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In quantum lattice models, in the large-N limit, boundary conditions have little effect upon local observables
for sites in the centers of the lattices. In this paper, we will study the boundary effects upon multipartite
nonlocality (a kind of multipartite quantum correlation associated with Bell-type inequalities) in one-dimensional
finite-size spin chains, both for zero temperature and for finite temperatures. We define a quantity δS

S to
characterize the boundary effects, where S is a measure of global multipartite nonlocality of the entire lattice, and
δS is the difference of the measure induced by changing the boundary conditions. We find δS

S does not vanish in
the large-N limit. Instead, at zero temperature, with the increase of N , δS

S would increase steadily in the vicinity
of the quantum phase transition point of the models, and converge to a nonzero constant in noncritical regions.
It shows clearly that boundary effects generally exist, in the form of multipartite correlations, in long chains.
The boundary effects are explained by the competition between the two orders of the models. In addition, based
on these numerical results, we construct a Bell inequality, which is violated by chains with periodic (closed)
boundary conditions and not violated by chains with open boundary conditions. Furthermore, we study δST

ST
of

finite-size chains at finite temperatures, and show that boundary effects survive in finite temperature regions.
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I. INTRODUCTION

Quantum correlations play an important role in the
fields of both quantum information and condensed-matter
physics [1,2]. A wide range of progresses have been achieved
for bipartite quantum correlations, such as quantum entangle-
ment entropy [3]. Recently, the concepts of quantum corre-
lations have been generalized into multipartite settings, i.e.,
multipartite correlations [4–8]. On the one hand, multipartite
quantum correlation turns out to be an indispensable resource
in scalable quantum computing, secret-sharing protocols, and
quantum communication [2,9]. On the other hand, multipartite
correlations can reveal more detailed structure of quantum
correlations in many-body systems, thus offerring us a deeper
understanding of condensed matters and quantum phase tran-
sitions [10–12].

Among various measures of quantum correlations, quan-
tum nonlocality [13] has attracted much attention recently.
A key feature of quantum nonlocality is that it can be de-
tected by the violation of Bell-type inequalities in laboratory
experiments [14]. Furthermore, it can be naturally gener-
alized into multipartite settings, that is, multipartite nonlo-
cality [15–21]. Nonlocality and Bell-type inequalities have
been investigated in many low-dimensional models, including
the Heisenberg chains [22,23], the Lipkin-Meshkov-Glick
models [24], the Kitaev-Castelnovo-Chamon model [25], and
many others [26–28]. It has been found that the Bell inequality
is not violated in two-site subchains in these models, thus
nonlocality is not observed. It is pointed out by Oliveira
et al. [29] that in most one-dimensional translationally in-
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variant models quantum nonlocality should not exist in the
form of two-site (bipartite) nonlocality. A counterexample is
found by Sun et al. [30]. Consequently, multipartite nonlocal-
ity has been used to describe quantum correlations in these
models. It has been confirmed that in these chains quantum
nonlocality indeed exists, i.e., in the form of multipartite
nonlocality [11,12,26,26,31–33]. In addition, even genuine
multipartite nonlocality has been observed in some mod-
els [33]. Furthermore, nonlocality has been used to character-
ize quantum phase transitions in one-dimensional infinite-size
quantum models [12,23–27,31,32]. Since global multipartite
nonlocality in the entire infinite-size lattice is untractable,
partial nonlocality in n-site subchains has been investigated
in these studies.

In a quite recent paper [34], it is realized that in some situa-
tions, when a many-body system manifests genuine multipar-
tite nonlocality, then there cannot be arbitrarily high partial
nonlocality in its subsystem. This indicates that analysis of
partial nonlocality in n-site subchains may not always lead
to the true information of the global nonlocality of the entire
lattice. Thereby, it is quite valuable to investigate directly
the global nonlocality of the entire lattice. Since an explicit
calculation of the global nonlocality in the infinite-size chains
is impossible, it would be feasible to investigate the global
nonlocality in finite-size chains, combined with some finite-
size scaling analysis.

It needs to be mentioned that, for finite-size chains, a phys-
ical issue emerges naturally, i.e., the boundary conditions.

Boundary conditions play an important role in numerical
simulations of quantum lattices [35–38]. The most widely
used boundary conditions are the open boundary conditions
and the periodic (closed) boundary conditions. For instance,
a finite-size chain with an open boundary condition usually
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has a larger energy gap than one with a periodic boundary
condition. Thus, although periodic boundary conditions are
strongly preferable in analytical solutions, one tends to adopt
open boundary conditions in numerical simulations (such
as in density-matrix renormalization-group algorithm [39]).
In addition, some “artificial” boundary conditions have also
been proposed to simulate one-dimensional lattices, such as
the twisted boundary condition [40], the smooth boundary
condition [41], and the infinite boundary condition [42]. This
freedom of choosing various boundary conditions is based
upon a general conclusion that, if the length of the chains is
large enough, changing boundary conditions does not affect
local physical properties for sites in the centers of the chains.

However, when considering global multipartite nonlocality
which spreads in all chains, is it still safe to use this freedom to
adopt some favorite boundary conditions in our simulations?
How do the boundary conditions affect the global multipartite
nonlocality in the chains? These questions remain unknown.
We would like mention that the global multipartite nonlocality
of several finite-size chains (with periodic boundary condi-
tions) has been investigated [11,33], and the boundary effects
have not been analyzed.

In this paper, we study multipartite nonlocality and bound-
ary conditions in one-dimensional finite-size transverse-field
Ising chains. We characterize the boundary effects upon mul-
tipartite nonlocality of the models with a quantity δS

S , where
S is the measure of the global multipartite nonlocality of
the entire lattice, and δS is the boundary-induced difference
of the measure. We find that δS

S remains nonzero for any
finite magnetic field. Thereby, changing boundary conditions
affects the global multipartite correlations in the chains (with
local reduced density matrices nearly unaffected). Especially,
with the increase of the length of the chains, we observe
two kinds of scaling behavior for δS

S ; that is, it converges
to a constant in noncritical regions, while increasing steadily
in critical regions. Furthermore, in the critical regions, we
construct a special Bell inequality, which is violated by the
closed chains and not violated by the open chains. We offer a
physical explanation for the boundary effects by the competi-
tion between the two orders of the models, and investigate the
boundary effects in the chains at finite temperatures.

This paper is organized as follows. In Sec. II, the con-
cepts of multipartite nonlocality and Bell-type inequalities are
briefly introduced. In Sec. III, multipartite nonlocality and
boundary effects in finite-size transverse-field Ising chains are
investigated. A summary and some discussions are given in
Sec. IV.

II. MULTIPARTITE NONLOCALITY AND
BELL-TYPE INEQUALITIES

The concept of multipartite nonlocality can be introduced
in several alternative ways [6,19,21,43]. A widely used def-
inition is based on the so-called g-grouping models. Let us
consider a model which consists of N sites. Suppose it can
be divided into (at most) g subgroups, and only sites in the
same subgroup can communicate with each other. Then it
is called a g-grouping model. For instance, one may use
{1|1|1|1}, {1|1|2}, {2|2}, and {4} to denote a four-grouping
model, a three-grouping model, a two-grouping model, and a

one-grouping model, respectively, with the total sites N = 4.
For an N-site quantum state ρ̂, if its correlations can be repro-
duced by an N-grouping model {1|1|...|1}, we say that ρ̂ does
not contain any form of multipartite nonlocality. Instead, if its
correlations can be reproduced only by a one-grouping model
{N}, we say that ρ̂ contains genuine multipartite nonlocality.
Thereby, according to the structure of multipartite nonlocality
in ρ̂, we are able to classify ρ̂ into different classes.

In practice, the structure of multipartite nonlocality of the
state ρ̂ can be detected with Bell-type inequalities. First, on
every site, we need to define two operators m̂ j = �a j · �σ and
m̂′

j = �a′
j · �σ , where j = 1, 2, . . . , N labels the sites, �a j and �a′

j
are unit vectors on site j, and �σ is just the spin vector. Then the
N-site Mermin-Svetlichny operators are defined in a recursive
way as [15,16,18–20]

M̂[1...N] = 1
2 M̂[1...N−1] ⊗ (m̂N + m̂′

N )

+ 1
2 M̂ ′

[1...N−1] ⊗ (m̂N − m̂′
N ), (1)

M̂ ′
[1...N] = 1

2 M̂ ′
[1...N−1] ⊗ (m̂′

N + m̂N )

+ 1
2 M̂[1...N−1] ⊗ (m̂′

N − m̂N ), (2)

with M̂1 = m̂1 and M̂ ′
1 = m̂′

1. To proceed, let us further define
the operator Ŝ as

Ŝ[1...N] = 1√
2

(
M̂[1...N] + M̂ ′

[1...N]

)
. (3)

Then for any N-site quantum state the correlations of which
can be reproduced by some g-grouping model, one can prove
that the following Bell-type inequality holds [19]:

S =
{

max{a}
〈
M̂[1...N]

〉
� 2

N−g
2 , for N-g even,

max{a}
〈
Ŝ[1...N]

〉
� 2

N−g
2 , for N-g odd,

(4)

where {a} denotes the set of the 2N unit vectors, and 〈·〉
denotes the expectation value Tr(ρ̂·) for the state ρ̂. For
a given N , one can see that g = N, N − 1, . . . , 2 labels a
series of Bell-type inequalities. If the g-labeled inequality is
violated, one says that some g − 1(or less)-grouping model
is needed to reproduce the multipartite nonlocality in the
state. For instance, the lowest-order Bell inequality is S � 1
(corresponding to g = N). If it is not violated, no multipartite
nonlocality is observed. On the other hand, the highest-order
Bell inequality is S � 2

N−2
2 (corresponding to g = 2). If it is

violated, some one-grouping model is needed to reproduce
the quantum correlations in the state. In the language of
multipartite nonlocality, we say that the state contains genuine
multipartite nonlocality.

The quantity S is called the Bell correlation function, or
simply the nonlocality measure. In practice, when N is large,
we are interested in the qualitative behavior of multipartite
nonlocality in the chains, rather than the specific value of g.
Thereby, we will ignore the parity of N − g in Eq. (4) and
just consider an even N − g. As we show in this paper, the
functional behavior of S is quite informative in capturing the
trend of the global multipartite nonlocality in the transverse-
field Ising chains.
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III. MAIN RESULTS

A. Models and solution

In order to investigate boundary effects upon multipartite
nonlocality in one-dimensional quantum lattices, we consider
one of the most simple one-dimensional models, that is, the
N-site transverse-field Ising model described by

Ĥ = −
N−1∑
i=1

σ̂ z
i σ̂ z

i+1 − λ

N∑
i=1

σ̂ x
i − Jσ̂ z

N σ̂ z
1 , (5)

where σ̂ x,z
i are Pauli matrices on site i, and λ is the strength

of the magnetic field in the x direction. The last term Jσ̂ z
N σ̂ z

1
describes the boundary condition of the chains. For an open
boundary condition, we set J = 0, while for a closed (peri-
odic) boundary condition we set J = 1. When the magnetic
field vanishes (λ = 0), the ground states of the chains are
Greenberger-Horne-Zeilinger (GHZ) states, regardless of the
boundary conditions or the size of the chains. When λ is
strong enough, the model will be in a polarized state along the
x direction. A second-order quantum phase transition occurs
at λc = 1 in thermodynamic limit N → +∞.

We investigate the boundary effects on multipartite nonlo-
cality of finite-size chains. The ground-state wave functions
of the chains with the open boundary condition and the closed
boundary condition will be denoted as |ψopen〉 and |ψclosed〉,
respectively. When N � 14, the ground states are solved
exactly. For N > 14, the ground states will be expressed as
matrix product states (MPSs) with the ALPS package [44].
Then the global nonlocality measure S for finite-size chains
will be figured out with an MPS-based numerical optimization
algorithm, where some techniques can be found in Ref. [12].
The results for the ground states are presented in Secs. III B–
III D, and a physical explanation of the boundary effects
is given in Sec. III E. Furthermore, at finite temperatures,
the thermal states of the chains are described by ρ̂T = e−βĤ ,
with β the inverse temperature. We solve ρ̂T exactly for N �
12, and investigate the boundary effects on the thermal-state
nonlocality of finite-size chains in Sec. III F.

B. Basic properties of multipartite nonlocality

In Fig. 1, we illustrate the nonlocality measure S as a
function of the magnetic field λ in finite-size chains with the
open boundary condition [Fig. 1(a)] and the closed boundary
condition [Fig. 1(b)]. One can see that for the two situations
the trends of the S (λ) curves are very similar to each other.
Thereby, first, open chains are used to describe the basic
picture of the global multipartite nonlocality in the models.
Based on that, the boundary effects are analyzed in the next
subsection.

For open chains [Fig. 1(a)], when the magnetic field is
strong, i.e., λ = 2, the nonlocality measure is slightly larger
than 1 for finite N . According to the Bell-type inequalities in
Eq. (4), only the lowest hierarchy of multipartite nonlocality is
observed. In addition, in the limit λ → ∞, it is expected that
the nonlocality measure approaches 1 and multipartite nonlo-
cality vanishes. Thus, we turn our attention to the low-field
regions by considering λ = 0.1. For N = 2, 4, 6, 8, 10, 12,
and 14, the nonlocality measure is 1.401, 2.81, 5.614, 11.21,

FIG. 1. Nonlocality measure S as a function of the magnetic
field λ for finite-size transverse-field Ising chains with (a) open
boundary conditions and (b) closed boundary conditions for various
N . In both figures, from bottom to top, the curves correspond to
N = 2, 4, 6, 8, . . . , 20. The figures indicate that with the increase of
λ the ground states of the models change from genuine multipartite
nonlocal states to classical states gradually.

22.4, 44.75, and 89.38, respectively. Thereby, according to
Eq. (4), for any given N , the highest-order Bell-type inequality
is violated, and genuine multipartite nonlocality is observed.

When the magnetic field increases from zero to ∞, the
nonlocality measure decreases gradually, and the ground
states transform gradually from states with genuine multi-
partite nonlocality to states with no nonlocality. In addition,
in Fig. 1(a) one can see that the first derivative of the
nonlocality measure, i.e., ∂S

∂λ
, is relatively small for λ = 0.1

and 2, and is relatively large in the vicinity of the quantum
phase transition point λc = 1. Furthermore, with the increase
of N , the S (λ) curve becomes steeper in the vicinity of
λc, and it is expected that, in the limit N → ∞, ∂S

∂λ
di-

verges at λc. Thus, the quantum phase transition at λc =
1 in the (infinite-size) models is accompanied by dramatic
changes of the global multipartite nonlocality of the ground
states.

C. Boundary effects on multipartite nonlocality

We now discuss the boundary effects on the ground states.
In Fig. 2(c), we show the nonlocality measure S as a func-
tion of the magnetic field λ for both boundary conditions
with N = 12. For comparison purposes, we also show the
ground-state energy E = 〈ψ |Ĥ |ψ〉 and the magnetization
Mx = 〈ψ | ∑N

i=1 σ̂ x
i |ψ〉 in Figs. 2(a) and 2(b), respectively.

One can see that in the critical regions (λ ≈ 1) the nonlocality
measure S and the magnetization Mx suffer some effect from
the boundary conditions, and in the noncritical regions (λ ≈ 0
and 2) they suffer very little influence from the boundary
conditions. Generally speaking, the ground states are affected
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FIG. 2. (a) Ground-state energy E , (b) magnetization Mx , and
(c) nonlocality measure S as a function of the magnetic field λ for
finite-size transverse-field Ising chains with N = 12. Squares and
dots correspond to closed chains and open chains, respectively. The
figures show that in the critical regions λ ≈ 1 the ground states are
affected strongly by boundary conditions.

strongly by boundary conditions in the critical regions, and
weakly in noncritical regions.1

In order to characterize the boundary effects quantitatively,
we define a quantity δF

F as

δF

F
=

∣∣∣∣Fclosed − Fopen

Fopen

∣∣∣∣, (6)

with F = E , Mx,S . The subscripts denote the corresponding
boundary conditions under which the observables are figured
out, i.e., Fopen = 〈ψopen|F̂ |ψopen〉. If boundary conditions have
rather small effect upon the ground states, i.e., |ψclosed〉 ≈
|ψopen〉, δF

F is very small. On the other hand, if boundary
conditions indeed have considerable effects upon the ground
states, some δF0

F0
are relatively large. This physical observable

F0 offers us a perspective to understand the boundary effects
in the models.

In Fig. 3 we illustrate the results of δF
F as a function of N ,

with the chains under the critical field λc = 1. We find that
with the increase of N both δE

E and δMx
Mx

decrease gradually.
The energy and the magnetization are just the summation of
local physical quantities, i.e., 〈σ̂ z

i σ̂ z
i+1〉 and 〈σ̂ x

i 〉. This demon-
strates that with the increase of the length of the chains the
boundary effects upon these local physical quantities become
weaker gradually. However, in Fig. 3(c), we observe that δS

S
shows a steady enhancement as a function of N . Thereby,
multipartite nonlocality suffers a considerable influence from

1In Fig. 2(a), when the magnetic field is very weak, the energy
E shows a considerable effect from the boundary conditions. In
fact, when λ = 0, the open chain and the closed chain share the
same ground state, i.e., the GHZ state. Thus, the energy difference
between the two chains comes from the boundary term −Jσ̂ z

N σ̂ z
1 of

the Hamiltonian in Eq. (5), rather than the discrepancy between the
ground states |ψopen〉 and |ψclosed〉.

FIG. 3. Boundary effects on (a) ground-state energy, (b) mag-
netization, and (c) nonlocality measure, respectively, as a function
of the length N of the chains with the magnetic field λ = 1. The
definition of δF

F is shown in Eq. (6). With the increase of N , the
boundary effects upon the energy and the magnetization become
weak, and the boundary effect upon multipartite nonlocality becomes
strong.

the boundary conditions for large N . The weakening of δE
E

and δMx
Mx

and the enhancement of δS
S reveal that, in long chains,

while boundary conditions have weak (if any) influence upon
local observables, they have a strong influence upon multipar-
tite quantum correlations of the chains.

In Fig. 3 we have only considered λc = 1. For λ < 1,
our results on δS

S are shown in Fig. 4(a). First, when λ = 0
(which is not shown in the figure), both |ψopen〉 and |ψclosed〉
are GHZ states, thus it is clear that δS

S = 0. However, for
a small finite field λ = 0.2, we find that δS

S is not zero.

FIG. 4. Scaling behavior of the boundary effect upon nonlocality
measure for various magnetic fields λ. λ = 1 is the critical point for
the (infinite-size) models.
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FIG. 5. Logarithm of nonlocality measure as a function of the
length of the chains, with the magnetic field (a) λ = 0.5 and (b) λ =
1.0. Squares and dots correspond to closed chains and open chains,
respectively.

Instead, with the increase of N , δS
S converges to a nonzero

constant 0.01534. This indicates that the boundary conditions
always have an impact upon the ground states for any finite
N . For λ = 0.5, we find that δS

S converges to a slightly larger
value, i.e., 0.1099. When the magnetic field approaches the
critical regions, that is, λ ≈ 1, δS

S does not converge any more.
Instead, it increases steadily as a function of N . The results
for when the field crosses the critical point, that is, λ > 1, are
shown in Fig. 4(b). One can see that when the field is strong
enough δS

S again converges to a constant gradually, with the
increase of N .

It is clear that the size dependence of δS
S in the noncritical

regions is quite different from that in the critical regions.
These behaviors can be explained as follows. First, the non-
locality measure S scales exponentially with the increase of
N . In Fig. 5(a), we show lnS as a function of N for both
boundary conditions, with λ = 0.5. One can see that the two
lines are parallel to each other. In other words, they can be
fitted by

lnSclosed = k1N + b1,

ln Sopen = k2N + b2, (7)

with k1 = k2 and b1 �= b2. Thereby, it is straightforward to
prove that

δS
S = ekN+b1 − ekN+b2

ekN+b2
= e	b − 1, (8)

where 	b = b1 − b2 results from the boundary effect. Con-
sequently, δS

S has little dependence upon the size N of the
chains. This is why δS

S converges to a constant in noncritical
regions in Fig. 4. When 	b = 0, it is clear that δS

S = e0 − 1 =
0, which is just the situation for λ = 0, i.e., the GHZ state.

For critical regions, we show in Fig. 4 that δS
S does

not converge. Thereby, the behavior cannot be explained by

FIG. 6. Boundary effect upon nonlocality measure as a function
of the magnetic field λ for various N. From bottom to top, the curves
correspond to finite-size chains with N = 2, 4, 6, 8, . . . , 20. λ = 1 is
the critical point for the (infinite-size) models.

Eq. (8), and we need to take the boundary effect on k into
consideration, i.e., 	k = k1 − k2 �= 0 [see Fig. 5(b)]. Then we
have

δS
S = ek1N+b1 − ek2N+b2

ek2N+b2
= e	kN+	b − 1, (9)

where both 	b and 	k result from the boundary effects. In
Eq. (9), if 	kN is small enough,2 we have e	kN ≈ 1 + 	kN .
Then Eq. (9) reduces to

δS
S ≈ 	ke	bN + e	b − 1. (10)

Thus, the quasilinear growth of δS
S for λc = 1 in Fig. 4 is also

explained.
Finally, in Fig. 6, we illustrate δS

S as a function of the
magnetic field λ for various N. When N is very small, δS

S
shows a broad and round peak in the vicinity of the phase
transition point λc = 1. With the increase of N , the peak
becomes very sharp. This shows clearly that when a phase
transition indeed occurs (in systems with N → ∞) boundary
conditions have a sharp impact upon the global multipartite
nonlocality of the ground states.

D. A Bell inequality for different boundaries

From Fig. 6 one can see that, under the conditions that (1)
the chains are in the critical regions λ ≈ 1 and (2) the length
N is large enough, we have δS

S > 1, in other words,

Sopen < 1
2 × Sclosed. (11)

2The condition can be satisfied when 	k is nearly zero and N is
finite.
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Then it is straightforward to prove that the N-site Bell
inequality

S[1,...,N] � 2
N−�ζ

2 (12)

with

ζ = N − 2 log2 Sclosed (13)

is violated by the N-site closed chains and not violated by the
N-site open chains.

The proof is as follows. According to Eq. (13), we have

Sclosed = 2
N−ζ

2 > 2
N−�ζ

2 , (14)

where we have assumed ζ < �ζ, without loss of generality.
Thereby, Eq. (12) is violated in the closed chains.

Next, let us prove that the inequality is not violated in open
chains. First, it is clear that

ζ + 2 > �ζ.
Then it is clear that

2
N−ζ

2 −1 < 2
N−�ζ

2 . (15)

Finally, according to Eqs. (11), (14), and (15), we have

Sopen < 1
2 × Sclosed = 1

2 × 2
N−ζ

2 < 2
N−�ζ

2 . (16)

Thus, Eq. (12) is not violated by open chains.
The violation and the nonviolation of the Bell inequality

in closed chains and open chains, respectively, indicate that
Bell-type inequalities offer us a tool to disclose the sharp
discrepancy between the ground states of spin chains with
different boundary conditions.

E. Physical explanation for boundary effects

We have considered only two types of boundary conditions
in previous sections, that is, the closed (periodic) boundary
conditions with J = 1 [see Eq. (5)] and the open boundary
conditions with J = 0. In order to obtain a more intuitive
understanding of the boundary effects, it may be helpful to
consider the “intermediate boundary conditions” with 0 <

J < 1, and investigate what happens in the intermediate pro-
cess between J = 1 and 0. First, let us consider the critical
regions. In Fig. 7, we show the nonlocality measure S for
chains with N = 14 and λ = 1, where the results for boundary
parameter 0 < J < 1 are marked as white dots. One can
see that the nonlocality measure S is rather sensitive to the
boundary parameter J . Especially, when J decreases from
one to zero, the nonlocality measure S decreases steadily.
This stable decline of S helps us to draw an intuitive picture
of the possible origin of the boundary effects. First, in the
Hamiltonian of Eq. (5), there is a clear competition between
the ferromagnetic interaction term

Ĥ2 = −
N−1∑
i=1

σ̂ z
i σ̂ z

i+1 − Jσ̂ z
N σ̂ z

1

and the transverse-field term

Ĥλ = −λ

N∑
i=1

σ̂ x
i .

FIG. 7. Nonlocality measure S as a function of the general
boundary parameter J for finite-size transverse-field Ising chains
with λ = 1 and N = 14. J describes the boundary condition of the
model in Eq. (5).

The Ĥ2 term favors the GHZ-type ground state, which carries
a large value of S , and the Ĥλ term favors the polarized
state, which carries a small value of S . Thereby, generally
speaking, increasing the transverse field λ tends to weaken
the nonlocality measure S (also see Fig. 1). Then we analyze
the effect of the boundary parameter J on the competition
between Ĥ2 and Ĥλ. When J decreases from one to zero, one
can see that the ferromagnetic interaction term Ĥ2 is slightly
weakened. Then, because of the competition between Ĥ2 and
Ĥλ, any weakening of Ĥ2 implies the relative enhancement of
the transverse-field term Ĥλ. Consequently, one may say that
the effective magnetic field λ is slightly increased. According
to Fig. 1, the increase of λ finally weakens the nonlocality
measure S . Thereby, we have explained the general boundary
effects, that is, the decrease of the boundary parameter J
weakens the nonlocality measure S . On the other hand, one
may deduce that the increase of the boundary parameter J
enhances the nonlocality measure S . To check the theory, we
have also calculated the nonlocality measure for J > 1 and
the results are marked as blue dots in Fig. 7. It is clear that our
theory is confirmed.

The boundary conditions with 0 < J < 1 and J > 1 are
quite artificial. However, they offer strong support for our
physical picture of the boundary effects. We conclude that
the boundary effects in the transverse-field Ising chains are
originated from the competition between the two orders in the
models.

Furthermore, let us explain why the boundary effects are
strong in the critical regions and weak in the noncritical
regions (see Fig. 6). According to the S (λ) curves in Fig. 1,
the nonlocality measure S is very sensitive to the change
of the magnetic field λ in the critical regions, and not sensitive
in the noncritical regions. In other words, dS

dλ
is large for λ ≈ 1

and is nearly zero for λ ≈ 0 and � 1. Thereby, when the
boundary parameter J decreases from one to zero the effective
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FIG. 8. Nonlocality measure ST as a function of the magnetic
field λ for finite-size transverse-field Ising chains at finite temper-
ature T = 0.05 with (a) open boundary conditions and (b) closed
boundary conditions for various N . In both figures, from bottom to
top, the curves correspond to N = 4, 6, 8, 10, 12. λ = 1 is the critical
point for the (infinite-size) models.

magnetic field increases; in the critical regions, it is expected
that a considerable change in the nonlocality measure S is
observed. In other words, a strong boundary effect emerges.
On the other hand, in the regions far away from λ = 1, when
the effective magnetic field increases, it is expected that the
nonlocality measure S shows little change. Thereby, a weak
boundary effect emerges. In fact, one can see that the δS

S (λ)
curves in Fig. 6 capture the main trend of the derivative of
S (λ) curves in Fig. 1, which is quite consistent with our
theory.

F. Boundary effects at finite temperatures

In this subsection, we consider boundary effects on multi-
partite nonlocality of the finite-size chains at finite tempera-
tures. For such a purpose, we need to study the nonlocality

measure for the thermal state ρ̂T = e−βĤ

tr(e−βĤ )
, with β = 1

kBT .
In this paper, we set kB = 1 and denote the thermal-state
nonlocality measure as ST = S (ρ̂T ). We mention that for the
closed chains the thermal-state nonlocality measure has been
studied in Ref. [11], where the boundary effects have not been
considered.

First, we describe the basic properties of the nonlocality
measure ST both for the open chains and for the closed chains.
The results for T = 0.05 are presented in Fig. 8. A striking
feature is that the measure ST is no longer a monotonic
function of the magnetic field λ. Instead, at finite tempera-
tures, ST shows a round peak in the middle-field regions. In
addition, one can see that with the increase of the length of the
chains the position of the peak approaches the critical point
λ = 1 gradually for both boundary conditions. Thus, in the
large-N limit, the multipartite nonlocality of finite-size chains
presents a peak point in the low-temperature critical regions.

FIG. 9. Boundary effect upon nonlocality measure as a function
of the magnetic field λ at finite temperatures (a) T = 0.05 and
(b) T = 0.1 for various N. From bottom to top, the curves correspond
to finite-size chains with N = 4, 6, 8, 10, 12. Higher temperatures
induce a decrease of the maximum value of δST /ST and a deviation
of the peak point away from the critical point λ = 1 gradually.

The direct reason for the emergence of the peak is that, in the
low-field regions, the value of the nonlocality measure reduces
drastically at finite temperatures. The underlying mechanism
is as follows. For λ = 0, as we have shown, the ground states
of the chains are GHZ states and thus are double degenerate.
For a small λ, the ground states are also of GHZ type and
are nearly double degenerate. Thereby, even at very low
temperature, the first excited state plays a role in the thermal
state ρ̂T , thus destroying the quantum correlations. Therefore,
at zero temperature and finite temperatures, the chains show
quite different features in the low-field regions. We mention
that similar behavior has been observed in the global quantum
discord at finite temperatures [45].

We now obtain a rough evaluation of the boundary effects
by comparing the open chains in Fig. 8(a) and the closed
chains in Fig. 8(b). Our first observation is that cutting the
edge of the chains (by changing the boundary term from
closed chains to open chains) weakens the nonlocality mea-
sure ST , which is consistent with the zero-temperature behav-
ior. In addition, for the closed chain with N = 12, the peak
position of the nonlocality measure ST is about λ = 0.98,
very close to the critical point λ = 1. For the open chain with
N = 12, however, one can see that the peak position is just
about λ = 0.88. Thereby, boundary conditions affect both the
peak value and the peak position of the ST (λ) curves at finite
temperatures.

In order to reveal the boundary effects intuitively, we resort
to the quantity δST

ST
defined in Eq. (6). We will illustrate δST

ST
as

a function of both the magnetic field λ and the temperature T .
In Fig. 9, we have illustrated the δST

ST
(λ) curves at the

temperatures T = 0.05 and 0.1 for various N, where a round
peak is observed in the middle-field regions. One can see that
for T = 0 (Fig. 6), 0.05 [Fig. 9(a)], and 1 [Fig. 9(b)] the
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FIG. 10. (a) Nonlocality measure ST as a function of the tem-
perature T both for the open chain and for the closed chain with
N = 12 and λ = 1. (b) Boundary effect upon nonlocality measure as
a function of the temperature T for the finite-size chains with N = 12
and λ = 1.

peak position for N = 12 chains is about λ ≈ 1, 1.08, and
1.15, respectively. Thus, with the increase of T , the peak point
tends to deviate away from the critical point λ = 1 gradually.
Moreover, we turn our attention to the peak value of the
δST
ST

(λ) curves. On the one hand, it is clear that even at finite
temperatures increasing the size N of the chains enhances
the peak value. On the other hand, at T = 0, 0.05, and 1, the
peak value for N = 12 chains is about δST

ST
≈ 0.94, 0.86, and

0.66, respectively. Thus, enhancing the temperatures tends to
weaken the boundary effects.

Let us conclude our analysis by considering δST
ST

as a func-
tion of the temperature T for some fixed magnetic field. For
such a purpose, we will consider only the magnetic field λ =
1, under which the chains show the strongest boundary effects
at zero temperature (Fig. 6). Our results are shown in Fig. 10.
One can see that, with the increase of the temperature T , ST

decreases steadily for both boundary conditions [Fig. 10(a)].
Especially, for T � 0.31 (which is not shown in the figure),
ST is smaller than 1 for both boundary conditions, thus no
Bell-type inequality is violated. In Fig. 10(b), we illustrate
δST
ST

as a function of the temperature T . For T ≈ 0, one can

see that δST
ST

shows some kind of thermal robustness against
the increase of the temperatures. Then, for 0.02 � T � 0.23,
δST
ST

vanishes gradually. For T > 0.23, δST
ST

shows a low degree
of revival. However, since the value for ST is quite small in the
high-temperature regions, this revival may not have any actual
observable effect in experiments.

Our main observations are as follows. First, the boundary
effects can be observed not just in the ground states but also
at finite low temperatures. Second, in the large-N limit, δST

ST

shows a peak in the vicinity of the critical point λ = 1 at low
temperatures, indicating the quantum phase transition of the
models. With the increase of T , the peak value decreases, and

the peak position deviates away from the critical point λ = 1
gradually.

IV. SUMMARY AND DISCUSSIONS

In this paper, we have studied global multipartite nonlo-
cality and boundary conditions in the finite-size transverse-
field Ising model. Our first observation is that, in the low-
field regions, the ground state of the model contains genuine
multipartite nonlocality. We mention that for the same model
with infinite size genuine multipartite nonlocality has not been
detected in previous studies by investigating partial nonlocal-
ity in n-site subchains [12,31]. Thereby, genuine multipartite
nonlocality in spin chains also presents the complementarity
feature which was recently proposed by Sami et al. in no-
signaling (Bell) nonlocal theories; that is, when a system has
genuine multipartite nonlocality, then there cannot be arbitrar-
ily high nonlocality in its subsystem [34]. Our results show
clearly that analysis of partial nonlocality in n-site subchains
does not always lead to the truth about the global nonlocality
of the entire lattice. Thereby, it may be valuable to research the
global nonlocality in the models which have been character-
ized by partial nonlocality in previous studies [23–26,31,32].

Then we have paid our attention to the boundary effects on
all chains by defining a quantity δF

F with F = E , Mx,S , where
the total energy E and the total magnetization Mx are the
summation of local observables, and S measures the global
multipartite nonlocality of the chains. δF is the increment of
the measure induced by changing the boundary conditions.
We find that with the increase of N both δE

E and δMx
Mx

vanish
gradually. This indicates that in the large-N limit |ψclosed〉 and
|ψopen〉 share the same local observables for most of the sites
in the chains. On the other hand, we find that δS

S does not
vanish in the large-N limit. This indicates that the multipartite
correlations in |ψclosed〉 and |ψopen〉 are different. These results
can help us to draw an interesting physical picture about
the boundary effects in the one-dimensional transverse-field
Ising chains; that is, in the large-N limit, cutting a one-
dimensional closed chain (a ring) into a one-dimensional
open chain affects the global multipartite correlations in the
lattices, with most of the local reduced density matrices
unchanged.

Moreover, with the increase of N , we find that δS
S converges

to a constant in noncritical regions, while increasing steadily
in critical regions. Based upon the exponential scaling of the
nonlocality measure, we have offered a uniformed explanation
of these results. These scaling behaviors also provide us an
alternative method to characterize quantum phase transitions
in low-dimensional quantum systems.

Based upon the numerical results, for chains in the critical
regions, we have constructed a special Bell inequality in
Eq. (12). The inequality is violated in the closed chains and
not violated in the open chains, thus disclosing the sharp dif-
ference between the ground states of spin chains with different
boundary conditions. Let us take the N = 20 chains with
λ = 1 for instance, where Sopen = 36.69 and Sclosed = 85.59.
Thereby, the Bell inequality in Eq. (12) is labeled by �ζ = 8.
According to Eq. (4) and its interpretation, the correlations
in the 20-site open chain may be reproduced by an eight-
grouping model, such as {2|2|4|2|2|4|2|2}. However, since
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the inequality is violated by the closed chain, these eight-
grouping models can never reproduce the correlations in the
closed chain. Instead, seven(or less)-grouping models, such as
{2|2|4|2|2|4|4}, are needed to reproduce the correlations in the
closed chain. One can see that the sites in the closed chain are
correlated in a more condensed form than in the open chain.

We have offered a physical explanation of the boundary
effects. There is a clear competition between the ferromag-
netic interaction term Ĥ2 and the transverse-field term Ĥλ of
the transverse-field Ising chains, where the first term favors
a high-S GHZ-type ground state, and the second term favors
a low-S polarized state. Thereby, increasing (decreasing) the
boundary parameter J enhances (weakens) the Ĥ2 term and
thus weakens (enhances) the Ĥλ term relatively. Consequently,
the effective magnetic field is weakened (enhanced), which fi-
nally leads to the enhancement (weakening) of the nonlocality
measure S . Under this picture, we further reveal that the δS

S (λ)
curves capture the main trend of the derivative of S (λ) curves
of the models.

Finally, we have also studied the boundary effects of the
models at finite temperatures. We find that the boundary
effects can be observed not just in the ground states but also
at finite low temperatures. In addition, at low temperatures,

δST
ST

for long chains shows a peak in the vicinity of the critical
point λ = 1, thus indicating the quantum phase transition of
the models. With the increase of T , the peak value decreases,
and the peak position deviates away from the critical point
λ = 1 gradually.

In this paper we have only considered the transverse-
field Ising chains with open boundary conditions and the
periodic (closed) boundary conditions. As we have men-
tioned, some other valuable boundary conditions (such as the
twisted boundary condition, the smooth boundary condition,
and the infinite boundary condition) have also been used
widely [40–42]. In addition, there are many other interesting
quantum lattices, such as the one-dimensional ladders. Espe-
cially, using various boundary conditions, an open ladder can
be transformed into a cylinder or even a Mobius strip. It would
be interesting to investigate global multipartite nonlocality
and various boundary conditions in these lattices.
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