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Experimental simulation of shift operators in a quantum processor
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The ability to implement quantum operations plays a fundamental role in manipulating quantum systems.
Creation and annihilation operators which transform one quantum state into another by adding or subtracting
a particle are crucial in constructing the quantum description of many-body quantum theory and quantum field
theory. Here we present a quantum algorithm to perform the creation and annihilation operators by the linear
combination of unitary operations associated with a two-qubit ancillary system. Our method can realize shift
operators akin to creation and annihilation operators simultaneously in the subspace of the whole system. A
prototypical experiment was performed with a four-qubit liquid-state nuclear magnetic resonance processor,
demonstrating the algorithm via full-state tomography. With a postselected probability of about 50%, the shift
operators are realized with a fidelity above 96%. Moreover, our method can be employed to quantum random
walk in an arbitrary initial state. With the prosperous development of quantum computing, our work provides a
quantum control technology to implement nonunitary evolution in a near-term quantum computer.
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I. INTRODUCTION

The non-Hermitian bosonic operators â and â† introduced
in the harmonic oscillator question are a basic and crucial
concept in quantum mechanics, laying the foundation for
quadratic quantization [1]. They offer us an alternative way to
calculate the harmonic oscillator system without solving the
irksome differential equations [2,3]. These bosonic operators
also play an important role in many fields of physics such
as quantum optics [4], quantum mechanics [1,5], quantum
measurement [6], and even quantum chemistry [7]. According
to existing research, the annihilation and creation operation
could be the foundation to construct an arbitrary quantum
state in theory [8]. Considering the hot field of quantum
computation and quantum information, it is natural for us to
try to realize these operators in a steerable quantum system
which can provide us a novel way to design a quantum
algorithm. The designed quantum system has difficulty exe-
cuting a nonunitary operator, which means there will be an
obstacle to evolve from the maximum and minimum quantum
states to the zero state in the process of realizing creation
and annihilation operators. Given the importance of these
operators, efficiently performing them with high success prob-
ability and fidelity in the quantum process is critical. Recently,
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much progress was made in both theory and experiment, one
aspect of which focuses on realizing the bosonic operations
at the single-boson level in an optical system [4]. But it is
usually difficult to achieve both high success probability and
performance fidelity at the same time. Some improvements
have also been made in the trapped-ion system realizing
the deterministic addition and near-deterministic subtraction
of a bosonic particle with fidelity over 0.9 [9]. However,
improvements still need to be made to satisfy higher precision
and less required experiment time.

In this paper, we experimentally realize shift operators
akin to creation and annihilation operators using the linear
combination of unitary operators in a four-qubit liquid-state
nuclear magnetic resonance system. The results offer us an
increase in both experiment precision and success ratio. The
paper is organized as follows: In Sec. II, we introduce the
universal theory of how to realize these two nonunitary op-
erators. In Sec. III, we introduce our experimental setups
and procedure for choosing a four-qubit sample. Then, we
present the experimental results and discuss the consequences.
In Sec. IV, we report an application of our algorithm. Last, we
close with a conclusion section summarizing the entire work
and giving some prospects.

II. THEORY

Quantum mechanically, the creation operator â† and an-
nihilation operator â acting on a bosonic system with a
number N of identical particles satisfy the following operator
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relationship [10]:

â†|N〉 = √
N + 1|N + 1〉,

â|N〉 =
√

N |N − 1〉. (1)

Given the importance of the creation and annihilation op-
erators, efficiently performing them in a quantum process
is critical. However, implementing such bosonic operations
is challenging. Because these operators are nonunitary and
inherently probabilistic, they cannot be realized during the
Hamiltonian evolution of a physical system without enlarging
the Hilbert space.

Ignoring the modification of the probability amplitude of
state, the conventional addition and subtraction of a particle
can be expressed as

K̂†|N〉 = |N + 1〉,
K̂|N〉 = |N − 1〉, (2)

which can be called addition and subtraction operations.
We consider addition and subtraction operators with iden-

tical particle numbers N . Our method can realize the addition
operator K̂† and subtraction operator K̂ in one quantum cir-
cuit.

In our method, the identical particle number N is mapped
to a corresponding |N〉 state. For convenience, we adopt a
truncated form of the creation operation K̂† by defining it as
an (N + 1) × (N + 1) matrix,

K̂† =
N−1∑
i=0

|i + 1〉〈i|, K̂ =
N∑

i=1

|i − 1〉〈i|. (3)

Every operation above can be decomposed into a sum form of
two unitary operations:

K̂† = U0 + U1

2
, K̂ = U2 + U3

2
, (4)

where

U0 =
N−1∑
i=0

|i + 1〉〈i| + |0〉〈N |,

U1 =
N−1∑
i=0

|i + 1〉〈i| − |0〉〈N |,

U2 =
N∑

i=1

|i − 1〉〈i| + |N〉〈0|,

U3 =
N∑

i=1

|i − 1〉〈i| − |N〉〈0|.

Considering the fact that the operators K̂† and K̂ can be
expressed as a linear combination of unitary operators, we
can perform the addition and subtraction operators via duality
quantum computing [11–14]. In duality quantum computing,
the work system with initial state |�〉 and the d-dimensional
ancillary system with initial state |0〉 are coupled together. The
corresponding digital simulation quantum circuit of the addi-
tion and subtraction operators from the algorithm is further
shown in Fig. 1.

FIG. 1. Quantum circuit of realizing addition and subtraction
operators. |�〉 denotes the initial state of the work system, and |00〉 is
the initial state of the auxiliary system. The squares represent unitary
operations, and the circles represent the state of the controlling
qubit. Unitary operations U0, U1, U2, and U3 are activated only
when the auxiliary qubit is |00〉, |01〉, |10〉, and |11〉, respectively.
We “read out” the output of the auxiliary system and construct the
quantum density matrix of the work system. We can realize the
addition operator for the auxiliary system in states |00〉 and |01〉 and
subtraction operator for the auxiliary system in states |10〉 and |11〉.

As shown in Fig. 1, the unitary operators V and W per-
formed on the two-qubit ancillary system are

V = H ⊗ H, (5)

W = I ⊗ H. (6)

The circuit realizes the process

|0〉2|�〉 →
√

1

2
K̂†|00〉2|�〉 +

√
1

2
K̂|10〉2|�〉

+
√

1

2
Ĵ†|01〉2|�〉 +

√
1

2
Ĵ|11〉2|�〉, (7)

where the operators K̂†, K̂ , Ĵ†, and Ĵ act on the work system
|�〉. To be the same as K̂† and K̂ in Eq. (7), the operators Ĵ†

and Ĵ can be calculated by

Ĵ† = U0 − U1

2
= |0〉〈N |, Ĵ = U2 − U3

2
= |N〉〈0|. (8)

The Ĵ† operation transforms the |N〉 state into the |0〉 state, and
Ĵ transforms the |0〉 state into the |N〉 state. So it is clear that
the operator Ĵ† is a special addition operator dealing with the
maximum state, and the operator Ĵ is the special subtraction
operator dealing with the minimum state. The probabilities
of the realization of the addition operator and the subtraction
operator are both 50%.

Then we will consider addition and subtraction operations
in the case where the identical particle number N = 3 in
Eq. (4).

III. EXPERIMENT AND RESULT

We experimentally inspect our algorithm using a four-qubit
nuclear magnetic resonance (NMR) system. As introduced
before, the ancillary system is two qubits, and we also choose
a two-qubit work system |00〉, |01〉, |10〉, |11〉 to represent 0,
1, 2, 3. The four-qubit sample is 13C-labeled trans-crotonic
acid dissolved in acetone-d6. The structure of the molecule
is shown in Fig. 2, where C1 to C4 denote the four qubits;
the first two qubits are the auxiliary system, and the last two
qubits are the work system. The methyl group M, H1, and
H2 were decoupled throughout all experiments. For molecules
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FIG. 2. Molecular structure and Hamiltonian parameters of 13C-
labeled trans-crotonic acid. C1, C2, C3, and C4 are used as four
qubits. The chemical shifts and J couplings (in Hz) are listed by the
diagonal and off-diagonal elements, respectively. T2 (in seconds) are
also shown at the bottom.

in liquid solution, both intramolecular dipolar couplings (be-
tween spins in the same molecule) and intermolecular dipolar
couplings (between spins in different molecules) are averaged
away by the rapid tumbling [15]. The internal Hamiltonian
under the weak-coupling approximation is

H = −
4∑

j=1

πν jσ
j

z +
4∑

j<k

π

2
Jjkσ

j
z σ k

z , (9)

where ν j is the chemical shift and J jk is the J-coupling
strength. All experiments were carried out on a Bruker DRX
400-MHz spectrometer at room temperature (296.5 K).

The entire experiment can be divided into three parts, and
the experimental circuits are shown in Fig. 3.

Step 1. Initialization. Starting from the thermal equilibrium
state, we drive the system to the pseudopure state (PPS)
with the method of the spatial averaging technique [16–21].
Step 1 in Fig. 3 is the experimental circuit realizing the
PPS where all local operations are optimized using gradient
ascent pulse engineering (GRAPE) with a fidelity greater than
99.5% [22,23]. The final form of the four-qubit PPS is ρ0000 =
(1 − ε)I/16 + ε|0000〉〈0000|, where I is the identity matrix
and ε ≈ 10−5 is the polarization. Since only the deviated part
|0000〉 contributes to the NMR signals, the density matrix
used in NMR is a deviated matrix, and the PPS is able to serve
as an initial state. The experimental results are represented
as the density matrices obtained with the state tomography
technique [24–26] shown in Fig. 4. The fidelity between the
experimental results and |0000〉 is over 99.02%.

Step 2. Operator. As we introduced in Sec. II, we perform
the addition and subtraction operators K̂† and K̂ using duality
quantum computing. In this case, C1 and C2 represent the
ancillary system with initial state |0〉, and C3 and C4 represent
the work system as shown in Fig. 3. The unitary operators V
and W performed on the C1 and C2 system can be realized
as shown in step 2 in Fig. 3. Moreover, the four control-U
operators can be realized by using the GRAPE technology
with a fidelity greater than 99.5%.

Step 3. Measurement. The measurement circuit is also
listed in Fig. 3 in step 3. From Eq. (7), we know that the oper-
ator applied in the work system depends on the measurement
of the ancillary system. So we have to measure the ancillary

FIG. 3. NMR sequence to realize the addition and subtraction operators. In the first step, we use a spatial averaging method to prepare
the pseudopure state. In this part, the purple rectangles stand for the unitary operations which rotate 45◦ with a coordinate axis. Similarly,
the green rectangles rotate 90◦. The white rectangles stand for the unitary operations which rotate with the special angle with the X axis.
The blue rectangles stand for the unitary operations which rotate 180◦ with the Y axis. The double straight lines stand for the gradient field
in the z direction. In the second step, the radio-frequency pulses during this procedure are optimized using the GRAPE technology to realize
the controlled operator. In the third step, we measure the first two qubits and use the quantum tomography technology to obtain the final density
matrix. The brown squares are the auxiliary pulse which can be used for quantum tomography.
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FIG. 4. The spectrum of the thermal equilibrium state and PPS.
(a) The spectrum of the thermal equilibrium state. The x axis is the
relative frequency, and the y axis is the amplitude in arbitrary units.
Since the qubits are all carbon atoms, all signals of these four qubits
can be detected through the carbon channel in NMR experiments.
(b) The spectrum of spin C1 in the thermal equilibrium state. This
is an expanded view of spin C1 in (a). From plot, we can observe
more information in detail. The quantum state of the remaining spins
(C2, C3 and C4) is as indicated based on J12, J13, and J14 shown
in Fig. 2. (c) The spectrum of the PPS. As we know, the ground
state |0000〉 cannot be detected directly in NMR, and we can apply
Ri

y(π/2) to it to obtain a single peak of the ith spin. In our case,
only the peak in the spectrum of C1 can be detected by applying the
R1

y (π/2) pulse. (d) The spectrum of spin C1 in the PPS. This is also
an expanded view of spin C1 in (c). It is clear that the peaks standing
for the quantum state except |0〉 are close to zero.

qubits and use quantum tomography technology to get the
density matrix by applying auxiliary pulses on C3 and C4.

IV. RESULT

Here we introduce two examples in detail with two dif-
ferent initial quantum states to show our algorithm. One is
a general quantum state such as |φ〉 = |01〉; the other is a
superposition state such as |φ〉 = |01〉+|10〉

2 . These initial states
can be obtained by single-qubit gates and the controlled-NOT

(CNOT) gate from the ground state |00〉. Then we can get
the experimental results shown below by following the steps
introduced above.

A. General state

The experimental results of the first example are shown in
Fig. 5. We find that the addition operation can be realized
when the auxiliary qubits are |00〉. Then we calculate the
fidelity, defined as [27]

F (ρ, σ ) = |Tr(ρσ )|/
√

Tr(ρ2)Tr(σ 2), (10)

where ρ and σ represent the density matrices from the ex-
periments and theories, respectively. So comparing the exper-
iments shown in Fig. 5(b) with the quantum state |10〉, the fi-
delity between them is over 98.8%. Thus, we probabilistically
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FIG. 5. The density matrix of the initial quantum state and final
state (in the normalized units). (a) The initial quantum state |01〉.
(b) The final state when the measurement of ancillary qubits is |00〉.
(c) The final state when the measurement of ancillary qubits is |10〉.
The left part is the real part of the density matrix, and the right part
is the imaginary part in (b) and (c).

realize the quantum process

K̂†|01〉 = |10〉. (11)

Similarly, the subtraction operator can be performed when
the auxiliary qubit is |10〉, as shown in Eq. (8). Comparing
the results shown in Fig. 5(c) with theoretical state |00〉, the
fidelity between them is approximately equal to 98.3%. Thus,
we also probabilistically realize the quantum process

K̂|01〉 = |00〉. (12)

We introduce the idea that the addition and subtraction op-
erators can be performed probabilistically. From Eq. (8),
the probabilities depend on the experimental results of the
auxiliary qubit shown in Table I. The measurement of |11〉
should be an experimental error. From the results we find that
we can perform the addition and subtraction operators for the
same probability of 50%.

B. Superposition state

The experimental results for the second example are shown
in Fig. 6. Similarly, we find that the addition operation can be
realized when the auxiliary qubit is |00〉. Then we calculate
the fidelity using the definition (13).

Comparing the experiments shown in Fig. 6(b) with the
quantum state |01〉+|10〉

2 , the fidelity between them is over
96.3%. Thus, we realize the quantum process probabilisti-
cally:

K+ |01〉 + |10〉
2

= |10〉 + |11〉
2

. (13)

TABLE I. The measurement of the auxiliary qubit with the
general state.

|00〉 |10〉 |01〉 and |11〉
Probability 49.56 49.51% 0.93%
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FIG. 6. The density matrix of the initial quantum state and final
state (in the normalized units). (a) The initial quantum state |01〉+|10〉

2 .
(b) The final state when the measurement of ancillary qubits is |00〉.
(c) The final state when the measurement of ancillary qubits is |10〉.
The left part is the real part of the density matrix, and the right part
is the imaginary part in (b) and (c).

Similarly, the subtraction operator can be performed when the
auxiliary qubit is |10〉, as shown in Eq. (8). Comparing the
results shown in Fig. 6(c) with theoretical state |01〉+|10〉

2 , the
fidelity between them is approximately equal to 97.0%. Thus,
we also realize the quantum process probabilistically:

K− |01〉 + |10〉
2

= |00〉 + |10〉
2

. (14)

We introduce the idea that the addition and subtraction op-
erators can be performed probabilistically. From Eq. (8),
the probabilities depend on the experimental results of the
auxiliary qubit shown in Table II. The measurement of |11〉
should be an experimental error. From the results we find that
we can perform the addition and subtraction operators for the
same probability of 50%.

C. Further experiment

show the unique feature of our algorithm, we present
the further experiment results of applying addition,
subtraction, and U0 operators on the initial state
(|00〉 + |01〉 + |10〉 + |11〉)/2, in which the quantum state
should evolve to different quantum states separately. When we
apply the U0 operator on the initial state, the fidelity between
the final state as shown in Fig. 7(b) and the initial state is
over 99%. This result also satisfies the theory we introduced
before. It is worth emphasizing that the subspace of ancillary
qubits will influence the target quantum states according to
Eq. (7), and it is the evolution of the quantum state under the
four operators in fact. We show the experimental results in
Fig. 7 when applying the addition and subtraction operators
to the initial state. It is clear that the addition and subtraction

TABLE II. The measurement of the auxiliary qubit with the
superposition state.

|00〉 |10〉 |01〉 and |11〉
Probability 48.84% 49.79% 1.38%
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FIG. 7. The real part of the density matrix of the initial quantum
state and final state (in the normalized units). (a) The initial quantum
state is (|00〉 + |01〉 + |10〉 + |11〉)/2. We apply the U0 operator on
the initial state; the final state is shown in (b). The results of the
work system are shown in (c) when the ancillary qubit subspace is
|00〉. Following the same setups as in the statement above, we realize
subtraction operator on the initial state, as shown in (e) when the
ancillary qubit subspace is |10〉. Similarly, we can perform Ĵ† with
the ancillary qubit |01〉, as shown in (d), and Ĵ with the ancillary
qubit |11〉, as shown in (f).

operators we realized are nonunitary operators. Thus, we
realize the quantum process K̂† as shown in Fig. 7(c), K̂ as
shown in Fig. 7(e), Ĵ† as shown in Fig. 7(d), and Ĵ as shown in
Fig. 7(f). The probabilities of measuring the auxiliary system
are shown in Table III.

V. APPLICATION

We have presented a universal algorithm to perform
addition and subtraction operations using a two-qubit
auxiliary system. Our algorithm has many applications, and
one of them is quantum random walks [28]. Quantum random
walks (QRWs) are extensions of the classical counterparts and
have wide applications in quantum algorithms [29], quantum
simulation [30], quantum computation [31], and so on [32].

TABLE III. The measurement of the auxiliary qubit in the further
experiment.

|00〉 |10〉 |01〉 |11〉
Probability 38.72% 13.96% 36.78% 10.54%
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FIG. 8. The simulation of a quantum random walk when the
initial state is |01000000〉 (128). The x axis represents the quantum
state, from |00000000〉 (0) to |11111111〉 (255). The y axis represents
the measurement probabilities (in the normalized units). The solid
circles are the probabilities of each state. The statistical distribution
can be observed by the line linked by the nonzero circles.

In standard one-dimensional discrete-time quantum walks
(DTQWs), the walker’s position can be denoted as |x〉 (x is an
integer), and the coin can be described with the basis states
|0〉 and |1〉 [33,34]. The evolutions of the walker and the
coin are usually characterized by a time-independent unitary
operator U = T Sc|φ〉. In each step, the coin is tossed by

Sc(φ) =
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
, (15)

where φ is the rotation angle and equal to 45◦ in this
work. The walker is shifted by T = 	|x + 1〉〈x| ⊗ |1〉〈1| +
	|x − 1〉〈x| ⊗ |0〉〈0|. In general, the result of the DTQWs
with a finite number of steps is determined by the initial
states of the coin and the walker as well as the operator U .
Obviously, the operator U can be realized by the algorithm
we introduced above. The operator |x + 1〉〈x| ⊗ |1〉〈1| is the
addition operator when the measurement of the first auxiliary
qubit is |1〉. Similarly, the operator |x − 1〉〈x| ⊗ |0〉〈0| is
the addition operator when the measurement of the first
auxiliary qubit is |0〉. So the first auxiliary qubit of our
algorithm can be considered the coin qubit of QRWs. Then
we present two kinds of simulations with different initial
states to demonstrate the QRWs with our algorithm. The
size of the work system we choose is eight-qubit system,
and the auxiliary system is still a two-qubit system. The
random-walk step is 128, and that means we repeat the circuit
in Fig. 1 a total of 128 times. The demonstration results with
initial state |01000000〉 are shown in Fig. 8. We find that
the probabilities of the odd state are all zero, and only the
even state has the probability to find the particle. Moreover,

FIG. 9. The simulation of a quantum random walk when the
initial state is |01000000〉+|01000001〉

2 (128, 129). The x axis represents the
quantum state, from |00000000〉 (0) to |11111111〉 (255). The y axis
represents the measurement probabilities (in the normalized units).
The solid circles are the probabilities of each state. The statistical
distribution can be observed by the line linked by all the circles.

the statistical distribution has good agreement with theory
[34]. As we introduced before, our algorithm can be applied
to the supposition state, so we choose another initial state,
|01000000〉+|01000001〉

2 ; the simulation result is shown in Fig. 9.
Obviously, now the odd state and even state have the same
probability, and the statistical distribution stays constant.

VI. CONCLUSION

In summary, we proposed a universal algorithm to re-
alize addition and subtraction operators. In this algorithm
addition and subtraction operations can be performed by
the linear combination of unitary operations with a two-
qubit ancillary system. Moreover, the number of ancillary
qubits is independent of the size of the work system. We
implemented this algorithm in a four-qubit NMR quantum
processor. Since two qubits are the ancillary system, the
work system was evaluated in a four-dimensional Hilbert
space. Without loss of generality, we chose two different
initial quantum states to prove our algorithm. Our experimen-
tal results have shown good agreement with the theoretical
predictions. Moreover, the method which realizes addition
and subtraction operators can be employed to perform a
quantum random walk in an arbitrary initial state. Our al-
gorithm can provide universal quantum control technology
which can also be utilized in other quantum physical systems
such as a nitrogen-vacancy center, a superconducting, trapped
ion, etc.
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