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We present a method to calculate an upper bound on the generation of entanglement in any spin system using
the Fannes-Audenaert inequality for the von Neumann entropy. Our method not only is useful for efficiently
estimating entanglement, but also shows that entanglement generation depends on the distance of the quantum
states of the system from corresponding minimum-uncertainty spin-coherent states (SCSs). We illustrate our
method using a quantum kicked top model and show that our upper bound is a very good estimator for
entanglement generated in both regular and chaotic regions. In a deep quantum regime, the upper bound on
entanglement can be high in both regular and chaotic regions, while in the semiclassical regime, the bound is
higher in chaotic regions where the quantum states diverge from the corresponding SCSs. Our analysis thus
explains previous studies and clarifies the relationship between chaos and entanglement.

DOI: 10.1103/PhysRevA.99.042311

I. INTRODUCTION

Classical chaos is a well-defined property of nonlinear
deterministic dynamical systems and is characterized by ex-
ponential instability due to sensitivity to initial conditions [1].
On the other hand, entanglement is a property of quantum
systems [2]. The relationship between the two has intrigued
physicists for a couple of decades [3–41]. It has been ex-
plored mostly in the semiclassical regime through studies
of various models such as the N-atom Jaynes-Cummings
model [3,6], kicked coupled tops [4,11,26], and the quantum
kicked top [14,15,21,25,27,30,36,37]. An intriguing aspect is
the observation of signatures of chaos in a deep quantum
regime where quantum-classical correspondence is not usu-
ally expected. [27,33]. Additionally, the universality of the
relationship between chaos and entanglement remains a topic
of debate [30,36,42,43] that needs resolution. These studies
are of interest not only for a fundamental understanding of
quantum-classical correspondence, but also for applications
in quantum computing where entanglement is an important
resource [44–48].

Whereas chaotic systems can typically generate large en-
tanglement, some regular systems can also produce high en-
tanglement. In this paper, we explain the puzzling connection
between chaos and entanglement generation in spin systems.
We provide a framework to determine an upper bound on the
entanglement dynamics in any spin system with a constant
spin value j (symmetric multiqubit systems). Our framework
helps to identify when the bound will remain low and limit the
entanglement generated. We show that this is the case when
the quantum states remain close to minimum-uncertainty
classical-like spin-coherent states (SCSs). The bound grows
as the distance between the quantum and classical states
increases. Thus entanglement is associated with nonclassical
dynamics and the breakdown of quantum-classical correspon-
dence. This applies to both regular and chaotic systems.

We illustrate our framework and upper bound in a model
quantum kicked top (QKT) system. We show that our bound
provides a very good estimate of the entanglement generated
in both regular and chaotic regions. We also analyze regular
versus chaotic dynamics in the deep quantum and semiclassi-
cal regime and show that entanglement remains low in regular
regions only in a semiclassical regime. Our analysis resolves
previous debates about the relationship between entanglement
and chaos in a deep quantum versus semiclassical regime.
Furthermore, our framework can be used to obtain a compu-
tationally efficient loose bound on entanglement.

II. FINDING AN UPPER BOUND ON ENTANGLEMENT

Our method for establishing an upper bound on entangle-
ment relies on the Fannes inequality for von Neumann entropy
[49]. In Ref. [50] Audenaert presented a sharper version of
the original Fannes inequality. Consider two quantum states,
ρ and σ , which belong to Hilbert space of dimension d < ∞.
Let the trace distance between the states be D = 1

2 ||ρ − σ ||1
[2]. Then the difference between the von Neumann entropy of
the two states is bounded by

|S(ρ) − S(σ )| � Dlog2(d − 1) + h(D) (1)

where h(D) = −Dlog2(D) − (1 − D)log2(1 − D).
Our focus is on spin systems having constant angular

momentum j, such as Dicke models [51], the QKT [52], and
Lipkin-Meshkov-Glick model Hamiltonians [53] that have
no coupling to other fields. The states of such systems lie
in the symmetric subspace of N = 2 j spin-1/2 qubits. Thus
one can study entanglement by considering any bipartition
of the N qubits, say, the m:(N − m) bipartition where m ∈
{1, . . . , N − 1}. A minimum uncertainty state corresponds
to a SCS, | j,�,�〉 = exp [iθ (Jx sin φ − Jy cos φ)]| j, j〉.
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In the multiqubit representation, SCS| j,�,�〉 =
|θ, φ〉 ⊗ |θ, φ〉 ⊗ · · · ⊗ |θ, φ〉 (2 j times), where |θ, φ〉 =
sin ( θ

2 )|0〉 + exp (iφ) cos ( θ
2 )|1〉.

Consider an initial spin quantum state that has evolved
after a time t to the state |ψ (t )〉. Let D denote the trace
distance between |ψ (t )〉 and the SCS | j,�ev,�ev〉 centered
at (�ev,�ev) corresponding to the expectation values of
|ψ (t )〉, with ( j sin �ev cos �ev, j sin �ev sin �ev, j cos �ev) =
(〈Jx〉, 〈Jy〉, 〈Jz〉). Let Dre be the trace distance between the
m-qubit reduced states of |ψ (t )〉 and SCS| j,�ev,�ev〉, that
is, ρm(t ) and ρSCS

m , respectively. Then Dre � D since trace dis-
tance is nonincreasing under partial trace [2]. The m:(N − m)
entanglement in |ψ (t )〉 is quantified by S(ρm(t )). The SCS is
a product state and thus, S(ρSCS

m ) = 0. Using these in Eq. (1),
we obtain the following bound on m:(N − m) entanglement in
|ψ (t )〉:

S(ρm(t )) � Drelog2(d − 1) + h(Dre). (2)

Here d is the dimension of ρm(t ) and ρSCS
m (which can be less

than 2m owing to the symmetries of the state). This bound
on entanglement in Eq. (2) demonstrates that the generation
of entanglement in any system depends on the trace distance
between relevant states. When the state remains close to the
minimum uncertainty classical-like SCS, the entanglement
remains low. As the trace distance from these SCS grows,
the second- and higher-order cumulants in the evolving state
grow, leading to a divergence from classicality. This illustrates
how a divergence from classicality is associated with the
generation of entanglement. In the case of chaotic systems, the
states do not remain close to SCS, even in the semiclassical
regime. Thus, the bound goes to a maximum for chaotic
systems.

In our framework, one can choose a different SCS to
compute the trace distance, which will yield a different
Dre and a different and potentially tighter upper bound
for S(ρm(t )). Consider the SCS corresponding to a
state which is obtained from the classical evolution
of the initial state for time t , namely, | j,�cl,�cl〉,
corresponding to the classical state (Jx(t ), Jy(t ), Jz(t )),
with ( j sin �cl cos �cl, j sin �cl sin �cl, j cos �cl ) =
(Jx(t ), Jy(t ), Jz(t )). Let D′

re denote the trace distance between
ρm(t ) and the m-qubit reduced state of the SCS | j,�cl,�cl〉.
Then Dre in Eq. (2) can be taken as the minimum of D′

re and
the Dre described above. Thus, Eq. (2) becomes

S(ρm(t )) � min(Dre, D′
re )log2(d − 1) + h(min(Dre, D′

re )).
(3)

This can yield a better bound on entanglement, as we will
illustrate in the QKT model described below. One can un-
derstand the physical motivation of choosing the two SCSs
described above from the Ehrenfest correspondence principle,
which examines when the expectation values of observables
obey the classical equation of motion. One of the SCSs is
constructed from the expectation value of observables, and
the second SCS is constructed from the classical equation of
motion. Interestingly, the relationship between entanglement
and distance from SCSs is similar to the dependence of gen-
eralized entanglement on the spread of quantum states [21].

We can further use this framework to obtain a compu-
tationally efficient but loose bound to the entanglement. As
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FIG. 1. Classical stroboscopic map for the kicked top showing
a mixed phase space of regular (blue) islands in a chaotic (red)
sea. P1 and P2 are 2 points corresponding to (θ, φ) = (2.1, 0.9) and
(1.5, 1.5), respectively. κ = 3, p = π/2, and τ = 1.

already mentioned, Dre � D. Second, the RHS in Eq. (1) is a
monotonically increasing function of D up to D = (1 − 1/d )
where D ∈ [0, 1] [50]. Thus, for D � 1 − 1/d , Dlog2(d −
1) + h(D) will serve as a loose bound on entanglement in
Eq. (2). This loose bound is numerically inexpensive to cal-
culate for any m : (2 j − m) bipartition [O(2 j + constant)] in
comparison to the von Neumann entropy and the RHS bound
in Eq. (2) (O[(2 j + 1)2m + (2m + 1)3 + (2m + 1) log2(2m +
1) + 2m + constant]) [54,55].

III. ENTANGLEMENT IN THE QKT

The quantum kicked top (QKT) is a multiqubit, time-
periodic spin system whose classical counterpart exhibits a
plethora of interesting features, such as a mixed phase space,
bifurcations, and chaos [52,56]. The QKT Hamiltonian is

H = h̄
κ

2 jτ
J2

z + h̄pJy

∞∑

n=−∞
δ(t − nτ ), (4)

where κ and p are parameters, Jx, Jy, and Jz are angular
momentum operators, and j is a constant of motion since
J2 commutes with the Hamiltonian. The unitary operator for
the kicked top corresponding to one time period, τ , is given
by U = exp (−i κ

2 j J
2
z ) exp (−ipJy). The classical equations of

motion for the kicked top can be obtained by writing the
Heisenberg equation of motion for Jx/ j, Jy/ j, and Jz/ j, and
taking the limit j → ∞. Figure 1 shows the classical strobo-
scopic map of the kicked top. It shows a mixed phase space
of regular islands surrounded by a sea of chaotic dynamics for
κ = 3 and p = π/2.

We study 1:(N − 1) and 2:(N − 2) partition entanglement
in the kicked top (where N = 2 j), measured by S(ρA) and
S(ρAA), respectively. One- and two-qubit subsystems are the
most relevant systems for quantum computing protocols and
have open questions that we have addressed within our frame-
work. The two-qubit reduced state of the kicked top, ρAA,
lies in the j = 1 symmetric subspace and thus has dimension
d = 3 instead of 4. We consider the evolution of an initial
SCS and compute S(ρA), S(ρAA), and the corresponding upper
bounds using Eq. (3). We study this in the deep quantum
regime as well as the semiclassical regime for an initial
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FIG. 2. Evolution of QKT entanglement and the upper bound
in Eq. (3) for an initial state in the regular region, P1 in Fig. 1.
(a) 2:(N − 2) entanglement for j = 4, (b) 2:(N − 2) entanglement
for j = 200, (c) 1:(N − 1) entanglement for j = 4, and (d) 1:(N − 1)
entanglement for j = 200. The upper bound on entanglement is
almost saturated by the entanglement generated in the kicked top.

state in the regular region (point P1 in Fig. 1) and an initial
state in the chaotic region (point P2 in Fig. 1). Figure 2
shows the evolution for P1, and Fig. 3 shows the evolution
for P2. In all figures, we observe that the entanglement in
the QKT almost saturates the upper bound on entanglement
calculated using Eq. (3). Thus, our upper bound provides a
very good estimate for the 1:(N − 1) and 2:(N − 2) partition
entanglement in the QKT both in the deep quantum regime
as well as in the semiclassical regime irrespective of the
underlying classical behavior (regular or chaotic). We have
also studied the long-time evolution for a few initial states,
which results in a small deviation between the upper bound
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FIG. 3. Evolution of QKT entanglement and the upper bound
in Eq. (3) for an initial state in the chaotic region, P2 in Fig. 1.
(a) 2:(N − 2) entanglement for j = 4, (b) 2:(N − 2) entanglement
for j = 200, (c) 1:(N − 1) entanglement for j = 4, and (d) 1:(N − 1)
entanglement for j = 200. The upper bound on entanglement is
almost saturated by the entanglement generated in the kicked top.

and the actual entanglement. Nevertheless, the deviation is
not large, and the upper bound remains a good estimate of
the entanglement.

We now explore the connections between chaos and en-
tanglement in periodically driven (Floquet) spin systems.
Though several previous studies have explored whether en-
tanglement exhibits signatures of chaos, there is a still a
lack of consensus about this question, even in a specific
model such as the QKT. In this model, entanglement was
shown to display signatures of chaos in numerical and ex-
perimental studies even in a very deep quantum regime
such as j = 3/2, 3, and 4 [14,25,27,33]. While these studies
showed higher time-averaged entanglement in chaotic regions
compared to regular regions, Lombardi et al. [30,42] found
instances of initial states in regular regions that also led to
generation of high entanglement. On the other hand, Ruebeck
et al. [36] correlated classical regular dynamics with low or
high time-averaged entanglement, and chaos with medium
level of entanglement in the deepest possible quantum regime
of the QKT, j = 1.

Here we resolve these seemingly conflicting studies by
considering the divergence of the quantum states from SCSs
in regular versus chaotic regions. Our goal is to clarify the
connection between entanglement and chaos by explaining
the dynamics in the regular regions and then comparing it
to the more well-studied chaotic case, in both quantum and
semiclassical regimes. Our analysis shows that in the deep
quantum regime where j is small, the upper bound on the
entanglement can be large in both regular and chaotic re-
gions, whereas in a semiclassical regime with higher j, the
bound on entanglement remains lower in regular regions near
stable periodic orbits than in chaotic regions (see Figs. 2
and 3). We first discuss the deep quantum regime where j
is very small. In previous work [56], we presented criteria
for determining the magnitude of the quantum number j
at which quantum-classical correspondence will be observed
near classical periodic orbits. The criteria require that the
SCSs centered on all the points in a periodic orbit be almost
orthogonal to each other (overlap of order roughly less than
10−10) in order to observe a correspondence between the
classical and the quantum dynamics near the periodic orbits
on timescales sufficiently long compared to the dynamics.
When these criteria are satisfied near stable classical periodic
orbits, the evolved states remain close to the SCSs, and thus
the bound on entanglement in Eq. (3) remains small. However,
in a deep quantum regime, our criteria for quantum-classical
correspondence are typically violated. The states diverge from
the SCSs, and this results in a higher upper bound on entan-
glement in Eq. (3) in both regular and chaotic regions. For
example, the period-4 orbit, P4, violates the criteria for j �
20 [56], where P4 is (1, 0, 0) → (0, 0,−1) → (−1, 0, 0) →
(0, 0, 1) → (1, 0, 0)[(·, ·, ·) refers to the classical coordinates
(Jx/ j, Jy/ j, Jz/ j)]. Thus the states do not remain close to
SCSs, and entanglement can be large even close to the regular
periodic orbit. In Ref. [36], the high-entanglement regions
identified in the QKT for j = 1 are precisely the regions
in the vicinity of the period-4 orbit. Our discussion above
explains why high entanglement in these regular regions of
the kicked top was observed in a deep quantum regime in
Ref. [36].
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FIG. 4. Maximum 2:(N − 2) partition entanglement over 5000
kicks in kicked top (a) as a function of κ where the initial state is
centered at fixed point, FP1, which loses stability at κ = 2, (b) as a
function of κ where the initial state is centered at a period-4 orbit,
P4, which loses stability at κ = π , and (c) as a function of initial
condition (θ, φ) where θ = 2.25 is fixed and φ is varied, κ = 3. The
vertical dotted dashed lines in panels (a) and (b) depicts the κ value
at which bifurcation leads to loss of stability of these orbits.

While large entanglement can be generated in both regular
and chaotic regions in the deep quantum regime, the situation
changes in the semiclassical regime of large j. In general, a
regular region in Floquet systems consists of stable periodic
orbits, while chaotic regions emerge around the unstable
periodic orbits. The criteria for quantum and classical-like
states to remain close are satisfied in regular regions but
not in chaotic regions in the semiclassical regime. In the
QKT, consider the fixed point, FP1 (0, 1, 0), and the period-4
orbit, P4, which lose stability at κ = 2 and π , respectively
[56]. Figures 4(a) and 4(b) show that when these orbits
are stable, they exhibit very low entanglement for high j
values corresponding to the semiclassical limit. In Fig. 4(c)
the maximum 2:(N − 2) entanglement over 5000 kicks is
plotted for a range of initial conditions (θ, φ). The maximum
entanglement remains very low in regular regions for j = 500
but not for j = 50, while chaotic regions always exhibit high
entanglement. The same characteristics are seen in Figs. 2
and 3.

IV. SUMMARY AND DISCUSSION

We have presented a general framework to obtain an upper
bound on the entanglement in any bipartition of a spin system
with a constant angular momentum value j. Our framework
shows that entanglement generation is associated with a diver-
gence from minimum-uncertainty classical-like spin-coherent
states (SCSs) as measured by the trace distance. We illustrated
in the quantum kicked top (QKT) model that our upper bound

estimates the entanglement extremely well in regular as well
as chaotic regions for j values in the deep quantum regime as
well as the semiclassical regime. This demonstrates that the
magnitude of entanglement generation can be inferred from
the trace distance between the evolved state and the SCS.
This trace distance, in turn, can be inferred from the localized
versus delocalized evolution of the system in the Husimi phase
space. Our criteria in Ref. [56] for quantum-classical corre-
spondence can be used to determine the quantum numbers
for which the evolution is localized versus delocalized. Thus,
our framework combined with the aforementioned criteria
[56] provides a clear and more nuanced understanding of
the relationship between entanglement generation and the
underlying classical dynamics, compared to previous studies.

By relating entanglement to the trace distance, our work
provides insight and intuition about the quantum-classical
connection. It shows that entanglement, a purely quantum
phenomenon, grows when the quantum evolution diverges
from nearby classical evolution as measured by the trace
distance. Thus as the distance between quantum and classical
evolution grows, quantum properties like entanglement grow
as one might expect. Our analysis makes this argument clear
and more quantitative and explains previous seemingly con-
tradicting results about chaos and entanglement.

Our approach and framework has many interesting char-
acteristics: (a) This framework is very useful for systems
with mixed phase space, which are in general difficult to
deal with. (b) Whereas past studies have often focused on the
linear entropy, which is an approximation of the von Neumann
entropy to measure entanglement, our bound applies directly
to the von Neumann entropy. (c) Our framework can be used
to estimate the entanglement for any bipartition of the system.
(d) While any pure state of dimension d in place of ρSCS

m
would provide an upper bound on the entanglement in the
relevant bipartition, our chosen SCSs provide a very good
estimate of the actual entanglement. These states are chosen
without any optimization and with physical motivation from
the Ehrenfest correspondence principle. The particular choice
of SCS is not critical in chaotic regions since they generate
near to maximal entanglement and hence a large upper bound.
However, the choice of SCS is significant in regular regions
to obtain a tight bound in order to tease out the differences
between regular and chaotic behavior.

Our approach provides a way to efficiently estimate a loose
upper bound for entanglement in spin systems and is thus of
interest for experiments where entanglement is challenging
to measure. Our results not only provide insights into the
fundamental connections between chaos and entanglement,
but are also relevant for applications in condensed matter and
quantum computing.
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