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Quantum resource theories offer a powerful framework for studying various phenomena in quantum physics.
Although considerable effort has been devoted to developing a unified framework of resource theories, there are
few common properties that hold for all quantum resources. In this paper, we fill this gap by introducing the flag
additivity based on the tensor product structure and the flag basis for the general quantum resources. To illustrate
the usefulness of flag additivity, we show that flag additivity can be used to derive other nontrivial properties in
quantum resource theories, e.g., strong monotonicity, convexity, and full additivity.
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I. INTRODUCTION

From quantum entanglement to quantum coherence, quan-
tum resource theories have been used to quantify desirable
quantum effects, develop new protocols for resource detec-
tion, and identify processes that optimize the resource utiliza-
tion for a given application [1–6].

All quantum resource theories have two common funda-
mental ingredients: free states and free operations [7–10]. For
a specific quantum resource, free states are quantum states that
do not contain this kind of resource. Correspondingly, free op-
erations cannot generate this kind of resource from free states.
Based on the definition of free states and free operations, the
resource measures can be introduced. In general, a resource
measure must satisfy the non-negativity and the monotonicity.
Other useful properties, such as strong monotonicity, convex-
ity, and additivity, may also be introduced in different physical
and mathematical contexts [11–22].

This common structure of quantum resource theories sug-
gests the existence of common properties that can be applied
to the general quantum resources [8,23]. For example, in
Ref. [8], the authors showed that under a few physically
motivated assumptions, a resource theory is asymptotically re-
versible if the set of allowed operations is maximal. However,
although considerable effort has been devoted to developing a
unified framework of resource theories, few common proper-
ties that hold for general resource measures have been found.

In this paper, we fill this gap by introducing the notions of
flag bases and flag additivity for general quantum resources.
To illustrate the usefulness of these general properties, we
show that the flag additivity implies other nontrivial proper-
ties of resource measures in quantum resource theories, e.g.,
strong monotonicity, convexity, and additivity. We find that
the flag additivity holds if and only if both the strong mono-
tonicity and the convexity hold; the flag additivity implies
the equivalence between the additivity and the full additivity,

*Xiao-Dong.Yu@uni-siegen.de
†tdm@sdu.edu.cn

and for regularized resource measures the flag additivity is
equivalent to the full additivity.

The paper is organized as follows. In Sec. II, we recall the
basic framework of quantum resource theories and introduce
the notions of flag bases and flag additivity. In Sec. III, we
prove that the flag additivity holds if and only if the additivity
and the strong monotonicity hold. In Sec. IV, we show that the
flag additivity implies the equivalence between the additivity
and the full additivity. In Sec. V, we discuss the flag additivity
for the regularized resource measures and prove that the flag
additivity is equivalent to the full additivity in this special
case. We conclude in Sec. VI.

II. FLAG ADDITIVITY IN QUANTUM
RESOURCE THEORIES

For a specific quantum resource, the set of free states,
denoted by F, contains all the quantum states that do not
contain this kind of resource, and the set of free operations,
denoted by O, contains the quantum operations that cannot
create this kind of resource. We will use the 2-tuple (F,O)
to denote this specific quantum resource theory. For example,
in the resource theory of entanglement, the free states F are
all separable states and the free operations O can be chosen
as all local operations and classical communication (LOCC)
[11,24]. In the resource theory of coherence, the free states
F are all incoherent states, and the free operations O can be
chosen as all incoherent operations [16].

With the definitions of the free states and free operations,
resource measures can be introduced. The basic requirements
for a functional M being a measure for (F,O) are as follows:

(M1) (Non-negativity): M(ρ) � 0 for any quantum state ρ,
and M(ρ) = 0 if (and only if) ρ ∈ F.

(M2) (Monotonicity): M(ρ) � M(�(ρ)) for any quantum
state ρ and any � ∈ O.

To study the flag additivity of the quantum resource
(F,O), we need to consider the situation of appending or
discarding an auxiliary system. For this, we recall the follow-
ing tensor product structure of (F,O) (see, e.g., Refs. [8,10]):
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(T1) Appending a free state is a free operation: For any
given free state δB ∈ HB, the operation �δ (ρA) = ρA ⊗ δB is
a free operation from HA to HAB.

(T2) Discarding a system is a free operation: The partial
trace TrB(ρAB) = ρA is a free operation HAB to HA.

(T3) A free operation is completely free: If �A is a free
operation on HA, then �A ⊗ idB is a free operation on HAB.

For example, both the resource theory of entanglement and
the resource theory of coherence satisfy this tensor product
structure [10].

Equipped with these notions in quantum resource theories,
we can define the flag basis and the flag additivity. A basis
{|ϕi〉}n

i=1 of quantum system H is called a flag basis if it
satisfies (i) |ϕi〉 are free states for all i = 1, 2, . . . , n; and (ii)
the projective measurement P = {|ϕi〉〈ϕi|}n

i=1 is a free opera-
tion. For example, in the resource theory of entanglement, any
separable basis is a flag basis, and in the resource theory of
coherence, any incoherent basis is a flag basis. Hereafter, we
will assume that the quantum resource (F,O) always satisfies
the tensor product structure and the flag basis always exists.

Consider a flagged state
∑n

i=1 piρ
A
i ⊗ |ϕi〉〈ϕi|B, where

{|ϕi〉B}n
i=1 is a flag basis. As all |ϕi〉B are free states, the

resource is only contained in the system HA, which is an
ensemble {pi, ρi}n

i=1. A reasonable assumption is that the re-
source measure M satisfies the following additivity condition:

M

(
n∑

i=1

piρ
A
i ⊗ |ϕi〉〈ϕi|B

)
=

n∑
i=1

piM
(
ρA

i

)
. (1)

If Eq. (1) holds for any state ensemble {pi, ρi}n
i=1 and any flag

basis {|ϕi〉B}n
i=1, we say that the resource measure M is flag

additive.

III. STRONG MONOTONICITY AND CONVEXITY

To show that the flag additivity is of fundamental impor-
tance in quantum resource theories, we first prove that for any
quantum resource (F,O), the flag additivity holds if and only
if both the strong monotonicity and the convexity hold.

The strong monotonicity is introduced in the situation that
the experimenter is able to postselect the multiple outcomes
of a quantum measurement. Suppose that the free operation
�(ρA) = ∑n

i=1 Knρ
AK†

n is a general quantum measurement;
then the measurement gives the outcome ρA

i with the probabil-
ity pi, where piρ

A
i = Knρ

AK†
n . If the postselection is possible,

we can further perform different free operations to different
outcomes and the final operation will also be free. As a special
case, we can add different flags |ϕi〉B to different measurement
outcomes. According to (T1), the final operation,

�̃(ρA) =
n∑

i=1

Knρ
AK†

n ⊗ |ϕi〉〈ϕi|B

=
n∑

i=1

piρ
A
i ⊗ |ϕi〉〈ϕi|B, (2)

is still a free operation. Then the monotonicity condition (M2)
implies that

M(ρA) � M(�̃(ρA)) = M

(
n∑

i=1

piρ
A
i ⊗ |ϕi〉〈ϕi|B

)
. (3)

If the flag additivity in Eq. (1) is satisfied, then we can get that

M(ρA) �
n∑

i=1

piM
(
ρA

i

)
. (4)

Equation (4) is usually referred to as the strong monotonicity
of the resource measure M, i.e., nonincreasing of M under the
selective measurement on average.

The convexity is related to the mixing of quantum states.
For any ensemble of quantum states {pi, ρ

A
i }n

i=1 in HA, let
us consider the auxiliary state

∑n
i=1 piρ

A
i ⊗ |ϕi〉〈ϕi|B, where

{|ϕi〉B}n
i=1 is a flag basis in HB. Now, we discard the quantum

system HB, i.e.,

TrB

(
n∑

i=1

piρ
A
i ⊗ |ϕi〉〈ϕi|B

)
=

n∑
i=1

piρ
A
i , (5)

which is a free operation according to (T2). Thus, the mono-
tonicity condition (M2) implies that

M

(
n∑

i=1

piρ
A
i ⊗ |ϕi〉〈ϕi|B

)
� M

(
n∑

i=1

piρ
A
i

)
. (6)

If the flag additivity in Eq. (1) is satisfied, then we can get that
n∑

i=1

piM
(
ρA

i

)
� M

(
n∑

i=1

piρ
A
i

)
, (7)

which is usually referred to as the convexity of the resource
measure M, i.e., nonincreasing of M under the mixing of
quantum states.

Up to now, we have shown that the flag additivity in Eq. (1)
is sufficient for the strong monotonicity in Eq. (4) and the
convexity in Eq. (7). In the following, we will show that it
is also necessary.

Consider that the quantum system in HAB is the flagged
state

∑n
i=1 piρ

A
i ⊗ |ϕi〉〈ϕi|B, where {|ϕi〉B}n

i=1 is a flag basis
in HB. On the one hand, if we perform the measurement
{|ϕi〉〈ϕi|B}n

i=1 on HB, which is a free operation by the defini-
tion of flag bases, then we will get the measurement outcomes
ρA

i ⊗ |ϕi〉〈ϕi|B with the probability pi. By using the strong
monotonicity in Eq. (4), we can obtain that

M

(
n∑

i=1

piρ
A
i ⊗ |ϕi〉〈ϕi|B

)
�

n∑
i=1

piM
(
ρA

i ⊗ |ϕi〉〈ϕi|B
)

�
n∑

i=1

piM
(
ρA

i

)
, (8)

where the second inequality follows from condition (T2). On
the other hand, by using the convexity, we can get that

M

(
n∑

i=1

piρ
A
i ⊗ |ϕi〉〈ϕi|B

)
�

n∑
i=1

piM
(
ρA

i ⊗ |ϕi〉〈ϕi|B
)

�
n∑

i=1

piM
(
ρA

i

)
, (9)

where the second inequality follows from condition (T1).
Combining Eqs. (8) and (9), we immediately obtain the flag
additivity in Eq. (1).

The preceding results can be summarized as the following
theorem:
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Theorem 1. For any resource measure, the strong mono-
tonicity and the convexity is equivalent to the flag additivity.

We should note that in some contexts, the strong mono-
tonicity and the convexity are only desired but not mandatory
requirements of resource measures. Sometimes one or both
of them may not hold. In this situation, we can still consider
two conditions that are weaker than the flag additivity: the flag
supadditivity and the flag subadditivity. The flag supadditivity
is defined as

M

(
n∑

i=1

piρ
A
i ⊗ |ϕi〉〈ϕi|B

)
�

n∑
i=1

piM
(
ρA

i

)
, (10)

and the flag subadditivity is defined as

M

(
n∑

i=1

piρ
A
i ⊗ |ϕi〉〈ϕi|B

)
�

n∑
i=1

piM
(
ρA

i

)
, (11)

for any state ensemble {pi, ρi}n
i=1 and any flag basis {|ϕi〉B}n

i=1.
By slightly modifying the proof in Theorem 1, we can get the
following corollary, which can be viewed as a refinement of
Theorem 1.

Corollary 1. For any resource measure, the strong mono-
tonicity is equivalent to the flag supadditivity and the convex-
ity is equivalent to the flag subadditivity.

It is worth noting that Theorem 1 and Corollary 1 can
be directly applied to entanglement measures and coherence
measures. When they are applied to coherence measures, they
give the results in Ref. [17] as a special case. Compared
with the strong monotonicity and the convexity, the flag
supadditivity and flag subadditivity are much easier to prove
or disprove because they do not involve the Kraus operators
and the structure of flagged states is much simpler than the
mixing of ensembles. We can see this simplification from an
example, the trace norm of coherence Ctr . It is difficult to
prove whether or not Ctr satisfies the strong monotonicity by
examining it directly [25,26]. However, one can easily prove
that Ctr violates the strong monotonicity by examining the flag
additivity [17].

IV. ADDITIVITY AND FULL ADDITIVITY

As another application of the flag additivity, we show that
it implies the equivalence between the additivity and the full
additivity. In quantum resource theories, a resource measure
M is said to be additive if it satisfies that

M(ρ⊗N ) = NM(ρ), (12)

for any ρ⊗N ∈ H⊗N
A , where N is any positive integer. The full

additivity is a stronger condition, which is defined as

M(ρ ⊗ σ ) = M(ρ) + M(σ ), (13)

for any ρ ∈ HA1 and σ ∈ HA2 .
In the following, we will prove that both the additivity and

the full additivity of M are equivalent to the simpler condition

M(ρ ⊗ ρ) = 2M(ρ), (14)

for any ρ ∈ HA. It is obvious that Eq. (13) ⇒ Eq. (12) ⇒ Eq.
(14). In order to show that they are equivalent, we only need
to prove that Eq. (14) ⇒ Eq. (13).

We first consider the case that both ρ and σ are states in
the identical quantum systems HA, i.e., ρ ⊗ σ ∈ HA ⊗ HA.
Consider an auxiliary state,

ω = 1
2ρ ⊗ |ϕ1〉〈ϕ1|B + 1

2σ ⊗ |ϕ2〉〈ϕ2|B, (15)

where {|ϕ1〉B, |ϕ2〉B} is a flag basis in an auxiliary system HB;
then the flag additivity implies that

M(ω) = 1
2 M(ρ) + 1

2 M(σ ). (16)

Further, there is

ω ⊗ ω = 1
4ρ ⊗ ρ ⊗ |ϕ1〉〈ϕ1|B ⊗ |ϕ1〉〈ϕ1|B

+ 1
4ρ ⊗ σ ⊗ |ϕ1〉〈ϕ1|B ⊗ |ϕ2〉〈ϕ2|B

+ 1
4σ ⊗ ρ ⊗ |ϕ2〉〈ϕ2|B ⊗ |ϕ1〉〈ϕ1|B

+ 1
4σ ⊗ σ ⊗ |ϕ2〉〈ϕ2|B ⊗ |ϕ2〉〈ϕ2|B. (17)

From the definition of flag bases, we can easily see that
the tensor product of flag bases is still a flag basis. Hence,
{|ϕi〉B|ϕ j〉B}2

i, j=1 is still a flag basis. Applying the flag additiv-
ity to Eq. (17), we get that

M(ω ⊗ ω) = 1
4 M(ρ ⊗ ρ) + 1

4 M(ρ ⊗ σ )

+ 1
4 M(σ ⊗ ρ) + 1

4 M(σ ⊗ σ )

= 1
4 M(ρ ⊗ ρ) + 1

2 M(ρ ⊗ σ ) + 1
4 M(σ ⊗ σ ),

(18)

where we have used the relation that M(ρ ⊗ σ ) = M(σ ⊗
ρ), as they are the same state under reordering HA ⊗ HA.
Combining Eqs. (14), (16), and (18), we can obtain that

M(ρ ⊗ σ ) = 4M(ω) − M(ρ) − M(σ )

= M(ρ) + M(σ ), (19)

which is the full additivity for ρ, σ ∈ HA.
We then consider the general case, ρ ∈ HA1 and σ ∈ HA2 .

Suppose that δ1 and δ2 are two free states in HA1 and HA2 ,
respectively. Consider the states

ρ̃ = ρ ⊗ δ2, σ̃ = δ1 ⊗ σ ;

then both ρ̃ and σ̃ are states in the quantum system HA1 ⊗
HA2 . Then, applying Eq. (19) to ρ̃ and σ̃ , we get that

M(ρ ⊗ δ2 ⊗ δ1 ⊗ σ ) = M(ρ ⊗ δ2) + M(δ1 ⊗ σ ). (20)

By using conditions (T1) and (T2), we can get that appending
and discarding a free state are both free operations. We
immediately obtain that the resource measure M does not
change for appending or discarding a free state according to
condition (M2). Hence, Eq. (20) implies that

M(ρ ⊗ σ ) = M(ρ) + M(σ ), (21)

which is the full additivity for any ρ ∈ HA1 and σ ∈ HA2 .
Thus, we prove that Eq. (14) ⇒ Eq. (13). In summary, we
get the following theorem:

Theorem 2. For any resource measure, the flag additivity
implies the equivalence between the additivity and the full
additivity.
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V. FLAG ADDITIVITY FOR REGULARIZED
RESOURCE MEASURES

In general, the converse of Theorem 2 is not true. The
equivalence of additivity and full additivity (i.e., the full addi-
tivity itself) does not imply the flag additivity, while it holds
for an important class of resource measures, the regularized
resource measures.

Suppose M is a resource measure; then the regularization
of M is defined as

M∞(ρ) = lim
N→∞

M(ρ⊗N )

N
. (22)

The most important example of regularized resource measures
is the entanglement cost, which is the regularization of the
entanglement of formation [27]. To study the asymptotic
property of M(ρ⊗N )/N , as N → ∞, we need to assume a
special kind of continuity called the asymptotic continuity
[14,28–31]. A resource measure M is said to be asymptoti-
cally continuous if it satisfies that for all states ρ and σ in the
Hilbert space H,

‖ρ − σ‖tr → 0 ⇒ |M(ρ) − M(σ )|
log2 dim(H)

→ 0, (23)

where dim(H) is the dimension of the Hilbert space H, and
‖ρ − σ‖tr is the trace distance between ρ and σ [32].

For regularized resource measures, we have the following
theorem:

Theorem 3. Suppose M is a resource measure satisfying
the flag additivity and the asymptotic continuity. Then the
regularized measure M∞ is flag additive if and only if it is
fully additive.

From the definition of the regularized resource measure
M∞, we can easily see that it automatically satisfies the
additivity condition defined as Eq. (12). Then, the necessity
follows directly from Theorem 2.

To prove the sufficiency, we only need to consider the
special flagged state,

ρ = p1ρ1 ⊗ |ϕ1〉〈ϕ1| + p2ρ2 ⊗ |ϕ2〉〈ϕ2|, (24)

where ρ1 and ρ2 are any two states in a Hilbert space H,
p1 + p2 = 1, and {|ϕ1〉, |ϕ2〉} is a flag basis. The proof can
be generalized to the general flagged state.

Without loss of generality, we may assume that p1 � 1/2.
According to the information theory, for any δ > 0 and ε > 0,
ρ⊗N can be written as

ρ⊗N = (1 − ε)ρtyp + ερatyp, (25)

when N is large enough [33,34]. In Eq. (25), the typical part
ρtyp is defined as

ρtyp = 1

T


N p1(1+δ)�∑
k=�N p1(1−δ)


S[(ρ1 ⊗ |ϕ1〉〈ϕ1|)⊗k

⊗ (ρ2 ⊗ |ϕ2〉〈ϕ2|)⊗(N−k)], (26)

where T is a normalization factor and S is the symmetrized
tensor product. For example, S (ρ̃1 ⊗ ρ̃1 ⊗ ρ̃2) = ρ̃1 ⊗ ρ̃1 ⊗
ρ̃2 + ρ̃1 ⊗ ρ̃2 ⊗ ρ̃1 + ρ̃2 ⊗ ρ̃1 ⊗ ρ̃1, where ρ̃i = ρi ⊗ |ϕi〉〈ϕi|.
As k � �N p1(1 − δ)
, we can get that N − k � N −
�N p1(1 − δ)
 = 
N − N p1(1 − δ)� � 
N p2(1 + δ)�, where

we have used the condition that p1 � 1/2. Similarly,
we can obtain that N − k � N − 
N p1(1 + δ)� = �N −
N p1(1 + δ)
 � �N p2(1 − δ)
. Thus, there is �N p2(1 − δ)
 �
N − k � 
N p2(1 + δ)�. Then, conditions (T2) and (M2)
imply that

M
(
ρ

⊗�N p1(1−δ)

1 ⊗ ρ

⊗�N p2(1−δ)

2

)
� M

(
ρ⊗k

1 ⊗ ρ
⊗(N−k)
2

)
� M

(
ρ

⊗
N p1(1+δ)�
1 ⊗ ρ

⊗
N p2(1+δ)�
2

)
. (27)

From the definition of flag bases, we can easily see that
the tensor product of flag bases is still a flag basis. Thus, by
combining the flag additivity of M and Eq. (27), we can get
that

M
(
ρ

⊗�N p1(1−δ)

1 ⊗ ρ

⊗�N p2(1−δ)

2

)
� M(ρtyp)

� M
(
ρ

⊗
N p1(1+δ)�
1 ⊗ ρ

⊗
N p2(1+δ)�
2

)
. (28)

Let m1, m2, and m be positive integers such that

p1(1 − δ) = m1

m
+ ε1, p2(1 − δ) = m2

m
+ ε2, (29)

where the positive parameters ε1 and ε2 converge to zero when
we choose suitable and large enough integers, m1, m2, and m.
Choose N to be N ′m, where N ′ are also large enough integers.
Then, the first inequality in Eq. (28) implies that

M(ρtyp) � M
(
ρ

⊗N ′m1
1 ⊗ ρ

⊗N ′m2
2

)
. (30)

When ε → 0 (N → ∞), ‖ρ⊗N − ρtyp‖ → 0. Hence, the
asymptotic continuity implies that

lim
N→∞

1

N
M(ρ⊗N ) = lim

N ′→∞
1

N ′m
M(ρ⊗N ′m)

= lim
N ′→∞

1

N ′m
M(ρtyp). (31)

Combining Eqs. (30) and (31), we have

M∞(ρ) � 1

m
M∞(

ρ
m1
1 ⊗ ρ

m2
2

)
. (32)

Then if M∞ is fully additive, we have

M∞(ρ) � m1

m
M∞(ρ1) + m2

m
M∞(ρ2). (33)

Let ε1, ε2 → 0 (m1, m2, m → ∞), we get the flag supadditiv-
ity of M∞,

M∞(ρ) � p1M∞(ρ1) + p2M∞(ρ2). (34)

Similarly, we can get the flag subadditivity of M∞ from the
second inequality in Eq. (28),

M∞(ρ) � p1M∞(ρ1) + p2M∞(ρ2), (35)

when M∞ is fully additive. Combining Eqs. (34) and (35), we
get the flag additivity,

M∞(ρ) = p1M∞(ρ1) + p2M∞(ρ2). (36)

Thus, this completes the proof of the Theorem 3.
When Theorem 3 is applied to the entanglement measures,

we immediately get the equivalence between flag additivity
and full additivity for regularized entanglement measures.
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This is a generalization of the result in Ref. [34], where an
additional condition (the subadditivity) is assumed.

VI. CONCLUSIONS

In this paper, we have introduced the notion of the flag
basis and defined the flag additivity for general quantum
resources. To illustrate the usefulness of the flag additivity,
we have shown that it can be used to derive other nontrivial
properties in quantum resource theories. As examples, we
have proved that the flag additivity holds if and only if both
the strong monotonicity and the convexity hold at the same
time, the flag additivity implies the equivalence between the
additivity and the full additivity, and for regularized resource

measures the flag additivity is equivalent to the full additivity.
We think the technique of flag additivity together with its
refinements, flag subadditivity and flag supadditivity, will be-
come a fundamental tool for studying the resource measures.
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