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Entanglement gain in measurements with unknown results
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We characterize nonselective global projective measurements capable of increasing quantum entanglement
between two particles. In particular, by choosing negativity to quantify entanglement, we show that entanglement
of any pure nonmaximally entangled state can be improved in this way (but not of any mixed state) and we
provide detailed analysis for two qubits. It is then shown that Markovian open system dynamics can only
approximate such measurements, but this approximation converges exponentially fast as illustrated using the
Araki-Zurek model. We conclude with numerical evidence that macroscopic bodies in a random pure state do
not gain negativity in a random nonselective global measurement.
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I. INTRODUCTION

Quantum entanglement is a prerequisite for many quantum
information applications and tests of foundations of physics
[1]. It is typically created in a sequence of unitary processes
(quantum gates) applied to an initially disentangled system,
whose environment typically inhibits the nonclassical corre-
lations, see, e.g., [2-7]. The environment, however, does not
always play the destructive role and another established route
to entanglement generation is to engineer system-environment
interactions in such a way that the decaying principal system
reaches an entangled steady state, see, e.g., [8—12]. In this
case, a manifold of initial system states evolve to the same
entangled steady state.

Here we consider yet another possibility to generate or in-
crease entanglement: via global projective measurements with
unknown results. This may arise from the lack of ability to
postselect a particular measurement result, or even in natural
conditions, since any measurement can be approximated with
suitable open system dynamics. Our approach is therefore re-
lated to engineering system-environment interactions but de-
viates from the decay processes because different initial states
end up mostly in different final states having different amounts
of entanglement. It is also impossible to prepare maximally
entangled states through any nonselective measurement, but
dissipation allows for such a possibility [10-12].

It turns out that measurements along maximally entan-
gled bases are useless for any entanglement gain, modulo
comments in Sec. IT A. Nevertheless, entanglement can be
increased as a result of nonselective measurement and, in
fact, we show that entanglement of any pure nonmaximally
entangled state can be enhanced in this way, and we provide a
candidate optimal measurements for two qubits. Most of our
results are derived by using negativity to quantify entangle-
ment [13-16], the main reason for this choice being its easy
computability for arbitrary dimensions.
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Next we show an example of Markovian open system
dynamics which rapidly approximates nonselective measure-
ment on the principal system. In this way, we present an-
other class of open system dynamics, additional to the de-
cay processes, which increases entanglement in the system.
Finally, we study negativity gain with random initial states
and random measurements for growing dimensionality of the
subsystems. We find that the probability of entanglement gain
is negligible for higher dimensions. This could be seen as
an element of quantum-to-classical transition showing that
macroscopic objects, of high dimensionality, would have to
be prepared in specific states and measured with specific
nonselective measurements to entangle them.

II. BLACK BOX PROBLEM

We begin with the abstract formulation of the problem,
described in Fig. 1. A bipartite quantum system in a general
mixed state p enters a black box where projective measure-
ment {I1;} is conducted but its results remain unknown. That
is, after the measurement, no single state IT; = [;) (] is
selected for but rather we deal with a statistical mixture

D—1
p =) M,pll;, (1)
j=0

where D = dd, is the total dimension of tensor product space
H, ® H, of Hilbert spaces H; and H, of dimensions d,;
and d, describing each subsystem, respectively. Throughout
the paper, we assume without loss of generality that d; <
dy. Our task is to study whether it is possible for quantum
entanglement to increase as a result of the measurement, i.e.,
under what conditions the quantity

AE =E(p") — E(p) 2)

©2019 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.042319&domain=pdf&date_stamp=2019-04-10
https://doi.org/10.1103/PhysRevA.99.042319

MARGHERITA ZUPPARDO et al.

PHYSICAL REVIEW A 99, 042319 (2019)

p._._.%’

FIG. 1. Entanglement gain in nonselective global measurement
as a black box problem. A state p is input to a black box measuring
device which conducts von Neumann measurement along projectors
{IT;}. Measurement results are unknown and therefore the state
emerging from the box is p’ =3 I1;pIl;. We study conditions
under which entanglement in the state p’ is higher than entanglement
of the input state p.

is positive for a suitable entanglement measure £, chosen as
negativity in this paper [13-16].!

The following observation is an immediate consequence of
the convexity of entanglement measure £ and Eq. (1). For any
convex entanglement measure E

E(p") < max E(T1)). 3)
J

Note that inequality (3) holds also for entanglement mono-
tones which are not convex, but nondecreasing functions of
convex ones. A concrete example is the logarithmic negativity
LN(p) = In[2N(p) — 1], where we now recall a definition of
the negativity N(p) of the state p as the sum of moduli of
all negative eigenvalues of the partial transposition p" of p,
and it is a convex function. However, there are entanglement
measures to which this statement may not apply. Distillable
entanglement, for instance, is conjured to be a nonconvex
measure [17], and it is also unlikely to be a monotonic
function of another convex measure.

We can rephrase this result as “there is no free lunch”: to
end up with an entangled state at the output there must be a
supply of entanglement in the basis states along which one
measures. Intuition would then suggest that it is desirable to
choose the measurement basis states with as much entangle-
ment as possible. It turns out that this is incorrect as the next
section demonstrates.

A. No gain with maximally entangled bases

We now provide a proof that a measurement along any
orthonormal basis composed of maximally entangled states
of two qubits does not increase entanglement of any input
state. The idea is to use the fact that any such basis can be
transformed as a whole, by local unitary operations, to the Bell
basis.” We then note that the nonselective measurement along
the Bell basis can be implemented by local operations and
classical communication (LOCC). Hence any measurement

'Note that if we allow general POVM measurements in place of
projective von Neumann measurements the problem becomes trivial.
There is a POVM that simply ignores the input to the box and always
outputs maximally entangled pure state |1*). For instance, take the
POVM to be the collection of the following measurement operators:
M, = ).

2This is a folklore in the community, but since we were not able to
locate a concrete reference we provide the complete proof as Lemma
1 in the Appendix.

along maximally entangled basis has LOCC realization and
cannot increase entanglement. We will comment on higher
dimensions after presenting the proof.

Theorem 1. Assume that D = 4 and let every state |v/;) in
the measurement basis be maximally entangled. Then for any
input state p and for any entanglement monotone with respect
to LOCC, E:

E(p") < E(p),

where p' = Y3 1) (W10 19;) (0.
Proof. By Lemma 1 (see Appendix), the basis {|v;)} is
locally unitarily equivalent to the Bell basis

1 1
[Y0) ﬁﬂ ) HIID). ) ﬁ(| ) +110))
1 1
[V2) = —=(101) = [10)),  |¥3) = —=(|00) — [11)). (4)

V2 V2

It is a matter of straightforward calculation to verify that
[Wo) (Yol = A @ 1+ 61 ® 61 — 62 ® 62 + 63 ® 63),
Y1l =11 ® 146186146, ® 62 — 63 ® 63),
Vo) (ol = A @1 =61 ®61 — 62 ® 62 — 63 63),
Y3l =11 ®1— 6186+ 6, Q62+ 63 ® 63),

where, e.g., 61 = |0)(1| + |1)(0]| stands for the x Pauli oper-
ator. Using these equations one finds after direct calculation
the postmeasurement state

p'=1p+61®61p61®6

+6,R6p6, Q6 +63R63p63®63).  (5)

The same postmeasurement state is obtained by the following
LOCC procedure between the two observers, Alice and Bob.
Alice selects at random number j and informs Bob about the
value of this classical random variable. Then Alice and Bob
apply locally operation 6; ® &;. Finally, they erase the record
of the values of j. Therefore, for any entanglement monotone
with respect to LOCC E(p’) < E(p). [ |

Unfortunately extension of this method to higher dimen-
sions is not straightforward. The proof of Lemma 1 in the
Appendix does generalize and there is a similar LOCC pro-
cedure that returns the postmeasurement state which would
be obtained by conducting nonselective measurement in the
following straightforward generalization of the Bell basis
[18]:

d—1

> @t m)lm + j), (6)

m=0

1
1Vjk) = Wi
where j,k=0,...,d — 1, w; = exp(i2w /d), the sum in the
last ket is modulo d, and for simplicity we assume that both
systems have the same dimension d. However, it is not clear
that any maximally entangled basis can be transformed by
local unitaries to the basis (6).

B. Pure input state

Here we provide two theorems about the possibility of en-
tanglement gain if pure states are presented at the input. From
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now on we will be quantifying entanglement by negativity,
and our results are hence specific to this measure.

In Theorem 2 we construct an input state whose negativity
increases in a given measurement. It turns out that all nontriv-
ial von Neumann measurements, with individual basis vectors
being neither product nor maximally entangled states in some
subspace, increase entanglement of a suitable initial state.
In Theorem 3 we construct a measurement which improves
negativity of any pure input state which is not maximally
entangled.

Theorem 2. Suppose that the measurement basis {|v/;)} is
such that |1) has at least two nonzero Schmidt coefficients
that are not equal. Then there exists a pure input state p =
|¢)(¢| for which negativity increases, i.e., N(p') > N(p),
where p' = Y270 [(r10) 1 [v) (1.

Proof. By assumption |{) = Zl —o +/Pilit), where d <

dy, each p; > 0, and py # p;. We construct the input state |¢)
as follows:

|6) ~ [Y0) — & D) = Z(ﬁ,—s/f)m (7)

where |®) = L Z, _o |ii) is the maximally entangled state
defined using the Schmidt basis of |i). State |¢) is nor-
malized upon multiplication with constant C~' = (1 + &% —
2eB)1/2, where B = (Y| ®). Our aim is to derive the range
of ¢ for which the postmeasurement state has more negativity
than the input state |¢). The postmeasurement state reads:

p' = (1= p)vo) (Yol + pp. ®)

where p lies in the orthogonal subspace to [g), and p =1 —
[(Yol) > = & (1 — B2) > 0 is the probability of obtaining
the result different from zero. By the triangle inequality of
the trace norm

o) (Yol 111

o™ I+ pIA" = [wo) (ol Il

o™ Il + 2dp. 9)

Since negativity of a generic state £ is given by N(§) =
(JIET ]Iy = 1)/2 we find that

N(p") = N(1¥o)(Yol) — pd. (10)

For the comparison with the initial state we calculate

NN

1
N(p) = NP0} (Yol + (e = 28N (@) (@], (1)

where for simplicity we assumed that all the coefficients in (7)
are positive, i.e.,

¢ < +/d min p;. (12)

We now calculate N(|y)(¥o|) from (11) and use it on the
right-hand side of (10). The requirement of negativity gain,
i.e., N(p') > N(p), holds for positive ¢ satisfying

- 2BIN(|D)(P]) — N(|1)(Y1])]
d(1 —B2)+ N(P)(®|) — N([¥1) (Y1)
We remind that ¢ also has to satisfy (12). |

A simple example shows that the condition in Theorem 2
is necessary. Consider two qutrits and suppose we do a

13)

Alice {H()l s HQ}

BOb {Ho, Hl, HQ}

s

\
Alice {TIy, T, } |vb6) |v7) [vs)

BOb {HOh Hg}

nonselective
Bell measurement

W’4> |’(/)5>

FIG. 2. Graphical depiction of an LOCC protocol to implement
nonselective measurement in basis (14). Here I1y; denotes |0)(0| +
[1)(1], and TI; = |i){i|. The LOCC procedure for the nonselective
Bell measurement is described around Eq. (5).

nonselective measurement along the following basis:

1 1
[Yo) = —=(100) + [11)),  |¥1) = —=(|00) — |11)),

V2 V2
1 1
= —(|01 10)), = —(|01) — [10)),
[¥2) ﬁ(l ) +110),  [v¥3) ﬁ(l ) — [10))
[Va) = 102),  |¥s) = [12), [vs) = |20),
[¥7) = 121),  |¥g) = [22). (14)

Since the nonselective measurement along this basis is imple-
mentable by LOCC (see Fig. 2), it follows that the entangle-
ment can never increase on average.

We have shown that for any nontrivial nonselective mea-
surement, there exists a state whose negativity can be in-
creased. Now we show that given any input pure state, which
is not maximally entangled, one can find a projective nons-
elective measurement that increases the amount of entangle-
ment of the input state.

Theorem 3. Suppose a pure initial state |¢) is not
maximally entangled. Then there exists a nonselective
projective measurement {I1;} increasing negativity, i.e.,
NQZ; Tlg)(@ITT)) > N(Ig) (@)

Proof. Let us choose the measurement basis as follows:

1
S ®
[¥o) 2+2(¢|c1>)(|¢>+| s
1
Y1) = T(MCD)(M’) — D)), (15)

where |©) = f Zd‘ Ui is the maximally entangled state

having the same Schmidt basis as |¢). One verifies that |y)
and |v;) are orthogonal, as they should be, and that |¢) lies
in the subspace they span, i.e., |¢) = a|vo) + Bl¥1). The
other basis states are arbitrary as they do not contribute to the
postmeasurement state

= la*[Wo) (Wol + IB V1) (W1l = 31d) (] + 31N (D],
(16)

where the second form of the state follows from (15). Since
both |¢) and |®) have the same Schmidt basis, the final
negativity is

N(p") = %[N(|¢)<¢|) + N(|P){(P|)]
= LNU®) (@D + Ldi — D] > N(g) (oD, (17)
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where the value of negativity of the maximally entangled state
was used. |

C. Mixed input state

A similar statement to Theorem 3, but for all mixed input
states, does not hold. To see this, recall that a state p is termed
absolutely separable [14] if U pU T is separable for every uni-
tary U acting on H; @ H,. We will argue that the projective
nonselective measurement can always be implemented as a
mixed unitary channel acting on the input. Therefore, any
absolutely separable input state leads to a separable postmea-
surement state.

Proposition 1. The measurement map p — >, I1;pll;
can be implemented as p — Zj ijj,oUT, i.e., as a mixture
of unitary operations.

Proof. By construction. Consider the unitary operator

D—1
U=> ol (18)
j=0

The following probabilistic mixture mimics the nonselective
measurement:

= =
5L U0 = 5 Y a e,
i=0 i,j,k=0
D—1
= Y Sull;plli
k=0
D-1
Jj=0
In the first line we used definition (18) and in the second line
the following form of the Kronecker delta: Zf:ol a);(] =

Dé .

Zl"he class of absolutely separable states is rather nontrivial.
For example, it has been completely characterized for two
qubits [19,20]. If A > Xy > A3 > A4 are eigenvalues of p,
then p is absolutely separable, if and only if A3 + 2/ AoAg4 —
A1 2 0. A concrete not absolutely separable mixed state,
whose entanglement increases as a result of nonselective mea-
surement, is seen as follows. Consider p = %|OO)(OO| +
1%ﬂll)(lll + 1_%8|01)(01|, for a small ¢ > 0, and the basis
as in (28) below, for 0 < b < % and ¢ = 0. The state p
is separable and e-close to the set of absolutely separable
states. It is easy to see, however, that the negativity of the
postmeasurement state is strictly positive. It is an intriguing
question for further research whether all the states not from
this class can gain entanglement in a suitable nonselective
measurement.

D. Two qubits

We now provide results on the optimal measurement, giv-
ing the highest negativity gain, for any pure input state. We
begin with formulas valid for d; = d, = d but soon restrict
ourselves to d = 2, i.e., two qubits. In the second case we
derive the optimal choice of basis within a particular class
of measurements. At the end of this section we provide

numerical evidence that this measurement basis is actually the
best possible choice in general.

Consider a pure input state |¢), endowed with Schmidt
decomposition

d—1
6) =Y /pilii), (20)
i=0

where ,/p; are Schmidt coefficients. We shall focus on the
following specific choice of measurement basis. We assume
that the first d vectors are spanned by the Schmidt basis of the
input state, i.e.,

d—1
) = ajliiy, j=0,....d—1, (21)
i=0

and all the remaining vectors |v;), with j > d, are orthogonal
to |¢). The state after the measurement reads

d—1
pl= Y 118 (Bl ()]
j=0
=Y piji/pie e k) (KK . (22)
Gk

Negativity of this state admits the lower bound

N(p') = Z Z NI NI

k<k' | jii

2 Z Z \/EO[J',' piraj-‘i,ajkajk, . (23)

k<K' jii'

It is therefore natural to define

m)y = > > ajefopdy.  (@=pi (24)

k<k' j

where matrix m depends only on the measurement, and vector
q depends only on the input state. Then

N(p") > |(q, mq)|. (25)

We now restrict ourselves to d = 2. A pure two-qubit input
state in its Schmidt basis reads

lY) = al00) ++/1 —a?|11), (26)

where, without loss of generality, a € [0, 1/+/2]. Negativity
of this input state is

N, =ay1—a2. (27)

We take the following basis of the projective nonselective

measurement:
Y1) = bl00) + /1 — 2[11),
[¥2) = V1 - 52100) — bI11),
¥3) = ¢l01) + V1 — 2[10),
[¥4) = V1= c201) — c]10), (28)
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where we note that the Schmidt basis of the input state is used
to define every |v/;), but |y3) and |44) do not contribute to
the postmeasurement state. Using the previously introduced
notation

q=(a,v1—ad?), (29)

B b V1 =b2
"=\vite o )

Hence, negativity of the relevant states of the measurement
basis is fully characterized by parameter b and we call the
number N, = by/1 — b? the “negativity of the measurement.”
We choose b € [0, 1/ ﬁ]. We observe that in the case of two
qubits the outer sum in (23) contains just one term and the
inequality (25) becomes an equality. The negativity of the final
state p’, expressed in terms of N; and N,, is

(30)

JWENmﬂszdehh—Mﬁ+MWﬁ. 31)

The condition for entanglement gain, Ny > Nj, is realized for
measurements and states that satisfy N; < N, < %, confirming
what we already said about the lack of free lunch and the
impossibility of entanglement enhancement in a measurement
with maximally entangled basis states.

The best measurement for a given initial state (i.e., produc-
ing the largest final negativity) is obtained by solving g%i =
0 for N,. The corresponding negativity of the measurement
reads

V2N; + 1

22
and leads to entanglement gain decreasing linearly with the
initial negativity

NP = (32)

Ny N; = 13 (33)
Therefore, the largest negativity gain is for initial product state
measured along a basis having negativity N =1 /2/2.
This also shows again that any initial pure state has a strictly
positive negativity gain in this process, unless it is maximally
entangled.

Finally, we address the issue whether the results just
presented are globally optimal. To derive them we assumed
the measurement basis of the form (28). Although we were
not able to provide a proof that this is indeed the optimal
choice among all possible measurement bases, we conducted a
numerical check which supports optimality.® Figure 3 presents
the data from a million of random trials, where each data point
corresponds to a pair of random pure input state and random
measurement. We plot negativity gain Ny — N; as a function
of the negativity of the initial state N;. We observe that the
linear boundary derived in (33), for the measurement in (28)
actually bounds from above all of the sampled cases.

3The codes, developed in PYTHON language, are available at
in Ref. [21]

0.0 0.1 0.2 0.3 0.4 0.5
N;

FIG. 3. Random sampling supports our claim that for the initial
state (26) the measurement giving rise to highest entanglement
gain is given by (28). Each point represents negativity gain for a
random input state measured along random basis. Both states and
measurements are sampled uniformly at random according to the
Haar measures. One million trials are recorded. The upper boundary
is given by (33) derived for the candidate optimal measurement, i.e.,
given by (28).

III. PROJECTIVE MEASUREMENT IN
OPEN SYSTEM DYNAMICS

We have shown that nonselective global projective mea-
surements can lead to entanglement gain in a bipartite system.
Here we ask if such measurements could emerge as a result
of open system dynamics. We demonstrate that a Markovian
time evolution cannot lead to a perfect projective measure-
ment in finite time. However, it rapidly converges to the
projective measurement as illustrated using the Araki-Zurek
model [22,23].

Suppose that & : M, — M, is a Markovian evolution on
the space of matrices of size n, which is norm-continuous and
& = 1. We require that this evolution reaches a projective
map at least asymptotically, i.e., lim;_, o & = I1, where I1
is a map with rank one projectors {II;} as in our black box
problem. It turns out that & cannot reach the projective map
at any earlier time. The argument below shows that if this was
the case the evolution would have to be a projector even for
tiny evolution times which contradicts continuity, i.e., in this
limit evolution map has to approach identity (nothing happens
in very short times).

Theorem 4. &£, # I for any finite time 7.

Proof. By contradiction. Suppose there is finite T such that
E, =TI. Let I" = 1 — I, where 1 is the identity map, i.e.,
the action of T1’ on a density matrix is to erase the diagonal
elements in the basis defined by {IT;}. We also define & =
IT' o & and therefore £, = 0, where o denotes composition of
maps. Our aim is to show that £ = 0 also for allt < 7, i.e,,
&, is a projector for all evolution times.

To this end we recall the definition of Markovianity &, =
& o0& = & o0& . Using it, one verifies a similar property for
the primed maps:

5/

t+s

=Eof =EoE&. (34)
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Note that since &/ is a linear transformation, it can be repre-
sented as a n> x n> matrix. Let us now choose an integer m
and study matrix representation A of the map &, Jm (we put
no limit on how high m could be). By our assumption and by
property (34) we conclude that A” = 0. This implies that all
the eigenvalues of matrix A are zero, and therefore it has a
simple Jordan normal form

0 1
A=S _ s, (35)
0

with 1s on suitable positions right above the diagonal and
with § being an invertible matrix. Since matrix A has size
n* x n?, there exists an integer yu < n® for which A* =0
because multiplying A with itself shifts the 1s further from

the diagonal. Since p is independent of m the map &, =

m

0 for any rational fraction of t. For any other ¢+ we note
using property (34) again that &/ = £, o0&, = 0. Wehave
therefore shown that & = I1 for anym0 <t < 7. Since the
map t — & is continuous, it is required that & = IT, which
amounts to a contradiction. |

To illustrate how open quantum dynamics can lead to a pro-
jective measurement, let us take a concrete example within the
Araki-Zurek model [22,23]. Consider the system of two qubits
coupled to the environment represented by a free particle
moving on the real line. We wish to demonstrate entanglement
gain for the initial state pp = |00)(00| and therefore choose
the measurement basis

o) = b|00) + /1 — B2|11),
1) = V1= 52(00) — BI11), (36)
[¥2) = 101),  [y3) = [10),

with 0 <b < T Recall, that the postmeasurement state

reads p" = 3 (Vo) [¥;) (W)l

Let us now define the total Hamiltonian for the evolution
of the system and the environment. We put

H=Hs;Q@1g+1sHr +AQB, (37
where Hg = 0, ® 1 — 1 ® o, is the Hamiltonian for the sys-
tem, Hg = % is the Hamiltonian of the environment and

where p is the momentum operator of the particle with mass

m. The interaction term is given by A = Zj Al (i,

with A; # A for j # j/, together with B = p. Observe that

[Hs, A] = 0 as well as [Hg, B] = 0. The initial state of the

environment is chosen to be wg = |¢pg)(Pr|, where ¢g(x) =
Lixp

dp is the Cauchy distribution in momentum
m | o Jrarm P Y

space here ensuring that the evolution is Markovian [24].
Starting from the uncorrelated initial state py ® wg the
time evolution of the system alone is given by (7) in [24]:

3
= D RO oo ) 1Y) (Yl (38)

n,m=0

where yp = y; =0 and y» = —y3 = 2. Thus
pr = b*o) (Yol + (1 — b2y (¥
+e M b1 — D2(1yo) (Yt | + 1Y) (WoD),  (39)

where u = A1 — Ay # 0. The negativity of p; is

N(p) = by 1 — 226" — 1|(1 —

It is easy to see that in the limit of #+ — oo the system state
approaches the postmeasurement state p, — p’ in the trace
norm. Note also that this convergence is exponentially fast,
scaling as exp (—|u|t).

eI, (40)

IV. RANDOM STATES AND RANDOM MEASUREMENTS

Here we provide several results about entanglement gain
with random measurements and random pure initial states on
systems of different dimensions.

We found numerically that the probability of negativity
gain is very small for D =2 x 2 and 2 x 3 (respectively
~1.6% and ~0.17%), whereas for higher D we did not
observe such cases at all, reinforcing the idea that such
probability decreases with the dimension of Hilbert space. To
understand this, we study the distribution of negativity in a
random pure input state and compare it to the distribution of
negativity in the postmeasurement state.

First we argue that the negativity distribution in the post-
measurement state is practically independent of the input
state. Consider an input pure state |¢) measured in a uniformly
random basis. We denote by P(N|¢) the probability of ob-
serving an output state with negativity Ny. We have sampled
from this distribution 10* times for a given input state and
numerically approximated it by dividing the range of negativ-
ity (note that it depends on D) into 103 bins. In this way we
discretize possible values of negativity justifying out notation
P(N¢|¢) instead of probability density suitable for continuous
variables. We then additionally sampled uniformly at random
the input states, 10* times, to approximate P(N;), probability
distribution of negativity in the output state averaged over
the input states. Table I shows that the two distributions are
very similar as revealed by the estimated mean value of the
statistical distance between them

S(o) = Z |P(Nyl¢) — P(Ny)|. (41)

Ny

We plot the distribution of negativity in the postmeasure-
ment state in Fig. 4. For comparison we also present the
negativity distribution in a randomly chosen input state. As
clearly seen only for lower dimensions the two distributions
have nonnegligible overlap. It is also clear that the chances of
increasing negativity via a random measurement are negligi-
ble for dimensions of 3 x 3 and above.

TABLE 1. Estimated mean of the statistical distance (41) ob-
tained by sampling 10* input states. It shows that the probability
distribution of negativity in the postmeasurement state is practically
independent of the input state.

dim (S)

2x2 0.063
2 %3 0.068
3x3 0.054
4x4 0.045
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FIG. 4. Distribution of negativity between systems of different
dimensions. Dashed lines enclosing blue color show the distributions
for the postmeasurement state whereas solid lines enclosing orange
color show the distribution for random pure input states.

We also notice that the statistics of negativity for the
2 x 2 and 2 x 3 cases are significantly different. In both
such Hilbert spaces, the conditions of positivity under partial
transposition and entanglement are equivalent to each other.
Intuition may suggest a connection between the ability to
increase negativity with unknown measurement results and
the power of such quantity to detect entanglement. However,
this connection appears to be weak, if at all present.

V. CONCLUSION

We propose the use of global nonselective projective mea-
surements as means for entanglement creation or increase.
Excellent approximations to such measurements may occur
naturally in open system dynamics or they may also appear
in engineered systems due to the lack of ability to postselect
a particular measurement result. We show that entanglement
of any pure nonmaximally entangled state can be improved in
this way, but the final state can never be maximally entangled.
In fact, measurements along bases with solely maximally
entangled states provide no entanglement gain whatsoever
(up to comments in Sec. Il A). We derive candidate optimal
measurements, giving maximal negativity gain, for any pure
input state of two qubits. Numerical checks support the opti-
mality. It turns out that it is best to start with a product state
and measure it along the basis with states having a moderate
negativity of 1/2+/2. We hope these results on entanglement
gain will find concrete realizations leading to new ways of
generating this important physical resource.
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APPENDIX

Lemma I. Let di = d, = 2. Assume that every state |v;)
of an orthonormal basis is maximally entangled. Then the
basis is locally unitarily equivalent to the Bell basis.

Proof Let {|axb;)} be a product-vector basis, for which
[Vo) = f(|00) + |11)). There always exists such a basis due
to Schmidt decomposition. We expand the rest of the states
[;) in the same basis

1
;) = Z ) |aby),

k,1=0

(Al)

and consider 2 x 2 matrices o) with entries given by the co-
efficients of the state [/;). They have the following properties
stemming from maximal entanglement and orthonormality of
these states:

max. entanglement <= o'/ unitary,
(Yilg) =87 < TrlaV (@) ]=6;;. (A2)

Note that Tr(a«’) =0 for j =1,2,3. Any traceless 2 x 2
unitary matrix is proportional to a Hermitian one, i.e., each
a) = eMAY, where AY) is Hermitian. Since multiplying
matrices ) by a phase factor e does not change the
postmeasurement state p’, we can assume without loss of gen-
erality that each o) itself is Hermitian, for j = 1,2, 3. The
set { 11 a®, a@ o™} is therefore an orthonormal basis in
the four—dlmensmnal real Hilbert space of Hermitian 2 x 2
matrices with the Hilbert-Schmidt inner product. Since the
same space is spanned by the identity and the Pauli matrices
there is an isometry R such that

; 1
1=R1, oY= R(—m) forj=1,2,3, (A3)
V2 /
where o; is the jth Pauli matrix. The matrix representation of

the mapping R reads
1 0
=0 n)

where Ry € O(3) is an orthogonal matrix. We can always
assume that Ry € SO(3). Indeed, if detRy = —1, we would
take one of the measurement basis vectors, say [y), with the
opposite sign, which amounts to a global phase change. That
would change the sign of a" and consequently the sign of
detRy, but the postmeasurement state p’ would stay the same.

Using the homomorphism between the groups SU(2) and
SO(3) we infer that there exists a unitary matrix U € SU(2),

such that o) = %Roaj = %UC’jUT, for j=1,2,3, and

(A4)

therefore

¥)) = Z Uo;U laihr).

(AS)
fkl =0
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Note that last equation holds for all j because o® = 1. By
opening up matrix multiplication Uo;U T and defining new
local bases

m) =Y Uimla), |n) =Y Uplbr),  (A6)
k !

the initial maximally entangled basis is brought to the form

1 1
v =7 > (0} )mnlmn). (A7)

m,n=0

This is, up to the irrelevant global phase of |v,), the standard
Bell basis. [ |
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