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Entanglement-assisted communication in the absence of shared reference frame
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Alice wants to convey the value of a parameter to Bob with whom she does not share a reference frame.
What physical object can she use for this task? Shall she encode this value into the angle between two physical
vectors such as the angle between two spins? Can she benefit from using entanglement? We investigate these
questions here and show that an entangled state of two qubits has three parameters that are invariant under
changes of the reference frame. We also calculate for specific examples the average information gain for different
circumstances, where one of these parameters is used for communication. We compare our result with the special
case of separable states and find that entanglement enhances the information gain.
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I. INTRODUCTION

An essential assumption behind many quantum protocols
is the existence of a reference frame. For instance, whenever
the spin angular momentum of a spin-1/2 particle is to be
measured, the result is interpreted based on a reference for
spatial directions and so the quantum state assigned to the
particle depends on the reference frame. Moreover, many
quantum information processing tasks rely on the fact that
spatially separated parties have access to a shared frame of
reference [1–4]. For instance, in the quantum teleportation
protocol, Alice performs a local measurement and sends the
outcome of the local measurement via a classical message to
Bob, and then Bob would perform a local unitary operation
based on Alice’s measurement outcomes. This will provide
him with the state planned to be teleported. For the protocol
to work, Alice and Bob need to share a spatial frame of
reference, otherwise Bob would perform a wrong operation
and teleportation would fail.

The information about a direction in space or a moment in
time is recognized as unspeakable information, which means
that it is not indifferent to the physical nature of the carrier
and certain material objects must be used to convey this
information [5]. In other words, it is called unspeakable since
a reference frame is required, to which this information is
defined and cannot be clearly presented by a string of classical
bits. One might not always possess a physical system that
is capable of carrying this kind of information or can act as
a reference frame. Sometimes it is even impossible to find
the perfect description of one’s local reference frame, either
due to misalignment or lack of precision or adequate stability.
Thus, a shared reference frame (SRF) is often regarded as a re-
source [6]. The restriction of lacking shared reference frames
stimulated an interesting topic of research that attempts to
develop a framework for investigating the manipulation of
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systems that can serve as a reference frame and quantifying
the resource that they can provide. This framework is called
the resource theory of quantum reference frames [7] and is re-
cently treated more generally in the quantum resource theory
of asymmetry [8–12]. In these theories, any quantum system
that is aligned with some reference frame is a resource to
others with different frames of reference. These resources are
useful as a substitute for a classical reference frame and play
the same role that entangled states do under the restriction of
local operations and classical communications in the resource
theory of entanglement [13–15].

As mentioned in the previous paragraph aligning reference
frames is quite an intricate matter. Several researches have
been devoted to exploring techniques that can efficiently
establish a SRF either by sending information about directions
[16–20] or by finding the unitary operation that relates the
reference frames of two parties [21,22], or even by employing
shared entangled states to interestingly substitute a SRF in
certain communication tasks [23] or securely establish a SRF
between parties [24].

The other approach to obviate the problem of lacking a
SRF, that is the focus of this paper, is to circumvent the
difficulty by relational encoding. It is shown that under the
absence of SRF between parties one can suppose that their
descriptions and operations undergo a random unitary channel
[6]. To illustrate, if Alice describes her system by the state ρ,
the state to someone who has no SRF with Alice, prior to any
measurements, is described by

ρ̃ = E[ρ] =
∫

G
D(g)ρD†(g)dg, (1)

where dg is the Haar measure over the group of transforma-
tions G relating the frames of reference to each other and D(g)
is the representation of the group on the Hilbert space of the
system. This channel is called the G-twirling channel and can
be treated as a new type of decoherence to the systems [6].
This is an interesting result, due to the fact that the techniques
developed in the theory of decoherence free subspaces and
subsystems [25–29] can now be used to convene this decoher-
ence and succeed in many quantum information tasks in the
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absence of a SRF, such as, to name but a few, quantum and
classical communication [30,31], quantum key distribution
[32,33], and quantum cryptography [34].

Multipartite systems entail two types of degrees of freedom
(DoFs), namely, collective and relative DoFs. The parameters
describing the system’s relation to some reference external
to it are called collective, while those concerned with the
relation between the system’s parts are known as relative
ones. For instance, when one considers a set of two vectors
in the Euclidean space, the angle between the vectors is a
relative parameter; however, the angle between the bisector
of that angle and any of the axes of the Cartesian coordinate
system would be a collective DoF. In other words, the relative
parameters are the ones that remain invariant under the change
of reference frame, while collective parameters change. Simi-
larly, the state of quantum systems consisting of two qubits
is denoted by ργ ,ω, in which γ and ω represent all of its
relative and collective DoFs respectively. Based on the above
discussion, ργ ,ω transforms under a global rotation as

[D(�) ⊗ D(�)]ργ ,ω[D(�) ⊗ D(�)]† = ργ ,ω′ , (2)

where D(�) ⊗ D(�) is the collective tensor representation of
SU(2) on the joint Hilbert space H ⊗ H of qubits and � ∈
SU(2) is an arbitrary element of the group that rotates both
qubits in the same way. The global parameters of the state after
the transformation change from ω to ω′. However, the relative
parameters remain unchanged and can therefore be used in
relational encoding for quantum communication tasks.

Suppose that a message is encoded into a relative parameter
γ of a state ργ ,ω. To those who do not have access to a shared
Cartesian reference frame with the encoder, the state only
entails the relative information; all its collective information
is lost and is described by the SU(2) twirling of ργ ,ω as

ργ =
∫

[D(�) ⊗ D(�)]ργ ,ω[D(�) ⊗ D(�)]†d�, (3)

where d� is the SU(2) invariant measure. Using a positive
operator-valued measure {Eλ}, to estimate the relative param-
eters, the prior knowledge of the parameter is updated to a
posterior distribution using Bayes’s theorem as

p(γ |λ) = Tr(Eλργ )p(γ )

p(λ)
. (4)

The information gain for the obtained value of λ is given by

Iλ =
∫

p(γ ) log2 p(γ )dγ −
∫

p(γ |λ) log2 p(γ |Eλ)dγ (5)

and the average information gain is given by Iavg =∑
λ P(λ)Iλ. We use the average information gain for quan-

tifying the performance, i.e., the success in estimation of a
communicated parameter.

Bartlett et al. [31] investigated the problem of communi-
cation protocols in the absence of a SRF, when one wants
to estimate a relative parameter that is encoded in a pair of
product spins. They found that the only relative parameter of
a two-qubit product state is the angle between the correspond-
ing vectors of the two qubits in the Bloch sphere and showed
that the optimal measurement of the relative parameter can be
chosen to be a reference-frame-independent measurement. It

is natural to investigate the role of entanglement as a ubiqui-
tous property of quantum systems and the relative parameters.
More precisely, in the absence of a SRF, shall we encode
information in entangled states or in product states? Would
one benefit from using entanglement for communication in the
absence of the SRF? And at the base of all of these questions,
what are the relative parameters of a general two-qubit state
and their physical significance? In this paper we focus on a
two-qubit entangled state and answer all of these questions.
We show that such a state has three relative parameters and
calculate the information gain of the receiver when the value
of a bounded continuous parameter is encoded into each of
these parameters separately.

The structure of the paper is as follows. Section II is
devoted to characterization of the relative parameters of a pure
entangled two-qubit state. In Sec. III, we calculate the average
information gain when one of these relative parameters is used
for communication. We end the paper with a summary and an
outlook in Sec. IV.

II. RELATIVE PARAMETERS OF
A PURE TWO-QUBIT STATE

The only relative parameter of a pure product state of two
qubits is the angle between the two vectors representing each
qubit in the Bloch sphere [31]. Here we consider a general
pure two-qubit state |�〉, which in the computational basis is
represented as

|�〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉. (6)

From the normalization of the state, |a|2 + |b|2 + |c|2 +
|d|2 = 1, and the freedom of a global phase, this state has
six real parameters. Invariance under global SU(2) rotations,
D(�) ⊗ D(�), that have only three parameters leaves three
independent parameters in the state, which are the relative
parameters that we are searching for. To find these, one can
write

|�〉 =
∑
i, j

�i j |i, j〉, (7)

in which �i j can be written as a matrix

�̂ =
(

a b
c d

)
, (8)

and note that under D(�) ⊗ D(�)

�i, j −→ D(�)ikD(�) jl�k,l (9)

or in matrix form

�̂ −→ [D(�)�̂D(�)T ]. (10)

The two invariants of this transformation are

det(�̂ ) = ad − bc and Tr(−iσy�̂ ) = b − c. (11)

The reason for the second equality is the identity
σyDT (�) = D†(�)σy which is manifest if we write D(�) =
ei�1σx+i�2σy+i�3σz and use the commutation relations of the
Pauli matrices, σyσiσy = −σ T

i . In fact, a simpler way of
deriving these invariants is to directly act on the state (6) with
a unitary D(�) = ( x y

−y∗ x∗) with |x|2 + |y|2 = 1 and calculate
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FIG. 1. In the absence of a reference frame, a pure product state
of two qubits (left) can only carry information in the angle between
the two vectors representing the two qubits in the Bloch sphere. An
entangled state (right) [Eq. (12)] can carry two more parameters. The
questions are which parameter is a better carrier and what are the
conditions for achieving this optimality.

the new parameters a′, b′, c′, d ′. It is then easily seen by
inspection that the two quantities in Eq. (11) are invariant.
Note that ad − bc is a complex number. Its absolute value
is half the concurrence measure of entanglement of the state
[35] which is already known to be invariant under any local
operation on qubits. Here we see that its phase is also an
invariant of the global rotation D(�) ⊗ D(�). Nevertheless,
by extracting a global phase from the state (a, b, c, d ) −→
eiη(a, b, c, d ), one can always make ad − bc real and positive
and so equal to |ad − bc|. So the first invariant ad − bc is
nothing but a measure of the entanglement of the two qubits.
We are thus left with three real relative parameters in the above
two complex quantities as expected.

To get a better intuition of the complex invariant b − c,
we can consider its geometrical expression which is simpli-
fied when Alice aligns her coordinate system in a specific
way. To see this, let ρA be the density matrix of the first
qubit with spectral decomposition ρA = λm

2|m〉〈m|. Expand-
ing the state |�〉 in terms of |m〉′s for the first qubit, we
find |�〉 = ∑

m |m〉|φm〉, where 〈φm|φl〉 = δm,lλm
2. This de-

termines |φm〉’s up to a phase. Absorbing the phases into
the definition of states gives the Schmidt decomposition of
the state |�〉. Note that the Schmidt decomposition does not
uniquely determine the state, e.g., all the Bell states have
the same Schmidt decomposition. To fully characterize and
distinguish the states, we need to keep the phases of |φm〉. So
the final decomposition of |�〉 would be

|�〉 = e−i ψ

2 cos(α)|m〉|n〉 + ei ψ

2 sin(α)|m⊥〉|n⊥〉, (12)

with α ∈ [0, π/4] and ψ ∈ [0, π ]. Note that |〈m|n〉|2 =
1
2 (1 + m · n), where n and m represent vectors in the Bloch
sphere. Based on the representation of the state in Eq. (12),
the invariant parameters under a global rotation D(�) ⊗ D(�)
are α,ψ, and θ , which is the angle between the two vectors
m and n (see Fig. 1).

For simplicity, we assume a coordinate system for Alice
such that the two vectors m and n lie on her xz plane. Alice
can always choose her coordinate system in this way no matter
what the coordinate system of Bob is. In this coordinate

FIG. 2. Alice’s state preparation circuit. She uses this circuit to
independently adjust each of the relative parameters in a suitable way
to provide Bob with the highest information gain possible.

system we get

|n〉 = cos

(
θ

2

)
|0〉 + sin

(
θ

2

)
|1〉,

|n⊥〉 = − sin

(
θ

2

)
|0〉 + cos

(
θ

2

)
|1〉. (13)

Inserting Eqs. (13) into Eq. (12), we obtain the general pure
two-qubit state as

|�〉 = e−i ψ

2 cos(α)|0〉
[

cos

(
θ

2

)
|0〉 + sin

(
θ

2

)
|1〉

]

+ ei ψ

2 sin(α)|1〉
[
− sin

(
θ

2

)
|0〉 + cos

(
θ

2

)
|1〉

]
.

(14)

Now, using this form of the two-qubit state, we can see that
the relative parameters are

ad − bc = 1
2 sin(2α) (15)

and

b − c = sin

(
θ

2

)
[e−i ψ

2 cos(α) + ei ψ

2 sin(α)]. (16)

This indicates that α, θ , and ψ can indeed be referred to as the
three relative parameters of a pure entangled two-qubit state.

The fact that the parameters α, θ , and ψ are relative param-
eters, which can convey information to Bob in the absence of
a SRF, means that up to a global rotation D(�) ⊗ D(�) Alice
should be able to prepare any two-qubit state by application
of a quantum circuit based on these three relative parameters.
The quantum circuit in Fig. 2 produces the state by which each
of the relative parameters can be independently set.

Note that the action of this circuit can be written as

|�〉 = [Rz(ψ ) ⊗ Ry(θ )]CNOT[Ry(2α) ⊗ I]|0, 0〉. (17)

If the reference frame of Alice rotates by D(�), this
means that the input state of the circuit will change
|0′〉⊗2 = D(�)⊗2|0, 0〉 and the gates will change Rn′ (.) =
D(�)−1Rn(.)D(�). Inserting this new input state and these
new gates into Eq. (17) one finds that the new state is |� ′〉 =
D(�) ⊗ D(�)|�〉, which has the same relative parameters as
|�〉, but with new global parameters inherited from D(�).
This means that different reference frames cannot change the
relative parameters of the state produced by this circuit.

We are now faced with the following two questions.
(i) If Alice wants to communicate the value of a contin-

uous parameter to Bob, to which of the above three relative
parameters should she encode this value in order to convey
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the message with the highest fidelity, i.e., in order for the
information gain of Bob to be the highest?

(ii) Does using the entangled state offer any advantage over
a product state?

We will answer these questions in the next section.

III. COMMUNICATION USING THE RELATIVE
PARAMETERS

In order for Alice to use the relative parameters for commu-
nication with Bob, she should encode a message as in Fig. 2
and send the two qubits to Bob. Then Bob needs to measure
the state and make an estimate of the communicated param-
eters. We assume that Alice prepares an ensemble of states,
all prepared with the relative parameters that encode her
message. The optimal measurements done by Bob are the total
spin projectors, which are �0 and �1 [31]. Thus, the proba-
bility of projecting on �i, given that γ is encoded to the state,
is given by

p(�i|γ ) = Tr(ργ �i ). (18)

Using the Bayesian formalism, Bob can infer the value of γ

from the following:

p(γ |�i ) = Tr(�iργ )p(γ )

p(�i )
, (19)

where p(�i ) = ∫
Tr(�iργ )p(γ )dγ , with p(γ )dγ a suitable

measure over the three component variable γ . Here dγ is
a volume element over the manifold of relative parameters
the explicit form of which may be difficult to obtain. In all
the examples below we are concerned with special forms
of the submanifolds where only one of the parameters is
changing and the explicit form of dγ is simple. Having the
posterior distribution over γ , it is straightforward to calculate
the information gain as

I�i =
∫

p(γ |�i ) log2

(
p(γ |�i )

p(γ )

)
dγ , (20)

where the probability p(γ ) for producing γ is known to Alice
and Bob. Then we will have

Iavg = p(�0)I�0 + p(�1)I�1 , (21)

which is the average information gain for Bob given that Alice
encodes three real values into γ .

For simplicity, we consider a communication protocol in
which Alice uses only one of the relative parameters to
encode her message and sets the other two parameters to some
optimal values that maximize the communicated information.
We assume that prior to the protocol Alice and Bob agree on
the optimal setting, i.e., they both know what values would
be used for the relative parameters that are not used for
communication. Bob only needs to estimate the value of the
last remaining relative parameter for finding the message. We
also assume that the prior distribution of this parameter is
known to both Alice and Bob.

For instance, assume that Alice fixes θ = θ0 and ψ =
ψ0 and encodes her message into the value of the third
parameter, α. The problem is now to determine the average
information gain I (α)

avg (θ0, ψ0) and decide what values of θ0

and ψ0 maximize this average information gain. In other

words, Alice and Bob should determine what fixed values for
these two parameters convey the highest information about
the third parameter. We may call this maximum average
information gain I (α)

avg (max) in this example. Similarly, they
can use any of θ and φ for communication which defines
I (θ )
avg(max) and I (φ)

avg (max), respectively. This gives three differ-
ent approaches for communication using only one relative
parameter, and to find the best approach we should determine
which of I (α)

avg (max), I (θ )
avg(max), or I (ψ )

avg (max) gives the highest
information gain. This will determine which of these three
parameters is the best carrier of information in the absence
of a SRF. Also to assess the role of entanglement, we should
compare the maximum information gain in each approach
with the case where Alice can only send product states and
determine whether or not there is any advantage in using
entangled states.

We now note that the state prepared by Alice has three real
parameters collectively denoted by γ = (α, θ, ψ ). We call
this state |�γ 〉. When received by Bob, who has no SRF with
Alice, it is as if the state has passed through a random global
rotation channel and has changed to

ργ =
∫

[D(�) ⊗ D(�)]|�γ 〉〈�γ |[D(�) ⊗ D(�)]†d�,

(22)
where d� is the SU(2) invariant measure. The optimal mea-
surements of Bob are projectors into total spin of the two
particles, {�0,�1}. Using the cyclic property of the trace, and
then the rotation invariance of total spin projectors, we find

Tr(�iργ )

=
∫

Tr{[D(�) ⊗ D(�)]†�i[D(�) ⊗ D(�)]|�γ 〉〈�γ |}d�

= 〈�γ |�i|�γ 〉. (23)

It is worth taking a look at the probabilities of the projec-
tions of the state |�γ 〉 onto the asymmetric and symmetric
subspaces, which are

p(�0|γ ) = Tr(�0ργ ) = [1 − cos(θ )][1 + sin(2α) cos(ψ )]

4
(24)

and

p(�1|γ ) = 1 − p(�0|γ ), (25)

respectively. One can verify that for product pairs (α = 0)
these probabilities turn into what Bartlett et al. used in [31].
We use the result in Eq. (24) in each communication scheme
to determine the optimal value for one of the two fixed
parameters in the following sections. We use “optimal” for
a setting where the information gain for Bob is maximized,
given that Alice prepares a two-qubit state and sends it to Bob.

We are now ready to investigate the three cases where Alice
encodes her message into the value of one of the relative
parameters. Since our measurement scheme has only two
outcomes the maximum extractable information of it would be
1 bit; this implies that using even all the three parameters for
communication would not increase the maximum information
gain. Before presenting the results, we should note what kind
of prior probability distribution is used by Alice. For each
parameter, we consider two different natural distributions, a
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FIG. 3. Average information gain (bits) for estimation of θ in
terms of α0 at ψ0 = 0 for two different prior distributions over θ .
The plot shows that the more the entanglement the higher the average
information gain. This also shows that product states are the worst
choice for encoding a message in θ .

discrete distribution where the parameter takes two different
values with equal probability and a continuous distribution
where the parameter is chosen uniformly at random. We find
the optimal setting for each case. Note that since we are
changing the prior probability distribution we cannot compare
the optimal results of the two cases. In other words, although
the information gain in one scenario may be greater than the
other, the optimal setting for each case is applicable only to its
own circumstances. In each case, we distinguish the results of
these two cases, as shown in Figs. 3–5 by the labels “Discrete
Distribution” and “Uniform Distribution.”

A. Encoding information in θ

Suppose that Alice encodes her message in θ . In order to
convey the highest amount of information, she should tune the
other two parameters into fixed values, say α0 and ψ0. To find

Discrete Distribution

Uniform Distribution

0
4

0

0.442

1

0

I a
vg(

) (
0,

0
)

FIG. 4. Average information gain (bits) for estimation of ψ in
terms of α0 at θ0 = π for two different prior distributions over ψ .
It is seen that for no entanglement no information is gained since
ψ vanishes for product states. On the other hand, as entanglement
increases, so does the average information gain.

Discrete Distribution

Uniform Distribution

0
0

0.126

0.311

1

0

I a
vg(
)
(
0,

0
0)

FIG. 5. Average information gain (bits) for estimation of α in
terms of θ0 at ψ0 = 0 for two different prior distributions over α.
Increasing θ0 increases the average information gain; therefore, the
best states to encode a message in their α parameter are the ones with
θ0 = π and ψ0 = 0.

the optimal value of ψ0, we can consider the sensitivity of our
measurement with respect to the message parameter as

∣∣∣∣∂ p(�0|γ )

∂θ

∣∣∣∣ =
∣∣∣∣ [1 + sin(θ )][1 + sin(2α0) cos(ψ0)]

4

∣∣∣∣. (26)

It is seen that to increase this sensitivity Alice should set the
parameter ψ0 = 0 for all α0. Alice does this simply by tuning
the gates in her circuit in Fig. 2. To investigate the effect
of entanglement and determine α0, we present the results of
calculating the average information gain in terms of α0 for
ψ0 = 0. The integrals (20) are calculated numerically and
the results are plotted in Fig. 3 for the two different prior
probability distributions.

1. Uniform distribution

Since Alice has fixed the two vectors m̃ and ñ in her own
frame to lie in the xz plane, the prior distribution of θ is given
by p(θ ) = 1

π
for θ ∈ [0, π ]. The average information gain is

maximized at α = π/4 and equals to 0.442. In the absence
of entanglement, α = 0, we find I (θ )

avg = 0.137, which shows
that entanglement enhances the information gain almost three
times in this protocol.

2. Discrete distribution

For the prior p(θ = 0) = p(θ = π ) = 1/2, where the two
qubits are either parallel or antiparallel, the information gain
reaches its maximum at α0 = π/4, implying that in this
case Bob can exactly retrieve the message which is indeed
a classical bit of 1 for |�θ=0,α0=π/4,ψ0=0〉 = 1√

2
(|00〉 + |11〉)

and zero for |�θ=π,α0=π/4,ψ0=0〉 = 1√
2
(|01〉 − |10〉). In fact,

Alice and Bob can do classical communication, as previously
noted in [30]. Note that this is the maximum information gain
as previously mentioned. Without entanglement (α0 = 0), the
average information gain would be 0.311.
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TABLE I. The highest amount of the average information gain
for different encoding schemes.

��������������Iavg(max)
Encoding parameter

θ ψ α

Uniform distribution 0.442 0.442 0.126
Discrete distribution 1 1 0.311

B. Encoding information in ψ

When Alice encodes the message in ψ , similar to the
sensitivity argument of the previous case, we find

∣∣∣∣∂ p(�0|γ )

∂ψ

∣∣∣∣ =
∣∣∣∣ [1 − cos(θ0)][1 − sin(2α0) sin(ψ )]

4

∣∣∣∣. (27)

It is inferred that it is best to set θ0 = π for all the values
of α0. To find the optimal value of entanglement, the average
information gain is considered in Fig. 4 for two different prior
probability distributions.

1. Uniform distribution

A uniform distribution for ψ is p(ψ ) = 1
π

for ψ ∈ [0, π ].
The average information gain is maximized at α0 = π/4,
which equals to 0.442. Therefore this relative phase carries
the largest information for maximally entangled states. As
expected for α0 = 0, no information is communicated since
ψ loses its meaning.

2. Discrete distribution

For the discrete distribution p(ψ = 0) = p(ψ = π ) =
1/2, the average information gain reaches the value of 1 at
α = π

4 , which is the maximum extractable information of our
measurement. In this case, Bob can exactly retrieve a classical
bit encoded in the two states |�ψ=π,α0=π/4,θ0=π 〉 = 1√

2
(|01〉 +

|10〉) and |�ψ=0,α0=π/4,θ0=π 〉 = 1√
2
(|01〉 − |10〉). This is be-

cause the two states belong to the triplet and singlet subspaces
correspondingly and can be fully discriminated by Bob’s
measurement of total spins. Had Alice set θ0 to any other
value, say θ0 = 0, for which |�ψ,α0=π/4,θ0=0〉 = 1√

2
(|00〉 ±

|11〉), this perfect communication could not be achieved.

C. Encoding information in α

While encoding the message into α we see that∣∣∣∣∂ p(�0|γ )

∂α

∣∣∣∣ =
∣∣∣∣ [1 − cos(θ0)][1 + 2 cos(2α) cos(ψ0)]

4

∣∣∣∣.
(28)

Thus, the best setting for this encoding is to set ψ0 = 0 or π

for all θ0. In the following, the effect of θ0 on the average in-
formation gain for two different prior probability distributions
given that ψ0 = 0 is investigated. The results are shown in
Fig. 5.

1. Uniform distribution

Taking the prior over α as p(α) = 4
π

for α ∈ [0, π/4], the
average information is maximized at θ0 = π and equals to
0.126. In other words, If Alice encodes the value of α into
states of the form |�α,θ0,ψ0=0〉 = cos α|0, n〉 + sin α|1, n⊥〉, in
order to provide Bob with the best estimation of α, Fig. 5
implies that θ0 must be set to π ; this corresponds to the
situation in which the value of α is encoded into states of the
form |�α,θ0=π,ψ0=0〉 = cos α|0, 1〉 − sin α|1, 0〉.

2. Discrete distribution

For the prior p(α = 0) = p(α = π ) = 1/2, Bob’s task is to
discriminate between maximally entangled states and product
states. Looking at Fig. 5, we observe that the same trend as
the uniform prior is valid with a higher value of information
gain at the optimal setting for θ0.

Note that for both distributions no information is trans-
mitted at θ0 = 0, that is, when Alice encodes the value of α

into the state |�α,θ0=0,ψ0=0〉 = cos α|0, 0〉 + sin α|1, 1〉, which
regardless of the value of α is always projected onto the triplet
subspace.

D. Comparing the efficiency of encoding schemes

It is now interesting to compare the results of the three
curves in Figs. 3–5. The maximum amounts of average infor-
mation gain at the optimal settings are compared in Table I.
It is concluded that the the parameter α, which determines the
amount of entanglement in the state, is the least informative
carrier among the three relative parameters. Although θ and
ψ provide the same maximum results, comparing the curves

(a)

0
4

0

0

0

(b)

0
4

0

0

0

(c)

0
0

0

0

FIG. 6. Average information gain (bits) for estimation of θ , ψ , and α in terms of the two other parameters in each encoding scenario
for the uniform prior distributions over the message parameter. Contours are included in the plots for further clarification. (a) I (θ )

avg(α0, ψ0 ).
(b) I (ψ )

avg (α0, θ0 ). (c) I (α)
avg (θ0, ψ0 ).
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(a)

0
4

0

0

0

(b)

0
4

0

0

0

(c)

0
0

0

0

FIG. 7. Average information gain (bits) for estimation of θ , ψ , and α in terms of the two other parameters in each encoding scenario
for the discrete prior distributions over the message parameter. Contours are included in the plots for further clarification. (a) I (θ )

avg(α0, ψ0 ).
(b) I (ψ )

avg (α0, θ0 ). (c) I (α)
avg (θ0, ψ0 ).

in Figs. 3 and 4, we infer that θ is, in general, a better carrier of
information since at low amounts of entanglement the average
information gain for encoding in θ is higher than for ψ .

It is interesting to observe, in each encoding scenario,
how the two other parameters, when they are varied, affect
the amount of information communicated. In Figs. 6 and 7
the average amount of information communicated via the
message parameter is plotted with respect to the values of
the other two parameters. In fact, Figs. 3–5 represent only a
slice of these plots. For examples, Fig. 3 contains the trends
of the average information gain as α0 varies while ψ0 is fixed
at ψ0 = 0 for the two prior distributions; these slices can be
tracked inside Figs. 6(a) and 7(a).

IV. SUMMARY AND OUTLOOK

This paper shows that pure entangled two-qubit states have
three relative parameters that are invariant under the change
of reference frame, while the pure product two-qubit states
entail only one relative parameter. In addition, the result of the
communication protocols discussed here demonstrates that θ ,
the angle between the two qubits, is the best parameter to
convey a message in the absence of a SRF. Our result also
shows that the entanglement can be employed to enhance
the average information gain of the receiver. Comparing the
highest achievable average information gains for a message
encoded into a pure entangled two-qubit state, which are 0.442

and 1 for the uniform and discrete distribution, respectively,
with the results of encoding the message into the only relative
parameter of a pure product two-qubit state, which are 0.137
and 0.311, respectively, we confirm the positive role of the
entanglement in the enhancement of the information commu-
nicated.

It is worthwhile to mention that it is not possible to change
the encoding strategy and obtain more information in this pro-
tocol. This is due to the fact that the communication protocol
in the absence of a SRF is based on the encodings into the
relative parameters of a state and the optimal measurement
of the relative parameters is shown by Bartlett et al. [31] to
be the total spin projective measurement. For the case of two
qubits the Hilbert spaces of which are made of spin-0 and
spin-1 subspaces, any encoding that one uses would be finally
subject to the measurement of its optimal encodings, which
are symmetric and asymmetric states.

While we have considered only qubits, similar questions
can be asked about relative parameters of bipartite qudits
and the role that each of their relative parameters plays in
communication protocols in the absence of a SRF.
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