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Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series
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We provide a general method for efficiently simulating time-dependent Hamiltonian dynamics on a circuit-
model-based quantum computer. Our approach is based on approximating the truncated Dyson series of the
evolution operator, extending the earlier proposal by Berry et al. [Phys. Rev. Lett. 114, 090502 (2015)] to
evolution generated by explicitly time-dependent Hamiltonians. Two alternative strategies are proposed to
implement time ordering while exploiting the superposition principle for sampling the Hamiltonian at different
times. The resource cost of our simulation algorithm retains the optimal logarithmic dependence on the inverse
of the desired precision.
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I. INTRODUCTION

Simulation of physical systems is envisioned to be one of
the main applications for quantum computers [1]. Effective
modeling of the dynamics and its generated time evolution
is crucial to a deeper understanding of many-body systems
[2], spin models, and quantum chemistry [3], and may thus
have significant implications for many areas of chemistry and
materials sciences. Simulation of the intrinsic Hamiltonian
evolution of quantum systems was the first potential use
of quantum computers suggested by Feynman [4] in 1982.
Quantum simulation algorithms can model the evolution of a
physical system with a complexity logarithmic in the dimen-
sion of the Hilbert space [5] (i.e., polynomial in the number
of particles), unlike classical algorithms whose complexity is
typically polynomial in the dimension, making simulations
for practically interesting systems intractable for classical
computers.

The first quantum simulation algorithm was proposed by
Lloyd [6] in 1996. There have been numerous advances since
then providing improved performance [7–16]. One advance
was to provide complexity that scales logarithmically in the
error, and is nearly optimal in all other parameters [14].
Further improvements were provided by quantum signal pro-
cessing methodology [15,17] as well as qubitization [16],
which achieve optimal query complexity.

An important case is that of time-dependent Hamiltonians.
Efficient simulation of time-dependent Hamiltonians would
allow us to devise better quantum control schemes [18] and
describe transition states of chemical reactions [19]. Further-
more, simulation of dynamics generated by time-dependent
Hamiltonians is a key component for implementing adiabatic
algorithms [20] in a gate-based quantum circuit architecture.

The most recent advances in quantum simulation algo-
rithms are for time-independent Hamiltonians. Techniques for
simulating time-dependent Hamiltonians based on the Lie-
Trotter-Suzuki decomposition were developed in Refs. [8,10],
but the complexity scales polynomially with error. More
recent advances providing complexity logarithmic in the error

[12,14] mention that their techniques can be generalized to
time-dependent scenarios but do not analyze this case. The
most recent algorithms [15,16] are not directly applicable
to the time-dependent case. Here we present an explicit
algorithm for simulating time-dependent Hamiltonians with
complexity logarithmic in the allowable error, matching the
complexity of the algorithms for the time-independent case
in Refs. [12,14], though not those in Refs. [15,16]. Similar
results were independently achieved by Low and Wiebe [21].

Our approach is based on a truncated Dyson series, similar
to Ref. [14]. Whereas Ref. [14] used a Taylor series, we here
use a Dyson series to take account of time dependence of
the Hamiltonians. Our approach is also conceptually similar
to Ref. [10], which showed that classically choosing random
times could eliminate dependence of quantum complexity on
the derivatives of the Hamiltonian. Our technique uses a quan-
tum superposition of times, which introduces a logarithmic
dependence on the derivative, but improves upon Ref. [10]
by providing logarithmic scaling in the error as well as linear
scaling in time.

We consider two different models of the Hamiltonian. In
the first model, the Hamiltonian is given by an oracle for the
entries in a sparse matrix, similar to Ref. [12]. In that case
we decompose the Hamiltonian into a linear combination of
unitary terms. In the second model, we take the Hamiltonian
to already be given as a linear combination of unitaries as
in Ref. [14], and an oracle yields the values of the time-
dependent coefficients in the decomposition. An important
case for the latter scenario is the class of model Hamiltonians
expressed as linear combinations of tensor products of Pauli
matrices. For example, quantum chemistry Hamiltonians,
which are an important application of quantum simulations,
are naturally expressed in this framework.

This paper is organized as follows. In Sec. II we first state
our main results. In Sec. III we introduce our framework
of definitions and assumptions. Section IV then provides an
overview of our simulation algorithm. The main technical
difficulty is in ordering the time register, which is presented
in Sec. V. We give two alternative methods for implementing
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time ordering using an additional control register. Our first
approach given in Sec. V A uses a compression technique to
encode ordered sequences of times with minimal overhead.
Our second method is based on the quantum sort technique
and presented in Sec. V B. In Sec. V C we show that obliv-
ious amplitude amplification can be achieved with both ap-
proaches. We derive the overall query and gate complexity in
Sec. VI. We conclude with a brief summary and discussion of
our results in Sec. VII.

II. MAIN RESULTS

We consider a time-dependent Hamiltonian H (t ) to be
given either by a time-dependent d-sparse matrix or by a time-
dependent linear combination of unitary operators (e.g., tensor
products of Pauli matrices). Access to oracles is assumed to
compute the positions and values of the nonzero entries in the
first case, or the values of the decomposition coefficients and
the actions of the corresponding unitaries in the second case.
For sparse matrices, the Hamiltonian is considered d-sparse
on the time interval [t0, t0 + T ] in the sense that in any row
or column there are at most d entries that can be nonzero for
any t ∈ [t0, t0 + T ]. Moreover, we take ε to be the maximum
allowable error of the simulation and n to be the number of
qubits for the quantum system on which H (t ) acts. We define

Hmax := maxt∈[t0,t0+T ]‖H (t )‖max, (1)

Ḣmax := maxt∈[t0,t0+T ]‖dH (t )/dt‖, (2)

where ‖ · ‖ indicates the spectral norm.
Theorem 1. For a Hamiltonian H (t ) given by a time-

dependent d-sparse matrix, the generated time evolution of a
quantum system can be simulated for time T and within error
ε using a number of oracle queries scaling as

O

(
d2HmaxT

log2(dHmaxT/ε)

log2 log2(dHmaxT/ε)

)
, (3)

and a number of additional elementary gates scaling as

O

{
d2HmaxT

log2(dHmaxT/ε)

log2 log2(dHmaxT/ε)

×
[

log2

(
dHmaxT

ε

)
+ log2

(
ḢmaxT

εdHmax

)
+ n

]}
. (4)

Theorem 2. For a Hamiltonian H (t ) given by a time-
dependent linear combination of L unitary terms, the gener-
ated time evolution of a quantum system can be simulated for
time T and within error ε using a number of oracle queries
scaling as

O

[
LαmaxT

log2(LαmaxT/ε)

log2 log2(LαmaxT/ε)

]
, (5)

and a number of additional elementary gates scaling as

O

{
LαmaxT

log2 (LαmaxT/ε)

log2 log2 (LαmaxT/ε)

×
[

log2

(
LαmaxT

ε

)
+ log2

(
ḢmaxT

εLαmax

)]}
, (6)

where αmax denotes a known global upper bound on the
modulus of each of the L time-dependent coefficients in the
decomposition, implying Lαmax � Hmax.

III. BACKGROUND AND FRAMEWORK

The unitary operator corresponding to time evolution under
a time-dependent Hamiltonian H (t ) for a time period T is the
time-ordered propagator

U (t0, t0 + T ) = T exp

[
−i

∫ t0+T

t0

dτ H (τ )

]
, (7)

where T is the time-ordering operator and we use natural units
(h̄ = 1). Equation (7) can be understood as a limit

U (t0, t0 + T ) = lim
M→∞

T
M−1∏
m=0

exp

{−iT

M
H

(
t0 + mT

M

)}
, (8)

where T indicates the strict order of the terms in the product.
We distinguish between two different representations of

H (t ). In the SM scenario, where SM stands for sparse
matrix, Hamiltonians that are given by a d-sparse time-
dependent Hermitian matrix. In the QC scenario, Hamilto-
nians that are time-dependent linear combinations of some
time-independent unitaries. Here QC stands for quantum
chemistry, as this would be the most prominent example. In
quantum chemistry the model Hamiltonians are expressible
as linear combinations of tensor products of Pauli matrices
by using the Jordan-Wigner transformation. An explicit time
dependence may arise when the motion of the nuclei is
accounted for, or when a molecule is under the influence of an
explicitly time-dependent electromagnetic driving field. An-
other important example that also fits into this framework is
adiabatic algorithms which use time-dependent Hamiltonians
of the form H (t ) = (1 − t

T )H0 + t
T H1 [20], where the two

time-independent Hermitian operators H0, H1 can be further
decomposed into unitaries.

In both scenarios our method relies on the ability to express
the time-dependent Hamiltonian as a linear combination of
efficiently implementable unitaries. For d-sparse matrices we
need to decompose the Hamiltonian into a sum of unitaries,
and it is more practical to take the unitaries to be time-
dependent while making the coefficients in the decomposition
constant. In contrast, for cases where the Hamiltonian is
already given in the form of a sum of unitaries, we take the
unitaries to be constant, and the time dependence is solely
in the coefficients. This is natural for applications such as
quantum chemistry or adiabatic algorithms. In either case
we require access to oracles yielding information about the
Hamiltonian.

In the SM scenario, access to a d-sparse Hamiltonian is
provided through the oracles

Oloc| j, s〉 = | j, ν( j, s)〉, (9)

Oval|t, i, j, z〉 = ∣∣t, i, j, z ⊕ Hi j (t )
〉
, (10)

where ⊕ represents a bitwise XOR. Here, ν( j, s) gives the
position of the sth element in row j of H (t ) that may be
nonzero at any time. Note that the oracle Oloc does not depend
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on time. Oracle Oval yields the values of non-zero elements
at each instant of time. Furthermore, we say that a time-
dependent Hamiltonian H (t ) is d-sparse on the interval if the
number of entries in any row or column that may be nonzero
at any time throughout the interval is at most d . This definition
is distinct from the maximum sparseness of the instantaneous
Hamiltonians H (t ), because some entries may go to zero
while others become nonzero. (This definition of sparseness
upper bounds the sparseness of instantaneous Hamiltonians.)

Our algorithm for d-sparse matrices builds on the de-
composition of a Hermitian matrix into equal-sized 1-sparse
self-inverse parts introduced in Lemma 4.3 in Ref. [12]. The
Hamiltonian H (t ) can be decomposed using the technique of
Ref. [12] for any individual time, giving

H (t ) = γ

L−1∑
�=0

H�(t ), (11)

where the H�(t ) are 1-sparse, unitary, and Hermitian. The
matrix entries in H�(t ) can be determined using O(1) queries
according to Lemma 4.4 of Ref. [12]. The single coefficient γ

is time-independent, and so is the sum of coefficients λ := Lγ

in the decomposition. To give a contribution to the error that
is O(ε), the value of γ should be chosen as (see Eq. (24) in
Ref. [12] and the accompanying discussion)

γ ∈ 	[ε/(d3T )]. (12)

The unitary decomposition Eq. (11) can be computed with a
number of Hamiltonians scaling as

L ∈ O(d2Hmax/γ ). (13)

In the QC scenario, the Hamiltonian already has the form
of a unitary decomposition with time-dependent coefficients:

H (t ) =
L−1∑
�=0

α�(t )H�. (14)

Here the H� are all unitary and time-independent, while each
α�(t ) is assumed to be a real-valued differentiable function
with modulus upper bounded by a known constant αmax �
|α�(t )| for t ∈ [0, T ] and all � ∈ {0, . . . , L − 1}. The condi-
tion α�(t ) ∈ R can always be attained by decomposing any
complex-valued coefficient into its real and imaginary parts
and including the complex phase factor ±i in the associated
unitary H�.

Similar to the SM scenario, access to the Hamiltonian is
provided through oracles, as follows. We assume an efficient
unitary procedure Ounit that applies a single unitary from the
decomposition Eq. (14) to the system state according to

Ounit|�〉a|
〉s = |�〉aH�|
〉s, (15)

whereby the particular unitary H� is selected by the index
value � held in an ancilla register state |�〉a. An important
example is when the H� are composed of tensor products
of Pauli matrices, in which case each such oracle query can
be implemented with O[L(n + log2 L)] elementary gates [14].
However, in this paper we do not bind ourselves to a specific
implementation and quantify the complexity only in terms of
the total number of oracle calls. In addition, we also assume

access to the time-dependent coefficients through a coefficient
oracle defined as

Ocoeff|�, t, z〉 = ∣∣�, t, z ⊕ α
[ν]
� (t )

〉
. (16)

That is, the oracle returns the target coefficients as z ⊕ α
[ν]
� (t ),

where z is a ν-bit integer encoded into an ν-qubit register, and
α

[ν]
� (t ) := �2να�(t )/αmax	 is a ν-bit fixed-point approximation

to the actual value of α�(t ) rescaled by αmax [such that
α�(t )/αmax � 1].

The sum of the coefficients, λ(t ) := ∑L−1
�=0 α�(t ), in the de-

composition Eq. (14) generally depends on time, which makes
oblivious amplitude amplification [14] more difficult. For
oblivious amplitude amplification to be successfully achieved
for a time interval, the integral of λ(t ) over that interval should
be equal to ln 2. To perform oblivious amplitude amplification
on this decomposition directly would need a way to inte-
grate λ(t ) and solve for an appropriate length of the time
interval, which would increase the computational complexity.
Instead, we alter the unitary decomposition Eq. (14) to a new
decomposition such that the sum of the new coefficients is
time-independent. This decomposition is

H (t ) =
L−1∑
�=0

αmax + α�(t )

2
H� +

L−1∑
�=0

αmax − α�(t )

2
(−H�)

=
2L−1∑
�=0

α̃�(t )H̃�, (17)

where

α̃�(t ) :=
⎧⎨
⎩

αmax+α�(t )
2 for � = 0, . . . , L − 1,

αmax−α�−L (t )
2 for � = L, . . . , 2L − 1,

(18)

H̃� :=
⎧⎨
⎩

H� for � = 0, . . . , L − 1,

−H�−L for � = L, . . . , 2L − 1.

(19)

This new decomposition has 2L terms and the sum of its
coefficients is by construction time-independent and equal
to λ = Lαmax. This allows us to satisfy the condition that
is sufficient for achieving oblivious amplitude amplification
procedure globally for the entire time interval [t0, t0 + T ].

As is common, we will quantify the resource requirements
of the algorithm in terms of two complexity measures: the
“query complexity” and the “gate complexity.” By the former
measure we mean the number of queries to the oracles intro-
duced above, i.e., the number of uses of the unitary procedures
efficiently implementing those oracles, thereby dismissing all
details of their implementation and treating them as black
boxes. By the latter measure we mean the total number of
additional elementary 1- and 2-qubit gate operations.

IV. ALGORITHM OVERVIEW

Suppose we wish to simulate the action of U in Eq. (7)
within error ε. First, the total simulation time T is di-
vided into r time segments of length T/r. Without loss of
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generality, we analyze the evolution induced within the first
segment and set t0 = 0. The simulation of the evolution within
the following segments is accomplished in the same way.
The overall complexity of the algorithm is then given by
the number of segments r times the cost of simulation for each
segment. To upper bound the overall simulation error by ε, we
require the error of simulation for each segment to be at most
ε/r.

We need a set of qubits to encode the time over the entire
time interval [0, T ]. It is convenient to use one set of qubits
for the time that encodes the segment number, and another
set of qubits that gives the time within the segment. The
qubits encoding the segment number are only changed by
incrementing by 1 between segments, which gives complexity
O(r log2 r) that is much smaller than other complexities that
appear.

Second, we approximate the evolution within the first
segment by a Dyson series up to the K th order:

U (0, T/r) ≈
K∑

k=0

(−i)k

k!
T

∫ T/r

0
dt H (tk ) . . . H (t1), (20)

where, for term k in the Dyson series, T
∫ T/r

0 dt (·) repre-
sents integration over a k-tuple of time variables (t1, . . . , tk ),
while keeping the times ordered: t1 � t2 � · · · � tk . It is
straightforward to show that the error of this approximation

is O[ HK+1
max

(K+1)! ( T
r )

K+1
].

Next, we discretize the integral over each time variable
and approximate it by a sum with M terms, where we choose
M to be a power of two so that we can use separate qubits
to index the time within the segment and the segments. The
time-dependent Hamiltonian is thereby approximated by its
values at M uniformly separated times jT

rM identified by an
integer j ∈ {0, . . . , M − 1}. Replacing all integrals by sums
in Eq. (20) yields the following approximation of the time-
evolution operator within the first segment:

Ũ :=
K∑

k=0

(−iT/r)k

Mkk!

M−1∑
j1,..., jk=0

T H (t jk ) . . . H (t j1 ). (21)

Replacing the integrals by Riemann sums contributes an
additional error upper bounded by O[(T/r)2Ḣmax/M] (see
Sec. VI for more details). The overall error of the obtained
approximation is thus,

‖Ũ − U (0, T/r)‖ ∈ O

[
(HmaxT/r)K+1

(K + 1)!
+ (T/r)2Ḣmax

M

]
.

(22)

Provided that r � HmaxT , the overall error can be bounded by
ε/r if we choose

K ∈ 	

[
log2 (r/ε)

log2 log2 (r/ε)

]
and M ∈ 	

(
T 2Ḣmax

εr

)
. (23)

The main difference from time-independent Hamiltonians
is that for time-dependent Hamiltonians we need to implement
the evolution generated by H (t ) for different times in the
correct order. We achieve this by introducing an additional
multiqubit control register called “time.” This ancilla register
is prepared in a certain superposition state (depending on

which approach we take). It is used to sample the Hamiltonian
at different times in superposition in a way that respects time
ordering.

Substituting the unitary decomposition Eq. (11) or Eq. (17)
into Eq. (21), the approximation of the time-evolution opera-
tor within the first segment takes the form Ũ = ∑

j∈J β jVj ,
where j is a multi-index and the coefficients β j comprise
information about both the time discretization and the unitary
decomposition weightings as well as the order k within the
Taylor series. Explicitly, we define

βSM
(k,�1,...,�k , j1,..., jk ) := (γ T/r)k

Mkk1!k2!. . . kς !
θk ( j1, . . . , jk ), (24)

V SM
(k,�1,...,�k , j1,..., jk ) := (−i)k H�k (t jk ) . . . H�1 (t j1 ), (25)

for the SM scenario with decomposition Eq. (11), and

βQC
(k,�1,...,�k , j1,..., jk ) := (T/r)k

Mkk1!k2! . . . kς !
θk ( j1, . . . , jk )

× α̃�k (t jk ) . . . α̃�1 (t j1 ), (26)

V QC
(k,�1,...,�k , j1,..., jk ) := (−i)k H�k . . . H�1 , (27)

for the QC scenario with decomposition Eq. (14), where
θk ( j1, . . . , jk ) = 1 if j1 � j2 � . . . � jk , and zero otherwise.
The quantity ς is the number of distinct values of j, and
k1, k2, . . . , kς are the number of repetitions for each distinct
value of j. That is, we have the indices j for the times sorted
in ascending order, and we have multiplied by a factor of
k!/(k1!k2! . . . kς !) to take account of the number of unordered
sets of indices which give the same ordered set of indices. The
multi-index set J is defined for the SM and QC scenarios as

JSM := {(k, �1, . . . , �k, j1, . . . , jk ) : k ∈ {0, . . . , K},
�1, . . . , �k ∈ {0, . . . , L − 1},
j1, . . . , jk ∈ {0, . . . , M − 1}}, (28)

and

JQC := {(k, �1, . . . , �k, j1, . . . , jk ) : k ∈ {0, . . . , K},
�1, . . . , �k ∈ {0, . . . , 2L − 1},
j1, . . . , jk ∈ {0, . . . , M − 1}}, (29)

respectively. The only difference is the second has 2L rather
than L, where we expanded the sum to ensure the λ is
independent of time. For simplicity we take both L and M
to be powers of two, so equal-weight superpositions can be
produced with tensor products of Hadamard gates (denoted as
HAD), for example, HAD⊗ log2 L when preparing superposition
states 1√

L

∑L−1
�=0 |�〉. Equal superpositions over numbers of

states that are not powers of two can also be obtained with
logarithmic complexity by standard (but more complicated)
techniques.

We use a standard technique to implement linear combina-
tions of unitaries (referred to as “LCU technique”) involving
the use of an ancillary register to encode the coefficients β j

[12,22]. In the next section, we present two approaches to
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implement the (multiqubit) ancilla state preparation,

B|0〉a = 1√
N

∑
j∈J

√
β j | j〉a, (30)

as part of the LCU approach, where N := ∑
j∈J β j . For

the LCU technique we introduce the operator SELECT(V ) :=∑
j | j〉〈 j|a ⊗ Vj acting as

SELECT(V )| j〉a|
〉s = | j〉aVj |
〉s (31)

on the joint ancilla and system states. This operation imple-
ments a term from the decomposition of Ũ selected by the
ancilla state | j〉a with weight β j . Following the method in
Ref. [14], we also define

R := Ias − 2(|0〉〈0|a ⊗ Is), (32)

W := (B† ⊗ Is)SELECT(V )(B ⊗ Is). (33)

If Ũ were unitary and s � 2, then a single step of oblivious
amplitude amplification could be used to implement Ũ . When
Ũ is only approximately unitary, with ‖Ũ − U (0, T/r)‖ ∈
O(ε/r), a single step of oblivious amplitude amplification
yields [14]

−W RW †RW |0〉a|
〉s = |0〉aŨ |
〉s + O(ε/r), (34)

which is the approximate transformation we aim to implement
for each time segment.

The implementation of the unitary transformation W by a
quantum circuit is illustrated in Fig. 1. In both scenarios, in
addition to the system register holding the quantum state to be
processed by Hamiltonian evolution, three auxiliary control
registers are employed. The “K register” consisting of K
qubits is used to hold the k value corresponding to the order to
be taken within the truncated Dyson series. The time register
consisting of K subregisters each of size log2 M is prepared
in a special superposition state “|clock〉” that also involves
the K register and which is used to sample the Hamiltonian
at different instances of time in superposition such that time-
ordering is accounted for. Note that the same |clock〉 state and
the two alternative approaches to its preparation presented in
Sec. V A can be used for both considered scenarios.

Finally, the “L register” consisting of K subregisters each
of size log2 L is used to select which term out of the decom-
position into unitaries is to be applied. The ancillary L register
states need to be prepared with amplitudes corresponding
to the square roots of the weightings of the unitaries in
the decomposition. In decomposition Eq. (11) for the SM
scenario, all unitaries have equal weight; thus only equal-
weight superpositions need to be prepared in the L register
in this case. However, for decompositions Eq. (14) for the
QC scenario, we need to prepare superposition states that
encode the amplitudes of the time-dependent weightings α̃�(t )
according to the unitary transformation

controlled-PREP(α)|t〉timek
|0〉Lk

:= (I ⊗ PREP(α(t )))|t〉timek |0〉Lk

:= 1√
Lαmax

2L−1∑
�=0

√
α̃�(t )|t〉timek |�〉Lk . (35)

This is a controlled state preparation involving the kth L-
subregister as target and the kth time subregister as control,
to be executed for each k = 1, . . . , K . The subscript k is
used on the register labels to indicate the kth subregisters.
Note that PREP(α) encodes the coefficients of the altered
(but equivalent) decomposition Eq. (17), which has been
introduced to ensure that oblivious amplitude amplification
can be performed correctly.

The SELECT(V ) operation is implemented by a series of K
controlled-SELECT(H ) transformations, whose action is given
by

controlled-SELECT(H )|b〉Kk |t〉timek |�〉Lk |
〉s
:= |b〉Kk |t〉timek |�〉Lk (−iH�(t ))b|
〉s (36)

for the SM scenario, and by

controlled-SELECT(H )|b〉Kk |�〉Lk |
〉s
:= |b〉Kk |�〉Lk (−iH̃�)b|
〉s, (37)

for the QC scenario. Note that the control on the timek

register is only necessary for the SM scenario, not the QC
scenario, since in the latter case the individual unitaries H� in
the decomposition are all time-independent. The phase factor
(−i)b has been included in the definition of the operation,
yet it is implemented simply by applying the phase gate
S† := |0〉〈0| + (−i)|1〉〈1| to each wire of the K register. If k is
the value encoded in unary in all K wires of the K register,
then this results in the overall factor (−i)k occurring in the kth
order term of the Dyson series.

V. PREPARATION OF AUXILIARY REGISTER STATES

The algorithm relies on efficient implementation of the
unitary transformation B, which acts on the composite ancilla
registers K ⊗ time ⊗ L and prepares a joint superposition
state given in Eq. (30). This state preparation includes encod-
ing the Dyson order k (in register K), the values j1 � · · · � jk
specifying the ordered time instances (in register time), and
the index values �1, . . . , �k specifying the terms in the Hamil-
tonian decompositions (in register L), in superposition over
all possible combinations of the values, and with amplitudes
that are the square roots of the weightings βSM

(k,�1,...,�k , j1,..., jk )

or βQC
(k,�1,...,�k , j1,..., jk ). As noted above, the main difficulty of

simulating time-dependent Hamiltonian dynamics is the im-
plementation of time ordering. This is achieved by a weighted
superposition named “clock” prepared as the joint state in
the composite auxiliary control register K ⊗ time, which has
been introduced in addition to the ancilla register L used
to implement the LCU technique in the time-independent
case. Its key purpose and task is to control sampling the
Hamiltonian for different instances of time in superposition in
a way that respects the correct time order. We here present two
alternative approaches to efficient preparation of such clock
states in the composite K ⊗ time register.

The first approach is based upon generating the intervals
between successive times according to an exponential distri-
bution, in a similar way as in Ref. [23]. These intervals are
then summed to obtain the times. Our second approach starts
by creating a superposition over k and then a superposition
over all possible times t1, . . . , tk for each k. The times are then
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FIG. 1. Quantum circuit implementing the unitary transformation W [see definition in Eq. (33)] for (a) the SM scenario and (b) QC
scenario. In the SM scenario the Hamiltonian is given as a time-dependent sparse matrix, and in the QC scenario the Hamiltonian is given as a
time-dependent linear combination of time-independent unitaries. In both cases, W is composed of a SELECT(V ) operation consisting of a series
of K controlled-SELECT(H ) transformations sandwiched between the operations B and B† for the preparation and its reverse of the auxiliary
register states required for implementing the LCU technique. The boxed subroutine “prepare |clock〉” acting on K ⊗ time is implemented either
by the “compressed encoding” approach outlined in Sec. V A, or by using a quantum sorting network described in Sec. V B. Both approaches
require additional ancillae indicated by |0 . . . 0〉. The phase gate S† = |0〉〈0| + (−i)|1〉〈1| is used to implement the factor (−i)k as part of the
kth order term of the Dyson series.

reversibly sorted using quantum sorting networks [24,25] and
used to control � as in the previous approach.

This section is organized as follows. We first present
the two approaches to preparation of the superposition state
|clock〉K⊗time in Secs. V A and V B. In Sec. V C we then
describe how the state preparation operation B is completed
by transforming the auxiliary L register states, depending on
the given Hamiltonian model.

A. Clock preparation using compressed rotation encoding

To explain the first approach, it is convenient to consider a
conceptually simple but inefficient representation of the time
register. An ordered sequence of times t1, . . . , tk is encoded
in a binary string x ∈ {0, 1}M with Hamming weight |x| = k,
where 0 � k � K . That is, if mj is the jth value of m such
that xm = 1, then t j = mjT /(rM ). This automatically forces
the ordering t1 < t2 < · · · < tk , omitting the terms when two
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or more Hamiltonians act at the same time. The binary string
x then would be encoded into M qubits as |x〉.

Now consider these M qubits initialized to |0〉⊗M , then
rotated by a small angle, to give

(α|0〉 + β|1〉)⊗M =
∑

x

αM−|x|β |x||x〉

=
∑

x,|x|�K

αM−|x|β |x||x〉 +
∑

x,|x|>K

αM−|x|β |x||x〉

=
√

1 − μ2|�〉 + μ|�⊥〉, (38)

where α :=
√

rM
λT +rM and β :=

√
λT

λT +rM . The state |�〉 en-

codes the times in a way required by Dyson series up to the
K th order with the weighting as in Eqs. (24) and (26),

|�〉 = 1√
S

∑
|x|�K

ζ |x|/2|x〉, (39)

with S := ∑
|x|�K ζ |x|, ζ := λT/(rM ). Recall that for the SM

scenario λ = Lγ , whereas for the QC scenario λ = Lαmax.
Also recall that the Hamming weight |x| corresponds to the
order 0 � k � K within the truncated Dyson series. The states
|�〉 and |�⊥〉 are normalized and orthogonal. The state |�⊥〉
is analogous to the higher-order terms omitted in the Dyson
series. The amplitude μ satisfies (as shown in Ref. [23]):

μ2 = O

[
(λT /r)K+1

(K + 1)!

]
. (40)

We choose K as in Eq. (23), and the choice r > λT implies
μ2 = O(ε/r).

Since |�〉 includes only Hamming weights up to K , it
includes strings that are highly compressible. In order to
compress the string x, the lengths of the strings of ze-
ros between successive ones are stored. That is, a string
x = 0s1 10s2 10s3 . . . 0sk 10σ can be represented by the integers
s1s2 . . . sk . There is always a total of K + 1 entries, regardless
of the Hamming weight. In addition, we encode the Hamming
weight k in an additional register. Thus, our encoding converts
x into

�|0s1 10s2 10s3 . . . 0sk 10σ 〉 = |s1+1〉|s1+s2+2〉 . . . |s1+s2

+ · · ·+k+1〉|junkx〉|k〉, (41)

where |junkx〉 is a remnant of the construction as well as
a padding for strings with Hamming distance smaller than
K . For example, for K = 4, the state |001000001000〉 would
be encoded as |2, 5〉|junkx〉|2〉. Following Eq. (17) from
Ref. [23], we define a more complex encoding BK

M as

BK
M |x〉 = |s1, . . . , sk〉

⊗
⎛
⎝q−σ−1∑

j=0

α jβ| j + σ 〉 + αq−σ |q〉
⎞
⎠|φq〉⊗(K−k),

(42)

where |φq〉 = ∑q−1
s=0 βαs|s〉 + αq|q〉 and we take q = M for

the encoding here. According to Theorem 3 in Ref. [23],

|φq〉⊗K+1 =
∑

x,|x|�K

αM−|x|β |x|BK
M |x〉 + μ|�′〉. (43)

The idea is that one prepares the state |φq〉⊗K+1 (see
Eq. (13) of Ref. [23]), which gives an exponential distribution.
Encoding BK

M |x〉 includes spacing between consecutive ones
and the expression in the second line of Eq. (42) represents
|junkx〉. However, we require the absolute times, rather than
the differences between the times, as well as an additional
register encoding k. The state BK

M |x〉 can be converted into
�|x〉 following the steps 1 and 2 of Section 4.4 in Ref. [23].
First, one computes the absolute position of 1’s by computing
the prefix sums. Then, it is possible to identify the register
k + 1 by finding the first register larger than m using the term
in brackets in 42 as an indicator of overflow. The Hamming
weight k is then recorded in an additional register. Unlike
Ref. [23], there is no need to clean the |junkx〉 register or
uncompute the Hamming weight.

B. Clock preparation using a quantum sort

In this section, we explain an alternative approach to im-
plementing the preparation of the |clock〉K⊗time state, which
establishes time ordering via a reversible sorting algorithm.
This approach first creates a superposition over all Dyson se-
ries orders k � K with amplitudes proportional to (ζ k/k!)

1/2
.

It then generates a superposition over all possible k-tuples
of times t1, . . . , tk for each possible value of k. To achieve
time-ordered combinations, sorting is applied to each of the
tuples in the superposition using a quantum sorting network
algorithm.

To be more concrete, in the first step we create a super-
position over the allowed values of k in unary encoding by
applying the following transformation to K qubits initialized
to |0〉:

PREP(k)|0〉⊗K := 1√
Ns

K∑
k=0

√
ζ kMk

k!
|1k0K−k〉, (44)

where the constant Ns := ∑K
k=0

ζ kMk

k! accounts for normal-
ization. This transformation can be easily implemented (see
Sec. 4 of Ref. [26] for details) using a series of O(K ) con-
trolled rotations. In what follows, we denote the state |1k0K−k〉
simply as |k〉. We use it to determine which of the times t j

satisfy the condition j � k.
Next we wish to create an equal superposition over the time

indices j. We take M to be a power of 2, so the preparation can
be performed via the Hadamard transforms HAD⊗ log2 M on all
K subregisters of time (each of size log2 M) to generate the
superposition state

1√
Ns

K∑
k=0

√
ζ kMk

MK k!
|k〉

M−1∑
j1=0

M−1∑
j2=0

· · ·
M−1∑
jK =0

| j1, j2, . . . , jK 〉 (45)

using O(K log2 M ) gates. At this stage, we have created
all possible K-tuples of times without accounting for time-
ordering. Note that this superposition is over all possible
K-tuples of times, not only k � K of them. We have a factor
of Mk/MK , but for any k in the superposition we ignore the
times in subregisters k + 1 to K . Hence, the amplitude for
| j1, j2, . . . , jk〉 is ∝

√
ζ k/k!.

The next step is to sort the values stored in the time
subregisters. Common classical sorting algorithms are often
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inappropriate for quantum algorithms, because they involve
actions on registers that depend on the values found in earlier
steps of the algorithm. Sorting techniques that are suitable
to be adapted to quantum algorithms are sorting networks,
because they involve actions on registers in a sequence that
is independent of the values stored in the registers. Methods
to adapt sorting networks to quantum algorithms are discussed
in detail in Refs. [24,25].

A sorting network involves a sequence of comparators,
where each comparator compares the values in two registers
and swaps them conditional on the result of the comparison.
If used as part of a quantum algorithm, then a sorting network
must be made reversible. This is achieved by recording the
result of the comparison in an ancilla qubit. To be more
specific, first the comparison operation COMPARE acts on two
equally sized multiqubit registers storing the values q1 and q2

and an ancilla initialized in state |0〉 as follows:

COMPARE|q1〉|q2〉|0〉 = |q1〉|q2〉|θ (q1 − q2)〉, (46)

where θ is the Heaviside step function (here using the con-
vention θ (0) = 0). In other words, COMPARE flips an ancilla
if and only if q1 > q2. Such a comparison of two log2 M-sized
registers can be implemented with O(log2 M ) elementary
gates [27]. The overall action of a comparator module is
completed by conditionally swapping the values of the two
compared multiqubit registers. This is implemented by SWAP

gates controlled by the ancilla.
For each |k〉 in the superposition Eq. (45), we only want to

sort the values in the first k subregisters of time. The obvious
approach would be to perform K sorts for each value of k.
A much more efficient approach is to sort all the registers
regardless of the value of k, and also perform the same
controlled swaps on the registers encoding the value of k in
unary. This means that the qubits encoding k still indicate
whether the corresponding time register includes a time we
wish to use. The controlled H�(t ) operations are controlled on
the individual qubits encoding k and will still be performed
correctly.

There is a number of possible sorting networks. A simple
example is the bitonic sort, and an example quantum circuit
for that sort is shown in Fig. 2. Since we need to record
the positions of the first k registers as well, we perform
the same controlled-swap on the K register too. The bitonic
sort requires O(K log2

2 K ) comparisons, but there are more
advanced sorting networks that use O(K log2 K ) comparisons
[28]. That brings the complexity of clock preparation to
O(K log2 K log2 M ) elementary gates. Since each comparison
requires a single ancilla, the space overhead is O(K log2 K )
ancillas.

C. Completing the state preparation

To complete the state preparation, we transform each of the
K L-subregisters for encoding �1, . . . �K from |0〉 into specific
superposition states, depending on the representation of the
given Hamiltonian.

In the SM scenario, we only need to prepare equal-weight
superposition states. If L is a power of two, then the transfor-
mation can be taken to be just Hadamards on the individual
qubits. It is always possible to choose the value of γ so as to

k1 × × ×
k2 × × ×
k3 × × ×
k4 × × ×
t1 / • × • × • ×
t2 / • × • × • ×
t3 / • × • × • ×
t4 / • × • × • ×

> • •
> • •

> • •
> • •

> • •
> • •

FIG. 2. An example of a bitonic sort for K = 4 and 6 ancillas
as introduced in Ref. [27]. In each step, two registers encoding times
are compared. If the compared values are in decreasing order, then an
ancilla qubit is flipped. The states of the involved registers are then
swapped conditioned on the value of the ancilla qubit. This results in
sorting the values stored in a pair of registers. The same permutation
is performed within the K register. Note that by recording the result
of each comparator in an ancilla qubit the sorting network is made
reversible.

make L a power of two. The complexity is then O(K log2 L)
single-qubit operations. It is also possible to create an equal
superposition state using O(K log2 L) gates if L is not a power
of two, though the circuit is more complicated.

In the QC scenario, the target superposition states for
the L-subregisters to be encoding �1, . . . �K , respectively, are
given by Eq. (35). We propose preparing the required target
superposition states using a similar approach as in Ref. [29],
namely, by transducing the computed values α̃�(t )/αmax (us-
ing the output of oracle Ocoeff) into quantum amplitudes√

α̃�(t )/αmax via inequality testing. According to that ap-
proach, the state preparation requires the use of several reg-
isters. For each k = 1, . . . , K , in addition to the Lk subregister
for encoding the index value �k to identify the coefficients
in the decomposition Eq. (17) and the timek subregister for
encoding a particular time tk as part of the |clock〉 state, we
introduce two further registers named “coeffk” and “refk ,”
consisting of ν and ν + 1 qubits, respectively. Here, ν is the
number of bits used for the ν-bit fixed-point approximations
α

[ν]
� (t ) = �2να�(t )/αmax	. Finally, an additional single-qubit

ancilla called “flag” is required to distinguish between the
two index ranges � = 0, . . . , L − 1 and � = L, . . . , 2L − 1,
and thus indicate which of the corresponding two alternative
amplitudes

√
[αmax ± α�(t )]/2 has been generated.

The state preparation by inequality testing can be out-
lined as follows. For each k = 1, . . . , K , we first create
uniform superpositions in both the Lk and refk registers
using Hadamards. We then query the oracle Ocoeff defined
in Eq. (16) in order to give α

[ν]
� (t ) at time t specified by the

timek subregister. These first two steps result in transforming
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each component |0〉Lk
|t〉timek

|0〉coeffk
|0〉refk

|0〉flagk
as part of

the superposition over all possible times and values k into

1√
2ν+1L

L−1∑
�=0

2ν+1−1∑
x=0

|�〉Lk|t〉timek

∣∣α[ν]
� (t )

〉
coeffk

|x〉refk|0〉flagk
.

(47)
Creating the uniform superpositions in the first step requires
only ν + log2 L elementary gates. The state preparation then
proceeds by performing the inequality test x � 2ν + α

[ν]
� (t )

and placing the result in the flag qubit. This operation
transforms the state Eq. (47) into

1√
L

L−1∑
�=0

|�〉Lk |t〉timek

∣∣α[ν]
� (t )

〉
coeffk

⊗
⎛
⎝ 1√

2ν+1

2ν+α
[ν]
�

(t )−1∑
x=0

|x〉refk
|0〉flagk

+ 1√
2ν+1

2ν+1−1∑
x=2ν+α

[ν]
� (t )

|x〉refk
|1〉flagk

⎞
⎠. (48)

The state within the brackets of Eq. (48) is normalized with

amplitudes equal to
√

αmax+α�(t )
2αmax

and
√

αmax−α�(t )
2αmax

on |0〉flagk
and

|1〉flagk
, respectively, up to error O(2−ν ). This error must be

bounded by ε/(Kr), implying ν = 	(log2
Kr
ε

). The complex-
ity of the inequality test is O(ν), and there are ν + log2 L + 1
Hadamards used to create the equal superposition. These
operations are performed K times, giving a gate complexity
of

O{K[log2 (Kr/ε) + log2 L]}. (49)

There are also O(K ) oracle queries for α�(t ).
For the purpose of LCU implementation in our algorithm,

it is not required to implement the full algorithm of Ref. [29].
Here it is not necessary to erase the ancillary registers imme-
diately, and there is no need for amplitude amplification. It is
allowable to leave the basis states |�〉 entangled with ancillae
similar to state preparation for LCU given in Ref. [30]. The
state given in Eq. (48) is already operationally equivalent
[up to error ε/(Kr)] to our target state Eq. (35), if we
regard flagk as part of an extended Lk-register, while we
ignore the entangled registers coeffk and refk . The entan-
glement with the latter registers does not affect the subsequent
controlled-SELECT(H ) operations. Hence, the uncomputation
of registers coeffk and refk may indeed be deferred to the
stage when reversing the above state preparation as part of B†

after completing the SELECT(V ) operation.
Next, let us consider the states prepared as a result of

these procedures. In the first case, where we prepare the
superposition of times by the compressed rotations, we first
prepare the state |φq〉⊗K+1, which contains the separations
between successive times, then add these to obtain the times.
The state is therefore√

1 − μ2

S

K∑
k=0

ζ k/2|k〉
∑

j1< j2...< jk

| j1, . . . , jk〉 + μ|�′′〉. (50)

The preparation of the registers encoding �1, . . . �K gives a
factor of 1/LK/2 for both considered Hamiltonian models.
For k < K the registers past k are not used, and the effective
amplitude factor is thus 1/Lk/2.

In the SM scenario the amplitude of the states in the sum is
therefore given by√

1 − μ2

S

(
ζ

L

)k/2

=
√

1 − μ2

S

(
γ T

rM

)k/2

, (51)

where we have used ζ = λT/(rM ) and λ = γ L. According
to Eq. (30), the state preparation should give amplitudes that
are the square roots of the weights in the linear combination
of unitaries, with a normalization factor N that governs the
complexity. The weights are given by Eq. (24) for the SM sce-
nario. We can ignore the factorials because here we have the
indices j1 to jk in sorted order without repetitions. Therefore,
we have the desired amplitudes, with a normalization factor
of Nr = S/(1 − μ2). There is imprecision of O(ε/r) due to
the additional term weighted by μ, as well as imprecision due
to the repetitions being omitted, which is bounded in Sec. VI
below.

In the QC scenario we have the amplitudes obtained in
Eq. (48) of

√
α̃�(t )/αmax. These amplitude factors are obtained

for each of the times. Using λ = Lαmax, the amplitude of the
states in the sum is then given by√

1 − μ2

S

(
ζ

Lαmax

)k/2√
α̃�k (t jk ) . . . α̃�1 (t j1 )

=
√

1 − μ2

S

(
T

rM

)k/2√
α̃�k (t jk ) . . . α̃�1 (t j1 ). (52)

In the QC scenario the weights are given by Eq. (26), and
again we can ignore the factorials because there are no
repetitions. Again, we see that we have amplitudes that are
given by the square roots of the weights with a normalization
factor of Nr = S/(1 − μ2). In the QC case there is additional
imprecision due to approximating α�(t ) to finite precision.

In order for amplitude amplification to take one step, we
require that the normalization factor is � 2. Note that it can
be less than 2, and oblivious amplitude amplification can still
be performed in a single step using an ancilla qubit [12]. To
bound the value of S,

S =
∑
|x|�K

ζ |x| =
K∑

k=0

(
M

k

)
ζ k

<

∞∑
k=0

Mkζ k

k!
= eMζ = eλT/r . (53)

Therefore, by choosing r � λT/ ln[2(1 − μ2)] we can ensure
that Nr � 2, and a single step of amplitude amplification
is sufficient. The value of μ2 is O(ε/r), and therefore r =
	(λT ).

In the second case, where we obtain the superposition over
times via a sort, the state is as in Eq. (45) except sorted,
with information about the permutation used for the sort in
an ancilla. When there are repeated indices j, the number of
initial sets of indices that yield the same sorted set of indices is
k!/(k1!k2! . . . kς !), using the same notation as in Eq. (24). That
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means for each sorted set of j there is a superposition over this
many states in the ancilla with equal amplitude, resulting in a
multiplying factor of

√
k!/(k1!k2! . . . kς !) for each sorted set

of j.
As noted above, because the times tk+1 to tK are ignored,

the factors of M in the amplitude cancel. Similarly, when
we perform the state preparation for the registers encoding
�1, . . . �K , we obtain a factor of 1/Lk/2. Including these factors
in the amplitude from Eq. (45), as well as the factorials to
account for repeated indices, we obtain amplitude

1√
Nsk1!k2! . . . kς !

(
ζ

L

)k/2

. (54)

This result is the same as for the state preparation by com-
pressed rotations, except the normalization factor is Ns, and
we have the factorial factors that account for repeated in-
dices. These factorial factors agree with what is needed for
the weightings in Eqs. (24) and (26). Following the same
reasoning as for the state preparation by compressed rotations,
we obtain the correct amplitudes and now the normalization
factor is changed to Ns.

Again we require the normalization factor �2 for oblivious
amplitude amplification to take one step. We can bound Ns via

Ns =
K∑

k=0

Mkζ k

k!
<

∞∑
k=0

Mkζ k

k!
= eMζ = eλT/r . (55)

Therefore, by choosing r � λT/ ln 2 we can ensure that Ns �
2, and a single step of amplitude amplification is sufficient. We
take r to be a power of two, so the qubits encoding the time
may be separated into a set encoding the segment number and
another set encoding the time within the segment. Hence, in
either case we choose r = 	(λT ).

VI. COMPLEXITY REQUIREMENTS

We now summarize the resource requirements of all the
components of the algorithm and provide the overall com-
plexity. We start with elements that are necessary for both
sparse matrices and quantum chemistry Hamiltonians and
then discuss the complexities of their unique parts.

The full quantum circuit consists of r successively exe-
cuted blocks, one for each of the r time segments. In order
to perform the simulation over the entire time T , we need
to perform all r segments. Since we took r = 	(λT ) for
oblivious amplitude amplification, the overall complexity is
multiplied by a factor of λT .

Each segment requires one round of oblivious amplitude
amplification, which includes two reflections R, two appli-
cations of W and one application of the inverse W †, as in
Eq. (34). The cost of reflections is negligible compared to that
of W . Hence, the overall cost of the algorithm amounts to O(r)
times the cost of transformation W , whose quantum circuit
is depicted in Fig. 1. For the SM scenario, implementing W
requires the procedure to prepare the |clock〉 state and its
inverse, 2K applications of HAD⊗ log2 L and K controlled appli-
cations of unitaries H�(t ). For the QM scenario, implementing
W requires likewise preparing the |clock〉 state and the reverse
of that procedure, 2K applications of the controlled-PREP(α)
subroutine, and K controlled applications of H�.

Choosing K as in Eq. (23) yields error due to truncation for
each segment scaling as O(ε/r), and therefore total error due
to truncation scaling as O(ε). Taking r = 	(λT ), K is chosen
as

K = 	

[
log2(λT/ε)

log2 log2(λT/ε)

]
. (56)

Note that λ � Hmax implies that the condition r � HmaxT is
satisfied, which was required for deriving Eq. (23). Recall
that λ = Lγ in the SM scenario and λ = Lαmax for the QC
scenario.

It was stated in Sec. IV that the error due to discretization
of the integrals is O[(T/r)2Ḣmax/M]. That can be seen as
follows. When approximating the integral over each time
variable by a sum with M terms,

∫ T/r

0
H (t )dt =

M−1∑
j=0

∫ t j+1

t j

H (t )dt

=
M−1∑
j=0

(
T

rM

)
H (t j )

+
M−1∑
j=0

∫ t j+1

t j

[H (t ) − H (t j )]dt

≈
M−1∑
j=0

(
T

rM

)
H (t j ), (57)

where t j = jT/(rM ), the incurred error can obviously be
bounded by

∑M−1
j=0

∫ t j+1

t j
‖H (t ) − H (t j )‖dt . In each of the time

intervals [t j, t j+1] of length T/(rM ) we have

‖H (t ) − H (t j )‖ � T

rM
max

z

∥∥∥∥dH (z)

dz

∥∥∥∥ � T Ḣmax

rM
, (58)

where maxz indicates a maximum over that time interval.
Hence, the overall error of approximation in the integral over
time T/r is O[(T/r)2Ḣmax/M]. That is the error in the k = 1
term for Ũ , and the error for terms with k > 1 are higher order.
The error for all r segments is then O[T 2Ḣmax/(rM )]. We can
ensure that the error due to the discretization of the integrals
is O(ε), by choosing

M ∈ 	

(
T Ḣmax

ελ

)
, (59)

where we have used r ∈ 	(λT ). We remark that a slightly
tighter bound in terms of a time-average of Ḣ (t ) rather than in
terms of Ḣmax is possible, as was achieved in Ref. [21].

In the case where the |clock〉 state is prepared using the
compressed form of rotations, the operation that is performed
is a little different than desired, because all repeated times
are omitted. For each k, the proportion of cases with repeated
times is an example of the birthday problem, and is approx-
imately k(k − 1)/(2M ). Therefore, denoting by Ũunique the
operation corresponding to Ũ but with repeated times omitted,

042314-10



SIMULATING THE DYNAMICS OF TIME-DEPENDENT … PHYSICAL REVIEW A 99, 042314 (2019)

we have

‖Ũ − Ũunique‖ �
K∑

k=2

(T/r)k

k!

k(k − 1)

2M
Hk

max

=
K∑

k=0

(T/r)k+2

k!

1

2M
Hk+2

max

<
T 2H2

max

2r2M
eT Hmax/(rM ). (60)

Therefore, over r segments the error due to omitting repeated
times is upper bounded by

r‖Ũ − Ũunique‖ � T 2H2
max

2rM
eT Hmax/(rM ). (61)

Using r ∈ 	(λT ) and λ � Hmax, we should therefore choose

M = �

(
T H2

max

ελ

)
. (62)

In the case where the repeated times are omitted, we would
therefore take

M = 	

[
T

ελ

(
H2

max + Ḣmax
)]

. (63)

Next we consider the gate complexity for the |clock〉K⊗time

state preparation. In the case of the compressed rotation
encoding, the complexity is O(K log2 M ), where we have used
r ∈ 	(λT ). In the case where |clock〉K⊗time is prepared with
a quantum sort, the complexity is O(K log2 M log2 K ).

A. Complexity for SM scenario

Let us now consider the complexity of simulation of a
Hamiltonian given as a sparse matrix. The preparation of the
registers �1, . . . , �k requires only creating an equal superpo-
sition. It is easiest if L is a power of two, in which case it is
just Hadamards. It can also be achieved efficiently for more
general L, and in either case the complexity is O(K log2 L)
elementary gates.

Next, one needs to implement the controlled unitaries H�.
Each controlled H� can be implemented with O(1) queries to
the oracles that give the matrix entries of the Hamiltonian
[12]. Since the unitaries are controlled by O(log2 L) qubits
and act on n qubits, each control-H� requires O(log2 L + n)
gates. Scaling with M does not appear here, because the qubits
encoding the times are used just as input to the oracles, and
no direct operations are performed. As there are K controlled
operations in each segment, the complexity of this step for a
segment is O(K ) oracle queries and O[K (log2 L + n)] addi-
tional gates.

As the total cost for the entire simulation is obtained by
multiplying the cost per segment by the number r of all
segments, the overall oracle query complexity thus amounts to

O(λT K ). (64)

Here λ = Lγ and L is chosen as in Eq. (13) as 	(d2Hmax/γ ),
so λ ∈ O(d2Hmax). In addition, K is given by Eq. (56), giving
the total query complexity

O

[
d2HmaxT

log2(dHmaxT/ε)

log2 log2(dHmaxT/ε)

]
. (65)

The overall complexity in terms of the additional gates is
larger and depends on the scheme used to prepare the state
|clock〉K⊗time. In the case where the preparation is performed
via the compressed encoding, we obtain the complexity

O[λT K (log2 L + log2 M + n)]. (66)

Regardless of the preparation approach, γ is chosen as
in Eq. (12) as 	[ε/(d3T )]. Moreover, L ∈ 	(d5HmaxT/ε),
whereas the first term in the scaling for M in Eq. (63) is
	[HmaxT/(εd2)]. This means that the first term in Eq. (63)
can be ignored in the overall scaling due to the log2 L, and we
obtain an overall scaling of the gate complexity as

O

{
d2HmaxT

log2(dHmaxT/ε)

log2 log2(dHmaxT/ε)

×
[

log2

(
dHmaxT

ε

)
+ log2

(
ḢmaxT

εdHmax

)
+ n

]}
. (67)

There is also complexity of O(r log2 r) for the increments of
the register recording the segment number, but it is easily seen
that this complexity is no larger than the other terms above.

In the case where |clock〉K⊗time is prepared using a sorting
network, we obtain complexity

O[λT K (log2 L + log2 M log2 K + n)], (68)

with M given by Eq. (59). Technically this complexity is
larger than that in Eq. (67), because of the multiplication by
log2 K . Nevertheless, it is likely that in practice the prepara-
tion by a sorting network may turn out to be advantageous
in some situations, because the value of M that is required
for the first preparation scheme is larger. This is because
the compressed encoding approach does not contain repeated
times whereas the approach by sorting networks does.

B. Complexity for QC scenario

Let us now consider the cost of simulating the time evolu-
tion generated by quantum-chemistry type Hamiltonians. For
each single time segment, we have O(K ) applications of the
controlled-PREP(α) operation, which requires O(K ) queries
to Ocoeff. Furthermore, we have O(K ) controlled-SELECT(H )
operations as part of SELECT(V ) transformation, and thus re-
quire O(K ) queries to Ounit. The query complexities for Ocoeff

and Ounit are added to give the overall query complexity for
the simulation over all r time segments O(rK ). By using
r ∈ 	(λT ) and λ = Lαmax as well as the choice for K given
in Eq. (56), the oracle complexity is

O

[
LαmaxT

log2(LαmaxT/ε)

log2 log2(LαmaxT/ε)

]
. (69)

For each time segment, preparation of the auxiliary L-
register states requires O[K (log2 L + log2 (rK/ε)] additional
elementary gates, as displayed earlier in Eq. (49). Further-
more, we need O(K ) gates to implement the minus signs
given in Eq. (19) as well as the the (−i)k factors occurring in
the Dyson series. Additional gate complexity comes from the
preparation of the |clock〉K⊗time state, which is the same as for
the SM scenario. Preparation via compressed encoding thus
requires in total O{λT K[log2 L + log2 M + log2 (λT K/ε)]}
gates, where we have used r ∈ 	(λT ). Using once more
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λ = Lαmax and Eqs. (56) and (63) together with Hmax �
Lαmax, this finally yields

O

{
αmaxLT

log2 (αmaxLT/ε)

log2 log2 (αmaxLT/ε)

×
[

log2

(
αmaxLT

ε

)
+ log2

(
ḢmaxT

εαmaxL

)
+ log2 K + log2 L

]}
(70)

as the overall gate complexity in this case, where we again
ignored the first term in Eq. (63) in the overall scaling due to
the occurrence of the larger log2 (αmaxLT/ε) term. The last
two additive terms log2 K and log2 L in the square brackets
of Eq. (70) are smaller than the first term, so are omitted
in Theorem 2 in Sec. II. Similarly, we obtain the gate com-
plexity O{λT K[log2 L + log2 M log2 K + log2 (λT K/ε)]} for
implementations based on quantum sorting networks, which is
slightly larger due to the additional log2 K factor in the second
term.

Scaling with n (i.e., with the number of system qubits) does
not appear in Eqs. (69) and (70), because the system qubits
are just used as input to the oracle Ounit [defined in Eq. (15)]
as part of controlled-SELECT(H ) operations. The scaling with
n is therefore hidden in the gate cost of implementing that
oracle.

VII. CONCLUSION

We have provided a quantum algorithm for simulating
the evolution generated by a time-dependent Hamiltonian
that is given either by a generic d-sparse matrix or by a
time-dependent linear combination of some efficiently imple-
mentable unitary terms. For both scenarios, the complexity of
the algorithm scales logarithmically in both the dimension of
the Hilbert space and the inverse of the error of approximation
ε. This is an exponential improvement in error scaling com-
pared to techniques based on Lie-Trotter-Suzuki expansion.
We utilize the truncated Dyson series, which is based on
the truncated Taylor series approach by Berry et al. [14]. It
achieves similar complexity, in that it has T times a term
logarithmic in 1/ε. Interestingly, the complexity in terms of
queries to the Hamiltonian is independent of the rate of change
of the Hamiltonian, similarly to Ref. [10].

A lower bound on the complexity of Hamiltonian sim-
ulation is O[T ‖H‖ + log2 (1/ε)

log2 log2 (1/ε) ]. This bound was proven
in the time-independent case [12], and also holds for time-
dependent Hamiltonians because that is a more general case.
Our complexity is optimal in that it is linear with respect to T
and the norm of the Hamiltonian, and logarithmic in 1/ε. Our
result does not completely match the lower bound, in that we
have a product of the terms, rather than a sum of the terms as
in the lower bound. In the time-independent case it is known
that it is possible to match the lower bound [15], and it is
an interesting open question whether it is possible to achieve
similar complexity in the time-dependent case.

For the complexity in terms of additional gates, the com-
plexity is somewhat larger, and it depends logarithmically on
the rate of change of the Hamiltonian. This is in contrast with
Ref. [10], which has complexity independent of the derivative.
However, it should be noted that [10] has a classical gate
complexity that does depend on the derivative. That is because
the times are generated to finite precision by a classical
random number generator. Those times need to be generated
to a sufficient number of bits to capture the time variation of
the Hamiltonian, in the same way as we need to generate time
registers with a number of qubits depending logarithmically
on the derivative of the Hamiltonian here.

The complexity also depends on the scheme that is used
to prepare the state to represent the times. If one uses the
scheme as in Ref. [23], which corresponds to a compressed
form of a tensor product of small rotations, then there is
additional error due to omission of repeated times. Alterna-
tively one could prepare a superposition of all times and sort
them, which eliminates that error but gives a multiplicative
factor in the complexity. This tradeoff means that different
approaches may be more efficient with different combinations
of parameters.

Note added. An alternative approach has also been pro-
posed in Ref. [21]. That work uses a simpler method of
preparing the state representing the times by discarding times
rather than ordering them. That results in a multiplicative cost.
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