG. 3. (a) Energy gap �′ between the ground state and the
first excited state within the subspace S ′ for the infinite-range fer-
romagnetic (p = 6)-spin model. (b) The ground-state wave function
|E0′ (s)〉 within the subspace S ′ in the Dicke basis for the same model.
Results shown are for n = 128 and λ = 0.

zero nodes to having two nodes, and at the second local
minimum, the ground state changes from having two nodes
to four nodes [the extra nodes around M = 0 are not visible
in Fig. 2(b)]. As the interpolation continues towards s = 1,
additional pairs of nodes are added to the wave function as it
approaches the ground state of the p-spin Hamiltonian, which
for p even corresponds to peaks at M = −n/2 and M = n/2.
These multiple but incremental changes in the ground state
are to be contrasted to what happens when the gap closes
exponentially: for sufficiently small λ in the nonstoquastic
case or generally in the stoquastic case, the ground state
changes dramatically as it crosses the unique minimum gap
(Fig. 3).

In the case of p odd, the Hamiltonian [Eq. (1)] is not invari-
ant under P, and the evolution is restricted to the S subspace.
This changes the qualitative behavior of the ground-state wave
function along the interpolation in that the local minima in
the gap are associated with the addition of a single node as
opposed to a pair of nodes, as we show in Fig. 4. Similarly
to the p-even case, multiple local minima are evident in the
case of unoptimized λ, as we show in Appendix A. As the
interpolation continues towards s = 1, additional single nodes
are added to the wave function as it approaches the ground
state of the p-spin Hamiltonian, which for p odd corresponds
to a peak at M = n/2. We provide additional comparisons
between the even and odd p cases in Appendix B.

(a) (b)

FIG. 4. (a) Energy gap � between the ground state and the
first excited state within the subspace S . (b) The ground-state wave
function |E0(s)〉 within the subspace S evaluated in the Dicke basis.
Results are for p = 5, n = 128, and λ = 2.75.

(a) (b)

FIG. 5. Scaling of the minimum gap within the subspace S for
(a) λ = 0 and (b) the optimized λ for the infinite-range 2-local
large-spin tunneling problem. In panel (a), the solid line is the fit
to ∼ exp(−0.33n). In panel (b), the inset shows the optimized values
for λ used. The error bars, which are not visible because they are of
the size of the data points, correspond to our uncertainty in the exact
optimum value of λ.

III. INFINITE-RANGE 2-LOCAL LARGE-SPIN
TUNNELING EXAMPLE

We now present an example that exhibits a similar expo-
nential advantage for nonstoquastic catalysts over stoquastic
catalysts but where the interactions are only 2-local. We
consider the following interpolating Hamiltonian for the pro-
totypical large-spin tunneling problem [36,37]:

Hλ(s) = −2(1 − s)
(
Sx

1 + Sx
2

)
−s

(
2h1Sz

1 − 2h2Sz
2 + 4

n

[(
Sz

1

)2 + (
Sz

2

)2 + Sz
1Sz

2

])

+ 8λs(1 − s)

n
Sx

1Sx
2, (2)

where Sα
1 = 1

2

∑n/2
i=1 σα

i and Sα
2 = 1

2

∑n
i=n/2+1 σα

i . For sim-
plicity, we restrict to the case where n/2 is an integer. We
take h1 = 1 and h2 = 0.49, such that the ground state has
eigenvalues of +1 and +1 under 2

n Sz
1 and 2

n Sz
2, respectively,

and the first excited state has eigenvalues of +1 and −1 under
the same operators. Unlike the p-spin model in Sec. II, there
is no single-qubit transformation that makes the Hamiltonian
stoquastic.

The Hamiltonian is invariant under permutations of the
two sets of qubits {k}n/2

k=1 and {k}n
k=n/2+1. Since the ground

state at s = 0 is symmetric under both permutations, the
evolution under the Hamiltonian is restricted to a subspace
S̃ that is spanned by the product of Dicke states with total an-
gular momentum S1 = S2 = n/4, |S1, M1〉 ⊗ |S2, M2〉, which
for brevity we denote by |M1, M2〉.

For λ = 0, the spectrum exhibits an exponentially closing
minimum gap [shown in Fig. 5(a)] with system size n asso-
ciated with the tunneling of approximately n/2 spins [37].
In contrast, using an optimized λ value the minimum gap
approaches a constant with increasing n as shown in Fig. 5(b).

In order to better understand why the nonstoquastic cat-
alyst with an optimized λ helps avoid the exponentially
closing gap, we consider again the behavior of the gap
and the ground state along the interpolation, as shown in
Fig. 6. In the stoquastic case, the exponentially closing
gap is associated with a sharp change in the ground-state
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(a) (b)

FIG. 6. (a) Ground-state gap within the subspace S̃ along the
interpolation schedule and (b) the ground-state expectation value of
the Hamming weight operator for the infinite-range 2-local large-spin
tunneling problem. Results shown are for n = 64 with λ = 0 and
λopt = 2.275.

expectation value of the Hamming weight operator, 〈HW〉 =
1
2

∑n
i=1 (1 − 〈E0|σ z

i |E0〉). In contrast to the stoquastic case,
the value of 〈HW〉 decreases monotonically and gradually
along the interpolation schedule when using the optimized
nonstoquastic catalyst. We therefore observe an incremental
change to the ground-state wave function in the subspace of
the evolution similar to that in the p-spin model.

It is also useful to consider the semiclassical potential
derived in the Villain representation [25,34,37–40]:

V (z1, z2) = −1

2
(1 − s)

(√
1 − z2

1 +
√

1 − z2
2

)
− s

(
1

2
(h1z1 − h2z2) + 1

4

(
z2

1 + z2
2 + z1z2

))

+ λs(1 − s)

2

√(
1 − z2

1

)(
1 − z2

2

)
. (3)

Near the minimum gap, the semiclassical potentials for the
the stoquastic and nonstoquastic cases have important dif-
ferences. For the stoquastic case, there is an energy barrier
separating the degenerate minima of the potential through
which the system must tunnel, whereas for the nonstoquastic
case, there is a single wide minimum. This then leads to
very different behaviors for the ground-state wave function
at this point. These features are depicted in Fig. 7, where we
note in particular the appearance of negative amplitude in the
ground-state wave function for the nonstoquastic case, in a
similar way to the (p = 5)-spin model in Fig. 4(b).

Unlike the p-spin model we studied in Sec. II, choosing
a value of λ that is too large does not retain the exponential
advantage observed for λopt. As we show in Fig. 8(a), picking
λ too large causes the minimum gap to eventually scale expo-
nentially with n for sufficiently large n. This arises because
if λ is too large, then the semiclassical potential becomes
similar to that of the stoquastic case with an energy barrier
separating the two local minima, although at finite size the
ground-state wave function exhibits a lot more structure, as
shown in Fig. 8(b). Nevertheless the exponential scaling is less
severe than in the stoquastic case, so there is still an advantage
even with this nonoptimal choice for λ.

(a) (b)

(c) (d)

FIG. 7. (a), (b) The semiclassical potential defined in Eq. (3) for
the infinite-range 2-local large-spin tunneling problem with λ = 0
and λ = 2.275 near their respective minimum gaps. We evaluate the
potential at s ≈ 0.722 and s = 0.5, respectively. (c), (d) The ground-
state wave-function 〈M1, M2|E0〉 for λ = 0 and λ = 2.275 near their
respective minimum gaps for n = 64.

IV. GEOMETRICALLY LOCAL ISING EXAMPLE

We now construct a geometrically local example with 2-
local interactions that also exhibits an advantage for nonsto-
quastic catalysts over stoquastic catalysts. This example will
not enjoy the permutation symmetry enjoyed by the previous
two infinite-range models, so simulations much larger than 24
qubits are computationally prohibitive. In order to ensure that
the stoquastic cases already exhibit their worse-case behavior
at these sizes, we construct our problem to have a “pertur-
bative crossing,” which is a well-established QAO bottleneck
[41]. We consider an interpolation Hamiltonian for the QAO
algorithm of the form

Hλ(s) = −(1 − s)
∑

i

σ x
i + s

∑
〈i, j〉

Ji jσ
z
i σ z

j

+ λs(1 − s)
∑
〈i, j〉

σ x
i σ x

j , (4)

(a) (b)

FIG. 8. (a) Scaling of the minimum gap within the subspace
S for the infinite-range 2-local large-spin tunneling problem with
λ = 4. The solid line is the fit to ∼ exp(−0.06n). (b) Ground-state
wave function 〈M1, M2|E0〉 for λ = 4 and n = 128 evaluated at
s ≈ 0.697, near the location of the minimum gap.
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FIG. 9. Ising Hamiltonians of size n = 8, 12, and 16 for the
Hamiltonian in Eq. (4). Spins are given by the green disks, and
the lines between them correspond to Ising spin-spin interactions.
Solid black lines correspond to a ferromagnetic coupling of magni-
tude 1, dashed black lines correspond to a ferromagnetic coupling of
magnitude 1/2, and red dotted lines correspond to antiferromagnetic
couplings of magnitude 1–1/6. The Ising Hamiltonian scales by
introducing spins in the upper and lower rings at their centers in an
alternating manner.

where {Ji j} are the Ising interactions depicted in Fig. 9. The
catalyst term has the same connectivity 〈i, j〉 as the Ising
interactions. The Hamiltonian Hλ(s) is invariant under P and
under the interchange of the top and bottom rings of qubits.
Because the ground state at s = 0 is the uniform superposition
state, the evolution under Hλ(s) is restricted to the subspace S ′′
with an eigenvalue of 1 under the transformations associated
with both these symmetries.

For our choice of Ising parameters (see Fig. 9), Hλ(s)
exhibits an exponentially closing minimum gap along the
interpolation for the stoquastic cases (λ � 0) even for small
system sizes n � 24 as shown in Fig. 10(a). In contrast, the
closing of the minimum gap for the nonstoquastic case with a
catalyst strength of the same order is significantly milder and
is equally well fit by a polynomial or a mild exponential. It
is difficult to distinguish the two possibilities at the sizes we
consider. We provide a more up-close comparison of the two
fits in Appendix C.

A key feature of the spectrum in the presence of the non-
stoquastic catalyst is the absence of the perturbative crossing
near s = 1. We find that instead of the single local minimum
associated with the perturbative crossing in the stoquastic

(a) (b)

FIG. 10. (a) Scaling of the minimum gap �′′
min within the sub-

space S ′′ for the geometrically local Ising example with no catalyst
(λ = 0), a stoquastic catalyst (λ = −2), and a nonstoquastic cata-
lyst with optimized λ (λ = λopt). Solid lines correspond to the fits
of ∼ exp(−0.62n), exp(−0.31n), and exp(−0.133n), respectively.
(b) Optimized values of λ used with the nonstoquastic catalyst. The
error bars correspond to our uncertainty in the exact optimum value
of λ.

(a) (b)

FIG. 11. (a) Comparison of the gap �′′ within the subspace S ′′

for n = 22 without a catalyst (λ = 0), with a stoquastic catalyst
(λ = −2), and with a nonstoquastic catalyst (λ = 1.25). (b) Energy
difference E0′′ − E0 between the ground state of Hλ within the
subspace S ′′ and the global ground state (left axis), and the ground-
state energy gap �′′ within the subspace S ′′ along the interpolating
path for n = 22 using the nonstoquastic catalyst with λ = 1.25 (right
axis).

case, we have multiple local minima that are much milder
as shown in Fig. 11(a). We also show in Fig. 11(b) that the
ground state of Hλ(s) within the subspace S ′′ deviates from
the global ground state, which is also what we observed for
the p-spin model when p was even (shown in Appendix B).

We can relate the absence of the perturbative crossing near
s = 1 to the behavior of the low-lying energy spectrum of the
Ising Hamiltonian, i.e., the spectrum at s = 1 for Eq. (4), as
the transverse field and catalyst are perturbatively turned on.
For concreteness, let us take the case of n = 8 and label the
states as |x1 . . . x4, x5 . . . x8〉 going around the top ring first
followed by the bottom ring. We take xi = {0, 1} to denote
the positive and negative eigenvalue of σ z

i , respectively. The
doubly degenerate ground states of the Ising Hamiltonian are
given by |0000 0000〉 and |1111 1111〉, and there is a unique
combination that is within the subspace S ′′:

|g〉 ≡ 1√
2

(|0000 0000〉 + |1111 1111〉). (5)

Similarly, the sixfold degenerate first excited states of the
Ising Hamiltonian are given by |0000 1111〉, |0000 1101〉, and
|0010 1111〉 and their P-transformed complements, and there
are two linear combinations that are within the subspace S ′′:

|a〉 ≡1

2
(|0000 1101〉 + |1111 0010〉

+|0010 1111〉 + |1101 0000〉), (6a)

|b〉 ≡ 1√
2

(|0000 1111〉 + |1111 0000〉). (6b)

We now consider the effect of moving away from s = 1 on
the Hamiltonian spectrum. Since both the transverse field and
the catalyst are of the same order in (1 − s), they both con-
tribute at first order in perturbation theory. For simplicity, we
take the perturbation operator to be given by V = −∑

i σ
x
i +

λ
∑

〈i, j〉 σ x
i σ x

j , with either λ = −1 for the stoquastic case or
λ = 1 for the nonstoquastic case. Since the ground state is
at least n/2 − 1 in Hamming distance away from the first
excited states, the state |g〉 remains unaffected at first order
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in perturbation theory. However, the degeneracy of the first
excited state is broken at this order. For the case of λ = −1,
the state |e〉 = 1√

3
(
√

2|a〉 + |b〉) is lowered in energy, and it
has an eigenvalue of −2 under V . This eigenvalue determines
the rate with which the energy of this state decreases with
(1 − s). As s continues to decrease from 1, the energy of
|e〉 eventually crosses that of |g〉 at first order in perturbation
theory, resulting in an avoided-level crossing.

For λ = 1, the degeneracy of the first excited state is
broken differently. (The ground state remains unchanged at
first order in perturbation theory.) The degeneracy of the first
excited states within the subspace S ′′ is broken such that
the state |e′〉 = 1√

3
(|a〉 + √

2|b〉) is lowered in energy, but its
eigenvalue under V is only −1. Therefore, the rate at which
its energy is lowered is smaller relative to the stoquastic case.
Therefore, the avoided-level crossing in principle happens at
smaller s values, where the driver and the catalyst Hamil-
tonians are stronger. This may partly explain why the gap
associated with the perturbative crossing is softened in the
presence of the nonstoquastic catalyst.

V. DISCUSSION AND CONCLUSIONS

We analyzed the efficiency of the QAO algorithm for
solving three different classes of problems using stoquastic
and nonstoquastic catalyst Hamiltonians. We first revisited
the infinite-range p-spin model, and our finite size results
corroborate the results of Refs. [30–33]: we find that for a suf-
ficiently strong nonstoquastic catalyst the relevant minimum
gap along the interpolation path decreases only polynomially
with system size n, whereas the stoquastic catalyst has the
minimum gap decreasing exponentially with n. We note that
our choice of interpolation Hamiltonian in Eq. (1) differs
from the one used in Ref. [30], but similar results are ob-
tained using either interpolating Hamiltonian, as we show in
Appendix D. Thus, the QAO algorithm with the nonstoquastic
catalyst runs exponentially faster than that with the stoquastic
catalyst.

We restricted our study to the cases of p = 5 and p = 6.
We expect similar results to be found for p � 4. The case
of p = 3 is different because the mean-field potential always
exhibits a discontinuous jump in its global minimum [30].
A careful treatment of this model shows that it still ex-
hibits the exponential advantage for the nonstoquastic catalyst
[34], but it requires an optimized λ that grows with system
size unlike the examples we studied here. We show this in
Appendix E.

We then showed that a similar advantage is enjoyed by
another infinite-range model that only uses 2-local interac-
tions. In a similar manner to the p-spin model, the mean-field
potential associated with the stoquastic Hamiltonian exhibits
a discontinuous jump in the global minimum associated with
a large tunneling event, whereas the potential associated with
the nonstoquastic Hamiltonian avoids this discontinuity if the
catalyst strength is chosen appropriately. For this optimized
choice of catalyst strength, the minimum gap asymptotes to a
constant.

An important lesson that we derive from this example is
that the interaction terms in the catalyst Hamiltonian can be

crucial in determining whether an advantage can be had with
a nonstoquastic catalyst. In the Hamiltonian of Eq. (2), the
catalyst is taken to be proportional to Sx

1Sx
2 and not (Sx

1 + Sx
2 )2.

We find that the latter case does not exhibit the exponential
advantage that the former does; its scaling is similar to that
without a catalyst as we show in Appendix F. This indicates
that, for a given connectivity graph defined by the optimiza-
tion problem Hamiltonian, the catalyst should not always
share the same connectivity to give the best results.

Our finite n analysis provides a different way to understand
why the nonstoquastic catalyst can provide such a dramatic
improvement over its stoquastic counterpart. The nonstoquas-
tic catalyst allows for multiple incremental changes to the
ground-state wave function, as opposed to the single large
change that occurs for the stoquastic catalyst. Qualitatively,
we can interpret this as “spreading” the computational effort
over a larger range of the interpolation as opposed to a narrow
region only.

We have also constructed a geometrically local Ising ex-
ample that exhibits many of the same qualitative features as
the previous two examples. We observe a growing advantage
for the nonstoquastic catalyst over the stoquastic catalyst,
and we attribute this to the nonstoquastic catalyst effectively
softening or possibly even eliminating the perturbative level-
crossing that plagues the stoquastic case. While we expect
that the exponential scaling of the gap will continue for the
stoquastic case, we cannot rule out that the nonstoquastic case
may transition to another scaling at larger sizes. The lack
of the permutation symmetry prevents us from performing
a similar analysis as was done for the infinite-range models
at larger system sizes. While there are other methods for
eliminating perturbative crossings that do not rely on catalyst
Hamiltonians [42], we hope this example in conjunction with
the other examples presented in this work may help shed more
light on the viability of nonstoquastic catalysts to give an
advantage over their stoquastic counterparts.

For several of the cases we study, the ground state of the
subspace in which the evolution occurs does not correspond
to the global ground state of the nonstoquastic Hamiltonian
because of energy-level crossings in the spectrum. In the
closed-system setting, this does not pose a problem since
adiabaticity will still allow us to reach the desired final
ground state. However, in the open system setting, thermal
relaxation to the global ground state may actually hinder the
QAO algorithm. In this case, the QAO algorithm would not
necessarily have the robustness to thermal decoherence that it
typically does [43–59]. Under what conditions the exponential
advantage can still be maintained is an important issue to be
addressed.

Our examples rely heavily on symmetries in the Hamil-
tonian to facilitate the analysis, and we should not expect
this to be the typical situation for optimization problems.
Furthermore, any implementation of the QAO algorithm on
a physical device will inherently have implementation errors
[51,60–63], which will in turn break these symmetries. For
the case of the infinite-range p-spin models, the case of p
odd breaks the symmetry associated with the operator P and
yet retains its exponential advantage. The advantage is also
retained for certain Hopfield models [64]. However, we show
in Appendix G that the introduction of implementation errors
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that break all the symmetries can change the energy gaps of
the models we study, and it is not clear whether the advantage
is retained in this situation.

We stress that the optimization problems considered here
are trivial, so our work does not address whether nonsto-
quastic catalysts can help the QAO algorithm achieve true
quantum advantages over classical algorithms. Nevertheless,
our geometrically local Ising example suggests that physically
implementable examples can be constructed and studied, both
on a small scale using classical simulation but hopefully also
on a large scale using quantum simulators with sufficiently
rich programmable interactions. This opens up the possibility
of better addressing this question in the near future as next
generation experimental quantum information processing de-
vices become available.
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APPENDIX A: UNOPTIMIZED λ IN THE
INFINITE-RANGE FERROMAGNETIC p-SPIN MODEL

In Sec. II we focused on the case where λ is picked to
maximize the minimum gap encountered during the interpo-
lation. In the case of the p-spin model, we can pick a single

(a) (b)

FIG. 12. (a) Scaling of the minimum gap within the subspace
S ′ for the infinite-range ferromagnetic (p = 6)-spin model with a
nonstoquastic catalyst and λ = 4. The solid line corresponds to a
fit of ∼n−2.04. The inset shows a close-up of the region of interest.
(b) Energy gap �′ between the ground state and the first excited state
in S ′ for p = 6, n = 128, and λ = 4. The inset shows a close-up of
the region of interest.

(a) (b)

FIG. 13. (a) Energy gap � between the ground state and the first
excited state within the subspace S for the infinite-range ferromag-
netic (p = 5)-spin model. (b) The ground-state wave function |E0(s)〉
within the subspace S evaluated in the Dicke basis. Results shown
are for n = 128 and λ = 4.

sufficiently large λ > 0 for all problem sizes and reproduce
the polynomial scaling [Fig. 12(a)]. Of particular interest
though is that in this unoptimized case more local minima in
the gap are apparent [compare Figs. 12(b) and 3(a)].

Similar results are observed for the case of p odd, as shown
in Fig. 13.

APPENDIX B: COMPARING p EVEN AND p ODD IN THE
INFINITE-RANGE FERROMAGNETIC p-SPIN MODEL

In the main text, we emphasized that due to the additional
symmetry associated with p even, the evolution subspaces S ′
and S associated with the two cases of p even and p odd
are different. For p even, ground-state wave functions with
an odd number of nodes are not present within the subspace
S ′, but we do find that this does not necessarily correspond
to the global ground state during the entire interpolation. As
shown in Fig. 14, the ground state of Hλ within the subspace
S ′ deviates from that of the subspace S as a function of
s; the number of times this occurs follows the number of
local minima in the gap. These deviations are associated
with energy-level crossings within the subspace S , whereby
a P = −1 state becomes lower in energy than the current
P = +1 ground state. For example, at the first deviation,
the ground state within the subspace S changes from having
zero nodes (P = +1) to having a single node (P = −1). The
deviation vanishes when the ground states of the subspaces
S and S ′ merge again when the two-node solution (P = +1)

(a) (b)

FIG. 14. The energy difference E0′ − E0 between the ground
states of the subspaces S ′ and S (solid line) and the ground-state
energy gap �′ within the subspace S ′ (dashed line) for the infinite-
range ferromagnetic (p = 6)-spin model with n = 128 and (a) λ =
2.425 and (b) λ = 4.
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(a) (b)

FIG. 15. (a) Comparison between the ground-state gap � within
the subspace S for the infinite-range ferromagnetic p-spin model
with p = 5 and p = 6 for λ = 4 and n = 128. (b) Scaling of the min-
imum gap for the infinite-range ferromagnetic (p = 5)-spin model.
The solid line corresponds to the fit of ∼n−1.68. The inset shows the
optimized λ values.

becomes energetically favored over the one-node solution.
Each subsequent deviation in the ground state of Hλ within
the two subspaces occurs when the addition of a single node
results in an odd number of nodes in the ground-state wave
function.

The true energy-level crossings that occur in the S sub-
space for p even are replaced by avoided-level crossings
[Fig. 15(a)], and the resulting multiple local minima in the
gap are each associated with an addition of a single node
to an even-node ground-state wave function. Because these
increments are smaller than in the p-even case, we find that
the polynomial scaling of the minimum gap is now even
milder, as shown in Fig. 4(b).

APPENDIX C: COMPARING EXPONENTIAL AND
POLYNOMIAL FITS FOR THE GEOMETRICALLY LOCAL

ISING EXAMPLE

We show in Fig. 16 the exponential and polynomial fits to
the minimum gaps of the geometrically local Ising example
in Sec. IV. Because we are restricted to small sizes, both fits
reasonably capture the data.

APPENDIX D: DIFFERENT INTERPOLATIONS FOR THE
INFINITE-RANGE FERROMAGNETIC p-SPIN MODEL

In Eq. (1) of the main text, we used the conventional
interpolation schedule for the catalyst Hamiltonian [28]. This

FIG. 16. The minimum gap �′′
min within the subspace S ′′ for the

geometrically local Ising example with a nonstoquastic catalyst with
optimized λ (λ = λopt). The dashed line corresponds to a polynomial
fit of ∼n−2.001, and the dotted line corresponds to an exponential fit
of ∼ exp(−0.133n).

FIG. 17. Scaling of the minimum gap within the subspace S ′′

with system size using the interpolating Hamiltonians in Eq. (1)
(denoted “s”) and in Eq. (D1) [denoted “(s, λ)”] for the infinite-range
(p = 6)-spin model. The solid lines correspond to best fits of ∼n−2.19

and ∼n−2.14, respectively. The inset shows the optimized λ values for
both schedules.

was not the interpolation used in Ref. [30], which had an
interpolating Hamiltonian of the following form:

Hα (s, λ) = −(1 − s)
n∑

i=1

σ x
i − sλ

np−1

(
n∑

i=1

σ z
i

)p

+α
s(1 − λ)

n

(
n∑

i=1

σ x
i

)2

, (D1)

where α = 0 and −1 for stoquastic catalysts and α = 1 for
nonstoquastic catalysts. Unlike the choice to keep λ fixed
during the interpolation with s in Eq. (1), both λ and s can
vary during the interpolation with this choice. For simplicity
we consider the interpolating path H1(0, 0) → H1(0, λ∗) →
H1(1, λ∗) → H1(1, 1), where we optimize the value of λ∗
to maximize the minimum gap crossed, and compare to the
results using the schedule in the main text. We show in Fig. 17
that for the case of p = 6 the large n scaling is essentially
identical, with the only significant difference being an overall
constant shift in the minimum gap encountered.

APPENDIX E: RESULTS FOR THE (p = 3)-SPIN MODEL

We show in Fig. 18(a) results for the minimum gap for the
infinite-range ferromagnetic (p = 3)-spin model. Our results

(a) (b)

FIG. 18. (a) The minimum gap �min within the subspace S for
the infinite-range (p = 3)-spin model with a nonstoquastic catalyst
and optimized λ (λ = λopt). The dashed line corresponds to a polyno-
mial fit of ∼n−1.03. The inset shows the optimized values for λ used.
The error bars, which are not visible because they are of the size of
the data points, correspond to our uncertainty in the exact optimum
value of λ. (b) Comparison of the minimum gap for p = 3 with a
nonstoquastic catalyst with fixed λ = 2 and no catalyst (λ = 0).
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FIG. 19. Scaling of the minimum gap within the subspace S
for the infinite-range 2-local large-spin tunneling example with a
different nonstoquastic catalyst (λ = λopt) and without a catalyst
(λ = 0). The solid lines corresponds to a best fit of ∼ exp(0.33). The
inset shows the optimized λ values for the case with a catalyst.

are consistent with the conclusions of Ref. [34], whereby the
exponential advantage of the nonstoquastic catalyst over the
stoquastic catalyst is only maintained if the relative strength of
the nonstoquastic catalyst to the problem Hamiltonian grows
with system size. For a fixed nonstoquastic catalyst strength,
the scaling returns to an exponential scaling but it is milder
than that of the stoquastic case, as shown in Fig. 18(b).
Therefore, while the exponential advantage is not maintained
in this case, there is still an advantage that can be had with a
nonstoquastic catalyst.

APPENDIX F: INFINITE-RANGE 2-LOCAL LARGE-SPIN
TUNNELING EXAMPLE WITH A DIFFERENT CATALYST

We consider a different catalyst Hamiltonian for the 2-local
large-spin tunneling example in the main text. Instead of

Eq. (2), we take the interpolating Hamiltonian to be given by

Hλ(s) = −2(1 − s)
(
Sx

1 + Sx
2

) − s

(
2h1Sz

1 − 2h2Sz
2

+ 4

n

[(
Sz

1

)2 + (
Sz

2

)2 + Sz
1Sz

2

])

+4λs(1 − s)

n

(
Sx

1 + Sx
2

)2
, (F1)

where we have changed the catalyst Hamiltonian from 2Sx
1Sx

2
to (Sx

1 + Sx
2 )2. We find that this changes the scaling behavior

of the minimum gap, as we show in Fig. 19. We find that
even with an optimized λ (we find that the cases of n/4 even
and odd give different asymptotic values for λopt), the nonsto-
quastic catalyst does not exhibit an exponential improvement
over the stoquastic case, as we saw in Fig. 5 of the main text.
Instead, the scaling of the nonstoquastic catalyst in this case is
indistinguishable from that of the case with no catalyst.

APPENDIX G: IMPLEMENTATION ERRORS

In order to address how dependent the nonstoquastic ad-
vantage is on the presence of symmetries in the Hamiltonian,
we consider introducing noise to the Hamiltonian defining the
optimization problem. For example, we replace the Hamilto-
nian of the infinite-range p-spin model with

1

np−1

(∑
i

σ z
i

)p

→ 1

np−1

(∑
i

σ z
i

)p

+
∑

i

δhiσ
z
i , (G1)

where δhi ∼ N (0, σ 2). Under this noise model, the time-
dependent Hamiltonian [Eq. (1) in the main text] is no

FIG. 20. (a)–(c) Relevant ground-state energy gap � for the noiseless case (σ = 0) and a noisy realization (σ = 10−2) for (a) the infinite-
range (p = 6)-spin model with n = 12 and λ = 4, (b) the infinite-range (p = 5)-spin model with n = 12 and λ = 4, and (c) the geometrically
local Ising example with n = 12 and λ = 1.15. (d)–(f) Percentiles of the minimum gap for 103 noisy realizations (σ = 10−2) at different sizes
for (d) the infinite-range (p = 6)-spin model with λ = 4, (e) the infinite-range (p = 5)-spin model with λ = 4, and (f) the geometrically local
Ising example with the optimized λ values for the noiseless case. The error bars represent 95% confidence intervals (2σ ) calculated using 103

bootstraps of the noisy realizations.
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longer invariant under permuting the qubits nor under the
operator P for p even, so the evolution is not restricted to
any obvious subspace. We compare in Figs. 20(a) and 20(b)
the original (noiseless) relevant gap and the gap for one
realization of the noise. Significantly smaller minimum gaps
now appear in the spectrum for the p = 6 case but not
for the p = 5 case. The smaller gaps result from true-
level crossings in the spectrum becoming avoided-level
crossings.

We can consider a similar noise model for our geometri-
cally local example, and we show an example of the gap for
one noise realization in Fig. 20(c).

It is difficult to ascertain how the minimum gap in the
noisy models scales with problem size n. As we show in
Figs. 20(d)–20(f), while the introduction of random noise
results in a drop in magnitude in the minimum gap for the
cases where the Hamiltonian is invariant under P, no obvious
scaling is seen for the small system sizes we study.
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