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Robust and high-precision quantum control is extremely important but challenging for the functionalization
of scalable quantum computation. In this paper, we show that this hard problem can be translated to a supervised
machine learning task by thinking of the time-ordered quantum evolution as a layer-ordered neural network
(NN). The seeking of robust quantum controls is then equivalent to training a highly generalizable NN, to which
numerous tuning skills matured in machine learning can be transferred. This opens up a door through which a
family of robust control algorithms can be developed. We exemplify such potential by introducing the commonly
used trick of batch-based optimization, and the resulting batch-based gradient algorithm is numerically shown
to be able to remarkably enhance the control robustness while maintaining high fidelity.
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I. INTRODUCTION

Highly accurate and stable control of quantum hardware
is crucial for achieving expected quantum supremacy in the
near future [1]. Usually, the control design is easy with re-
spect to a deterministic model. However, finding a single-shot
solution that also tolerates the system’s uncertainties, e.g.,
imprecisely identified parameters [2] or time-varying noises
in the Hamiltonian [3], is much harder. In the literature, this
problem has been tackled from various aspects. Most of these
evaluate the control robustness by the geometric curvature of
some high-dimensional manifold [4], which can be minimized
to enhance the robustness. This point of view leads to vari-
ous expansion-based methods that have been experimentally
very successful, including the adiabatic approach (stimulated
Raman adiabatic passage) [5] against control pulse impreci-
sions, dynamical decoupling [6–10] and difference evolution
subspace-selective self-adaptive differential evolution [11,12]
algorithms against environmental noises, and other Taylor-
expansion-based approaches [13,14].

From a different but more unified point of view, the control
against uncertainties can be thought of as manipulating a
collection of quantum systems under a uniform control. Along
this route, ensemble- and sampling-based approaches [15–17]
were proposed to minimize the average error of the entire
collection and a subset of samples of it, respectively. These
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algorithms have been successful in overcoming inhomogene-
ity of control fields in NMR experiments and are, in principle,
applicable to arbitrary types of uncertainties, which can vary
with time or not. Compared to the geometric approaches,
sampling-based methods are not restricted to the perturbation
regime and can thus explore larger uncertainties. However,
in practice they are limited to low-dimensional systems or
systems with few uncertainty parameters due to the exponen-
tially increasing computational cost. Even if the computation
is affordable, the search for robust controls is often hindered
by poor solutions due to the loss of controllability over a large
collection of sampled control quantum systems.

Our studies follow the latter route for its applicability to
nonperturbation regimes and capability of dealing with differ-
ent types of uncertainties. We find that the search for robust
quantum controls can be formulated as a supervised learning
task, and the controlled quantum evolution is thought of as a
deep neural network (DNN) to be trained for accomplishing
the task. More importantly, the pursuit of control robustness
can be naturally translated to the training goal of a highly
generalizable DNN model [18]. This connection provides
a new angle for understanding and solving robust quantum
control problems enlightened by vast studies in deep learning
(DL). For example, the algorithm we present in this paper
is illuminated by ways of improving the generalizability of
a DNN [19] through the following two aspects:

(1) Data augmentation. One always learns better with more
samples. Many DL problems have to learn from limited la-
beled training samples that are hard to obtain (e.g., diagnoses
of professional doctors from medical images). However, as
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will be shown later, an unlimited number of training samples
is available in our problem setting.

(2) Minibatch optimization. In classical big-data applica-
tions, a smart way of alleviating the computational burden is,
instead of evaluating the loss with all samples, to calculate
the loss and gradient functions with randomly selected mini-
batches of samples that vary from iteration to iteration. In this
way, an unlimited number of samples can be explored after
sufficiently many iterations. More importantly, the noisy and
thus less stable training dynamics can effectively improve the
generalizability by pulling the search away from the weakly
attractive (i.e., poorly generalizable) solutions. This merit has
been extensively approved in the practice of DL.

In the following, we will show how the robust quantum
control problem is translated to a supervised learning task and
how the minibatch training skill is employed to improve the
robustness of quantum controls. The rest of this paper is orga-
nized as follows. Section II presents a batch-based gradient-
descent (b-GRAPE) algorithm, following which Sec. III
demonstrates the effectiveness of the b-GRAPE algorithm via
two typical examples that involve time-invariant parametric
uncertainties and time-varying noises. Finally, conclusions are
drawn in Sec. IV.

II. MINIBATCH TRAINING OF ROBUST AND
HIGH-PRECISION QUANTUM CONTROLS

In this section, we first show how the robust control design
problem can be translated to the seeking of a generalizable
learning model, following which the b-GRAPE algorithm is
presented by incorporating the minibatch training into the
GRAPE optimization process.

A. Robust control design as a supervised learning task

Let us start from the general model of uncertain quantum
control systems:

U̇ (t, ε) = −iH[u(t ), ε]U (t, ε), (1)

in which the N × N unitary propagator U (t, ε) is steered
from the identity matrix IN by the control function u(t ). The
variable ε ∈ Rk denotes the uncertainties in the Hamiltonian
that can be some constant but unknown parameters or time-
dependent noises (discretized into a vector of uncertainty
parameters). We expect to find a robust control u(t ) that steers
the gate operation U (T, ε) ∈ CN×N to the target gate Uf for
all possible ε. Since such a goal is usually not achievable, we
can approach it by minimizing the average infidelity

L[u(t )] =
∫
Rk

‖U (T, ε) − Uf ‖2P(ε)dε, (2)

where P(ε) is the a priori probability distribution of the
uncertainty parameter. To alleviate the computation burden of
the integral (2), we approximate the average infidelity over a
finite number of uncertainty parameters sampled from P(ε),
say, S = {ε1, ε2, . . . }, as follows:

L[u(t ),S] = |S|−1
∑
ε∈S

‖U (T, ε) − Uf ‖2. (3)
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FIG. 1. The similarity between a deep neural network (left) and
a quantum system under piecewise-constant controls (right). The
quantum system outputs a unitary propagator from a given input
ε, where the time-ordered control amplitudes u(t1), u(t2), . . . , u(tM )
play the role of hyperparameters in a quantum neural network.

The so-called ensemble-based and sample-based algorithms
are subject to cost functions (2) and (3), respectively.

The way we improve the robustness through minimizing
the average loss of fidelity is actually the same as a supervised
machine learning process through minimizing its empirical
risk on a set of training samples. As illustrated in Fig. 1, the
quantum control system can be envisioned as a linear neural
network (NN) that outputs a unitary propagator from an input
uncertainty parameter ε. Under piecewise-constant controls
(e.g., generated from an arbitrary waveform generator), the
unitary propagator at each sampling time corresponds to a
layer in an NN (with width being N2), while the time-ordered
control amplitudes play the role of weight parameters between
adjacent layers. Note that the equivalent quantum neural net-
work does not have a standard feed-forward structure because
every layer is affected by the network’s input (i.e., the uncer-
tainty parameter ε). In this regard, the network is more like a
residue neural network [20] in which shortcuts can be made
between nonadjacent layers. In this way, we may translate the
robust quantum control design to a supervised DL task that
aims at finding an NN model that outputs the same desired
quantum gate Uf for all input uncertainty samples. It should be
noted that this picture is different from recent robust quantum
control studies that are also inspired by machine learning
[21–24]. These existing works introduce external artificial
DNNs to the training of robust quantum controls, but we take
the controlled quantum system itself as a natural quantum
DNN.

B. b-GRAPE algorithm

Now let us see how the minibatch technique is applied
to the search for robust quantum controls. We can randomly
sample the uncertainty parameters εk , and each pair (εk,Uf )
forms a labeled sample for the supervised learning. In this
way, we have access to uncountably many labeled samples
[i.e., pairs of ε → Uf for all admissible ε ∈ Rk] that can be
used for free, although they cannot be efficiently exploited
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by the existing sampling-based algorithms due to the required
computing resources with a large number of samples.

Concretely, we first choose a proper batch size, say B, and
draw samples according to the probability distribution P(ε),
forming the following batches

S ( j) = {
ε

( j)
1 , . . . , ε

( j)
B

}
, (4)

where j = 1, 2, . . . are the indices of iterations. These
batches are used for calculating the gradient direction in each
iteration:

g[u(t ),S ( j)] = δL[u(t ),S ( j)]

δu(t )

= 1

B

B∑
k=1

δ
∥∥U

(
T, ε

( j)
k

) − Uf

∥∥
δu(t )

. (5)

The simplest control-updating strategy is to take the “steep-
est descending” direction along the stochastic gradient (5)
with some prescribed learning rate α j :

u( j+1)(t ) = u( j)(t ) − α jg[u( j)(t ),S ( j)]. (6)

However, the noisy gradient (5) caused by randomly chosen
batches may destabilize the steepest-descent iteration, espe-
cially when the batch size is very small. To stabilize the
training dynamics, one can introduce a momentum term, i.e.,
the gradient direction in the previous iteration, to reduce the
variance of the loss function:

u( j+1)(t ) = u( j)(t ) − α j{λg[u( j)(t ),S ( j)]

+ (1 − λ)g[u( j−1)(t ),S ( j−1)]}.
(7)

In practice, the weight parameter λ is usually chosen to be
a small, positive real number (e.g., 0.1 or 0.01), so that the
iteration is dominated by the momentum.

For simplicity, we term the proposed algorithm b-GRAPE
(where the b stands for “batch”), which can easily be re-
molded from the renowned GRAPE algorithm [25] that has
been extensively applied for quantum control. Correspond-
ingly, we denote the sampling-based algorithm as s-GRAPE
for (where s is for “sampling”) [17]. The s-GRAPE algorithm
is actually a special case of the b-GRAPE algorithm when
using a fixed batch in all iterations, while GRAPE (for de-
terministic quantum systems) is a special case of s-GRAPE
when only one sample is used.

Note that our algorithm is distinct from the simultaneous
perturbation stochastic algorithm (SPSA), another type of
stochastic gradient algorithm which calculates the gradient by
randomizing the projected direction instead of the samples.
The latter was proposed for online model-free learning of
robust quantum control and tomography [26], and it can be
combined with b-GRAPE for broader applications.

III. NUMERICAL SIMULATIONS

In this section, we show by two simulation examples
how the DL-illuminated b-GRAPE algorithm can effectively
harden quantum controls by learning from the uncertainties.

A. Example 1: Parametric uncertainty

The first example considers time-invariant parametric un-
certainties in a three-qubit control system:

H (t ) = (1 + ε1)σ1zσ2z + (1 + ε2)σ2zσ3z

+
3∑

k=1

[ukx(t )σkx + uky(t )σky],
(8)

where σkα , with k = 1, 2, 3 and α = x, y, z, are the Pauli
operators on the kth qubit. The uncertainty parameters ε1 and
ε2 represent the identification errors in the coupling constants
(dimensionless after normalization). Each qubit is manipu-
lated by two independent control fields, ukx(t ) (along the x
axis) and uky(t ) (along the y axis). The target three-qubit gate
Uf is chosen as the Toffoli gate (or controlled-controlled-NOT

gate).
To start with, we set the time duration as T = 10 and divide

each control field evenly into M = 100 piecewise constant
segments. Assuming that the uncertain coupling constants
vary by at most ±20%, we uniformly sample ε1 and ε2 from
the set S = {(ε1, ε2) : |ε1| � 0.2, |ε2| � 0.2}. The b-GRAPE
algorithm is tested under three typical batch sizes, B = 1,
10, and 100, and is compared with s-GRAPE under identical
batch sizes and initial guesses on the control. Because the
training process is stabler under large batches, the learning
rates are correspondingly chosen as α = 0.002, 0.02, and 0.2,
respectively, to be proportional to the batch size.

In the simulations, we optimize the control fields along
the momentum-based stochastic gradient (7). The resulting
training curves, namely, the average infidelity evaluated on
each batch versus the number of evaluated samples (equal
to the batch size times the number of iterations), are shown
in Fig. 2 for both b-GRAPE and s-GRAPE algorithms. The
batch-induced noises can be seen in all b-GRAPE training
curves, whose variance is large when using small batches.
Nevertheless, an evident trend of decrease is still observable.

Because the average infidelity calculated with small
batches may not reflect the actual performance, we reevaluate
the performance of the control functions obtained in each
iteration by 1000 independent testing samples drawn from
the same probability distribution as a better approximation
of the true average infidelity (2). For s-GRAPE with batch
size B = 1, the training error can approach the computer
machine precision, which is far below the range displayed
in the plot, but the testing performance is very poor (≈0.1).
Such an overfitting characteristic is more clearly indicated by
the gap between the testing curve (above) and the training
curve (below) when B = 10. In contrast, the testing curves
of b-GRAPE always fit (on average) very well to the training
curves, exhibiting much better generalizability owing to the
ability of exploring many more samples.

The most significant difference, as can be seen with all
tested batch sizes, is that b-GRAPE finds much more robust
controls than s-GRAPE. For the example of B = 100 [see
Fig. 2(c)], the generalization gap of s-GRAPE is almost invis-
ible, implying that the batch size has been sufficiently large
to avoid overfitting. However, b-GRAPE still performs much
better than s-GRAPE, owing to the batch-induced noises that
steer the search away from poorer solutions. The best result
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FIG. 2. The training and testing curves with b-GRAPE and
s-GRAPE algorithms, where the control time is T = 10, the number
of control segments is M = 100, and the batch sizes are (a) B = 1,
(b) B = 10, and (c) B = 100. In all cases, the batch-based b-GRAPE
algorithm outperforms the sample-based s-GRAPE algorithm.

in all simulations is achieved when using the smallest batch
size B = 1 [see Fig. 2(a)], under which the average infidelity
can be reduced to be below 0.001 (lower than the error
correction threshold). The contrast again testifies to the active
role of batch-induced noises, which is strongest when B = 1,
in guiding the search toward more robust solutions.

To manifest the degree of robustness enhancement, we
compare control fields obtained by the GRAPE (fixed sample
ε1 = ε2 = 0), s-GRAPE (B = 100, fixed and large batch), and
b-GRAPE (B = 1, random minibatch) algorithms via their
three-dimensional robustness landscapes (i.e., the infidelity
versus the two uncertainty parameters; see Fig. 3). The land-
scape also facilitates the quantification of control robustness,
which can be evaluated by the area enclosed by the level set at
some threshold value (say, 0.001 in Fig. 3, which is below
the quantum error correction threshold [27]). The control
obtained by GRAPE achieves extremely high precision at the
chosen sample ε1 = ε2 = 0, but it is very sensitive to the
uncertainty, as indicated by the sharp minimum. By contrast,
the landscapes corresponding to the s-GRAPE and b-GRAPE
algorithms are much flatter. The obtained controls maintain
high precision in a much broader region, at the price of sac-
rificing the precision at the center. Quantitatively, s-GRAPE
enhances the robustness by about 4 times, and the control
found by b-GRAPE is more than 10 times stronger than that
of s-GRAPE. The level set at 0.001 achieved by b-GRAPE
almost fills the full 0.2 × 0.2 square from which the training
samples are drawn.

10-4

-0.2

10-3

In
fid

el
ity

1

0.2

10-2

0 0

2-0.20.2

b-GRAPE
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FIG. 3. The robustness control landscape defined as the gate in-
fidelity versus two uncertainty parameters under controls optimized
with GRAPE (red), s-GRAPE (green) using 100 samples, and b-
GRAPE with batch size B = 1 (blue). The b-GRAPE obtains a much
more robust control than the other two schemes, where the robustness
is quantified by the area enclosed by the level set at 0.001.

We also test the performance of b-GRAPE with less avail-
able control resources, i.e., using a shorter time duration
(T = 5) and fewer (M = 50) control segments. The simula-
tions are all stopped after evaluating 1 × 106 samples. The
simulations consistently prove the superiority of b-GRAPE
(bold black lines) over s-GRAPE (dotted red lines) in all cases
shown in Fig. 4. However, not surprisingly, the robustness
is less enhanced when the control is more limited. In fact,
b-GRAPE should be more advantageous under such circum-
stances because otherwise the search will be more easily
trapped by local optima.

The simulations also include the exceptional example
shown in Fig. 4(b1), whose robustness achieved by b-GRAPE
is supposed to be stronger than those in Fig. 4(a1), where
the control time is shorter, and Figs. 4(b2) and 4(b3), where
the batch size is larger. This poor solution results from an
instable training process, during which the average infidelity
over training batches rises up after exploring about 800 000
samples. The level set at 0.001 (in blue), corresponding to
the best solution before losing stability, is also depicted in
Fig. 4(b1), which is disconnected due to the coexistence of
two minima like in Fig. 3. Note that the stochastic training
process is not always instable, and very robust solutions can be
obtained after restarting the stochastic b-GRAPE optimization
and reselecting the initial guess or decreasing the learning
rates.

B. Example 2: Time-varying noise

To demonstrate the applicability of the b-GRAPE algo-
rithm to more general uncertainties, we consider the following
single-qubit system that contains time-varying noises:

H (t ) = [1 + n(t )][ux(t )σx + uy(t )σy], (9)

where σx,y are the Pauli matrices, with ux,y(t ) being the Rabi
driving fields. The noise n(t ) represents the multiplicative
time-varying noises in the control amplitudes.
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FIG. 4. The robustness (quantified by the area enclosed by the
level set at 0.001) of control fields obtained by b-GRAPE (black solid
lines) and s-GRAPE (red dotted lines) algorithms. The time duration
T and number of control segments M are, respectively, (a1)–(a3) T =
5 and M = 50, (b1)–(b3) T = 10 and M = 50, and (c1)–(c3) T = 10
and M = 100. The corresponding batch sizes are B = 1 (first row),
B = 10 (second row), and B = 100 (third row).

Since the qubit is insensitive to high-frequency noises, we
sample only the low-frequency noises as follows:

n(t ) =
10∑

k=1

(ak cos ωkt + bk sin ωkt ), (10)

where the frequency components ωk are uniformly sampled
from 0 to 2π rad/s and the amplitudes ak and bk are sampled
from a Gaussian distribution, μ(0, 0.05). These parameters
form a 30-dimensional sample space, which the sampling-
based algorithms can hardly handle because a formidably
large number samples will be required.

In the simulation, the target unitary transformation is cho-
sen as the qubit flip, i.e., a π rotation Uf = Rx(π ) around
the x axis. In the absence of noise, the rotation can easily be
achieved by applying an arbitrary ux(t ) whose pulse area is
π [with uy(t ) being turned off], e.g., rectangular or Gaussian.
However, robustness is not guaranteed for these pulses.

We set the simulation time as T = 2 and bound the control
fields by |ux,y(t )| � π . The batch size is chosen to be B = 10,
and in total 10 000 iterations are performed, after which the
average fidelity is reduced to below 10−2. The wave forms of
the initial guess and the optimized field are shown in Fig. 5.

To see how the robustness is enhanced, we test the obtained
control field by analyzing the statistical distribution of the gate
errors using 10 000 random noise samples picked from the
same distribution. As shown in Fig. 6, the gate error under
the optimized control exhibits a typical Gaussian distribution
whose center is below 10−3. We also depict the cumulative
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FIG. 5. The initial guess and optimized wave forms of the x-axis
and y-axis control fields.

probability distribution function, from which it can clearly be
seen that the probability for the error to be below 10−2 is al-
most 100%, and the probability for the error to be below 10−3

is about 76%. We also evaluate the robustness of the standard
rectangular and Gaussian π pulses, whose probabilities for the
error to be below 10−2 are only 62% and 43%, respectively.
Apparently, the optimized control field is much more robust
to the time-varying noises.

IV. CONCLUSION

To conclude, we proposed b-GRAPE, a deep-learning-
illuminated algorithm, for efficiently discovering highly ro-
bust quantum controls in the high-precision regime. The
algorithm can easily be implemented by randomizing the
renowned GRAPE algorithm with batches of samples, and
numerical simulations demonstrate its effectiveness owing to
the endowed ability of exploring uncountably many uncer-
tainty samples and the ability to escape poor optima driven
by the batch-induced randomness. Our algorithm can also
be conveniently paralleled. Although the theoretically best
performance is achieved when B = 1, in practice we can
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FIG. 6. Error distribution of single-qubit quantum controls
counted from 10 000 random samples of multiplicative noises in
the amplitudes, where the target is the qubit-flip transformation. The
field optimized by b-GRAPE is very strong in that the probability for
the error to be below 10−2 is almost 100%, which is much higher
than those of rectangular and Gaussian π pulses.
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adequately increase the batch size to improve the computa-
tional efficiency as well as the algorithmic stability.

In our numerical tests, no evident traps (i.e., local optima
that are far from global optima) were encountered. This im-
plies a nice control landscape that has been observed in both
quantum control [28–30] and deep learning [31,32] studies.
These results are closely related to the control landscape
of uncertain quantum systems, and a further study on this
topic will be very important to a full understanding of robust
quantum control problems.

This work is only the start of a potentially large family
of robust control design algorithms. As can be seen in our
simulations, there is still much room for the control robust-
ness to be enhanced, e.g., by fine-tuning the learning rates,
increasing the number of iterations, and introducing more
advanced tuning strategies. More deep neural network tuning

skills developed in the deep learning practice [19] can be eas-
ily transferred here, [33] as well as gradient-free algorithms
(e.g., genetic or differential evolution algorithms). We expect
that such DL-inspired algorithms will produce signification
impacts on the design of high-quality controls over quantum
information processing hardware.
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