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We consider the simultaneous coupling of a qubit system to two qubit probes, designed to measure
noncommuting qubit observables when working in isolation. While the single meter model usually corresponds
to an unsharp measurement of a qubit operator, the double meter model usually describes an informationally
complete measurement. The double meter positive operator measurement can be characterized by three vectors
associated with the space of Hermitian tracesless observables of the system. The dimension of the linear space
generated by these vectors (Bloch rank) is equal to the number of independent operators (or the number of
independent Bloch-vector components) which can be estimated. S, the subspace of parameters associated with
informationally incomplete measurements (IICs), is characterized either analytically or numerically, and their
Bloch rank is used to classify the IICs. Bloch rank of the “simultaneous measurement” of two Pauli matrices
is shown to be 2 if the isolated measurements are projective and 3 if they are weak; however, two-meter weak
measurements are expected to converge more slowly than their single-meter counterparts.
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I. INTRODUCTION

The historic axiomatic description of quantum measure-
ments, based on the Born rule [1] and the wave function
collapse [2], renounces the understanding of the mensuration
process. However, von Neumann showed that it is possible
to model the measuring instrument and the system actually
observed using the quantum formalism [3]. Subsequent re-
finements to the von Neumann model of projective measure-
ments include the Lüder’s rule to update the state [4] and
the demonstration that decoherence can explain the transition
from an initial pure state to a mixture of eigenstates of the
observable being measured [5]. It has been shown that the
dynamics of the system alone, after the degrees of freedom
describing the probe and its environment have been traced
out, can be described by a positive operator valued measure
(POVM) [6,7]. Mensuration schemes more general than pro-
jective measurements, such as imperfect measurement setups
employing nonideal detectors, informationally incomplete to-
mographic protocols [8], and weak measurements [9–11], can
all be represented by POVMs. Despite recent proposals based
on nonlinear stochastic variants of the Schrödinger equation
[12], the description of the transition to a single eigenstate is
still considered an open problem, which will not be addressed
in this work.

*kmfonsecar@unal.edu.co

The theoretical discussion of the simultaneously measure-
ment of noncompatible observables has a long history in
quantum mechanics, which can be traced back to Heisenberg’s
microscope [2]. After the first discussion of this problem
using the full quantum formalism [13], many papers have
been published on the subject, highlighting its different as-
pects. For example, Ref. [14] discusses the joint unbiasedness
condition (jointly measured expectation values proportional
to those separately measured), and Ref. [15] analyzes how
quantum cloning can be exploited to measure incompatible
observables. Continuous monitoring of incompatible observ-
ables, closely related to the use of weak measurements to
estimate quantum states [16], was recently proposed [17] and
tested [18].

The objective of this work is to describe the attempt to si-
multaneously measure two noncommuting qubit observables
by introducing two qubit meters, an approach similar to that
of Ref. [13]. Because our treatment is simpler than that of
Ref. [19], which considers a complete microscopic model to
describe the simultaneous measurement of two Pauli matrices,
we are able to perform a more systematic exploration of the
parameter space of our model. (However, we are not able to
describe inhibition of registration of one probe due to a strong
coupling of the system to the other probe.) Once the meters’s
states are ignored, our approach becomes similar to that of
Ref. [20], where a simple form of a universal observable
[21] was found. Universal observables are those which permit
complete tomography.
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FIG. 1. von Neumann model of the measurement of a qubit
observable. The system-probe interaction is characterized by the
parameter θ. The probe also interacts with a reservoir and loses
coherence at the rate γ .

The next section of this paper shows that the von Neumann
model employed here describes a family of asymmetric un-
sharp measurements [22]. When two meters, each of them
designed to perform an unsharp measurement of a single qubit
(in absence of the other), are simultaneously coupled to the
system, generally two observables can be estimated (Sec. III);
moreover, if coincidences between the outcomes of both ap-
paratuses are taken into account, the initial state of the system
can be estimated (Sec. IV). We give a formula to estimate the
system’s Bloch vector in terms of the probabilities of the four
possible outcomes valid almost everywhere in the space of
parameters. Bloch rank, the number of components of the
system’s Bloch vector which can be estimated by a measure-
ment or the number of independent observables that can be
measured, is used to classify IICs (informationally incomplete
measurements) in Sec. V. Special consideration is given to the
possibility to have simultaneous projective or weak measure-
ments (Sec. VI). Finally, some conclusions are drawn.

II. UNSHARP ASYMMETRIC MEASUREMENT
OF A QUBIT OPERATOR

Figure 1 illustrates a setup in which a qubit probe mea-
sures an observable of a two-level system. We employ a von
Neumann model of the mensuration process, where the system
interacts with a meter. The probe is assumed to lose coherence
as a consequence of its interaction with a reservoir. We take
the stance that when a measurement of a quantum system
is performed in the laboratory, a meter interacts with the
system and leaves an objective, indelible record; this process
is described by decoherence only in a statistical sense. Since
it is necessary to consider an ensemble of identically prepared
systems, it is natural to assume that an observable is measured
when its probability distribution (PD) can be estimated. Qubit
observables can be written as O = ∑3

μ=0 cμσμ = c0I + c · σ,
where cμ are real coefficients, σ0 = I is the identity ma-
trix, and σi, i = 1, 2, 3, are the well-known Pauli’s matrices.
However, it is enough to consider operators of the form

Õ(n) = n · σ, where ni = ci/

√
c2

1 + c2
2 + c2

3, because the PD

of O can be obtained from the PD of Õ(n). In this paper
emphasis is made on the vectors c = (c1, c2, c3)T used to de-
fined the observables c · σ. However, we could have employed
the operators themselves, just by using the identities a · b =
1
2 Tr[(a · σ)†b · σ] and a × b = 1

4i Tr ([a · σ, b · σ]σ ), where a
and b were assumed to be real.

To measure the observable Õ(n) one usually considers
a system-probe Hamiltonian g(t )n · σS ⊗ σ A

z . Superscripts S
and A are used to denote states and operators belonging,
respectively, to the observed system and to the apparatus, and
⊗ represents the tensor product. Following Peres [23,24], we
consider a slightly different interaction Hamiltonian

H (t ) = g(t )

4
(IS + n · σS ) ⊗ (

IA + σ A
z

)
. (1)

The interaction Hamiltonian can be recast as a product of
projectors over the states |+S

n〉 and |+A〉, the eigenstates of
n · σS and σ A

z with unity eigenvalue,

H (t ) = g(t )�S
+n ⊗ �A

+ = g(t )
∣∣+S

n

〉〈+S
n

∣∣⊗ |+A〉〈+A|. (2)

For simplicity, the tensor products and the superscripts will be
omitted when no confusion arises.

The interaction is assumed to be turned on at the initial
time t = 0 and turned off at some time t f = T . Hence, the
function g(t ) vanishes outside this time interval, considered
to be very small as compared to all other relevant timescales.
The probe is assumed to interact with a reservoir which causes
the system-probe state to lose coherence. The dynamics of the
global state ρ is given by

dρ

dt
= 1

ih̄
[H (t ), ρ] + γ

(
σ A

mρσ A
m − ρ

)
=
(

1

ih̄
[H (t ), ·] + LD

)
ρ, (3)

with γ and h̄ denoting, respectively, the decoherence rate and
Planck’s constant. Here σ A

m is shorthand for I ⊗ m · σA, and
LD = γ (σ A

m · σ A
m − 1), where we have employed the dot (·)

convention. The place of the dot is occupied by the operator
to its right. For example, (A · B)ρ = AρB. We consider a
factorizing initial state

ρ(0) = ρS (0) ⊗ ∣∣+A
m′
〉〈+A

m′
∣∣,

where the initial system state ρS (0) is arbitrary. The initial
state of the probe |+A

m′〉 is the eigenstate of m′ · σA with unity
eigenvalue.

In the remainder of the section we will focus on the mea-
surement of the operator σz = σ3. Moreover, we choose m =
ex = m′, so that m′ · σA = σx, and |+A

m′〉 = 1√
2
(|+A〉 + |−A〉).

Although the interval [0, T ] is considered to be very small,
the average value of the coupling function g(t ) is considered
to be much larger than all other relevant energy scales in
[0, T ]. Under this assumption, the state at a time t > T can
be approximated by

ρ(t ) ≈ eLDt e
1
ih̄

∫ T
0 [H (τ ),·]dτ ρ(0)

= e−γ t eγ σ A
x ·σ A

x t e−iθ�S
+�A

+ρ(0)eiθ�S
+�A

+

= e−γ t
∞∑

n=0

(γ t )n

n!

(
σ A

x

)n
ρ(T )

(
σ A

x

)n
, (4)

042130-2



COMPLETE AND INCOMPLETE STATE ESTIMATION VIA … PHYSICAL REVIEW A 99, 042130 (2019)

where ρ(T ) = (e−iθ�S
+�A

+ρ(0)eiθ�S
+�A

+ ) and θ = 1
h̄

∫ T
0 g(t )dt .

To simplify the intermediate algebra, we consider an ini-
tial pure system state, where ρS (0) = |ψ0〉〈ψ0| and |ψ0〉 =
α|+〉 + β|−〉. The joint state is also pure at time T , ρ(T ) =
|�(T )〉〈�(T )|. After the system-probe interaction is turned
on and then off, |�〉, the joint system-probe state becomes
entangled,

|�(T )〉 = e−iθ�S
+�A

+|ψ0〉 ⊗ |+〉x = |s+〉|+〉 + |s−〉|−〉, (5)

where |s+〉 = 1√
2
(e−iθα|+〉 + β|−〉) and |s−〉 =

1√
2
(α|+〉 + β|−〉). We have omitted the S and A superscripts

in the understanding that the first ket label refers to the
system and the second to the apparatus. The interaction with
the environment produces decoherence: the off-diagonal
elements of the density state, written in the basis of the
eigenvalues of σ A

x , are suppressed. For times long compared
to 1/γ , where γ is the decoherence rate, the joint statistical
operator becomes

ρ∞ = |d+〉〈d+| ⊗ |+x〉〈+x| + |d−〉〈d−| ⊗ |−x〉〈−x|, (6)

where the states |d+〉 and |d−〉 are the unnormalized symmet-
ric and antisymmetric superpositions of the states |s+〉 and
|s−〉,
|d+〉 = (|s+〉 + |s−〉)/

√
2 = e−iθ/2 cos(θ/2)α|+〉 + β|−〉,

|d−〉 = (|s+〉 − |s−〉)/
√

2 = −ie−iθ/2 sin(θ/2)α|+〉.
The final state of the apparatus is |+x〉(|−x〉) with probability
P+ (P−), where

P+ = 〈d+|d+〉 = cos2(θ/2)|α|2 + |β|2 (7)

and

P− = 〈d−|d−〉 = 1 − P+ = sin2(θ/2)|α|2. (8)

When the apparatus ends up in the state |−x〉, the final state
of the system is the state |+〉, an eigenstate of the third
component of the Bloch vector. However, when the final state
of the apparatus is |+x〉, the system ends up in a superposition
of both eigenstates of the third component of the Bloch vector,
unless θ is an odd multiple of π (when the system’s final state
is |−〉). Except when θ = 2nπ, n = 0, 1, 2, . . . , probabilities
P+ and P− allow the estimation of the probability distribution
of σ S

z , for the initial state of the system, that is, they allow us
to infer the probabilities of |+S〉 and |−S〉, as well as the third
component of the Bloch vector,

P(|+S〉) = |α|2 = P−
sin2(θ/2)

, (9)

P(|−S〉) = |β|2 = P+ − P− cot2(θ/2), (10)〈
σ S

z

〉 = |α|2 − |β|2 = c1P+ + c2(θ )P−

= −P+ + 3 + cos θ

1 − cos θ
P−. (11)

The function c2(θ ), of period 2π, becomes very large for
θ near even multiples of π , and attains its minimum, unity,
when θ is an odd multiple of π (see Fig. 2). The former case
describes a weak measurement, understood as a one in which,
with large probability, the system’s state barely changes. Of

FIG. 2. Coefficient c2(θ ) as a function of the parameter θ.

course, when θ is an exact even multiple of π, the final state of
the meter is always |+〉, and no information about the system
state is obtained. The latter case corresponds to a projective
measurement.

Up to now we have taken into account both the measuring
apparatus and the measured system. However, we can make
a description from the point of view of the observed system
alone. In this case, the initial state of the system ρS

0 is
transformed into a final state ρS

f ,

ρS
f = |d+〉〈d+| + |d−〉〈d−|. (12)

The unnormalized states |d+〉 and |d−〉 are linear transfor-
mations of the initial pure state of the system

|d+〉 = e−iθ/2 cos(θ/2)α|+〉 + β|−〉

=
(

e−i θ
2 cos

θ

2
|+〉〈+| + |−〉〈−|

)
︸ ︷︷ ︸

E+

(α|+〉 + β|−〉)︸ ︷︷ ︸
|ψ0〉

, (13)

|d−〉 = −ie−i θ
2 sin

θ

2
|+〉〈+||ψ0〉 = E−|ψ0〉. (14)

The Kraus operators Ei, i = ±, allow us to write the final
system state in the form of an operator sum representation

ρS
f =

∑
i=±

Ei|ψ0〉〈ψ0|E†
i . (15)

Since any initial system state can be written as a statistical
superposition of pure states, ρS

0 = ∑
m pm|ψ0m〉〈ψ0m|, and

given that the transformation (15) is linear, the final system
state can be written in terms of the initial state as

ρS
f =

∑
m

pm

∑
i

Ei|ψ0m〉〈ψ0m|E†
i =

∑
i

Eiρ
S
0 E†

i . (16)

It is usual to define also the measurement operators Mi =
E†

i Ei,

M+ = 1

2

(
1 + cos2 θ

2

)
I − 1

2
sin2 θ

2
σz, (17)

M− = 1

2
sin2 θ

2
I + 1

2
sin2 θ

2
σz. (18)

They satisfy the sum rule
∑

i Mi = ∑
i E†

i Ei = IS, a
nonorthogonal resolution of the identity [25]. Transformations
of the form of Eq. (16) are known as positive operator-
valued measures (POVMs), positive operator measures [26],
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FIG. 3. The simultaneous coupling of the system to two meters
attempts to measure two noncommutative qubit observables.

or probability operator measures (POMs) [27]. These POVM
elements only give information about the observable σz as
can be seen from the expressions (17) and (18). Using the
terminology of Konrad [22], the scheme presented in this
section is an unsharp measurement, i.e., the POVM elements
Mi mutually commute and not all of them are projection
operators. This measurement presented in this work is not
symmetric in the exchange of system’s states |+〉 and |−〉.

The probabilities Pi, i = ±, that the meter ends up in
the state |ix〉, can be given in terms of the measurement
operators Mi. Indeed, for a pure system’s initial state |ψ0〉,
this probability is Pi = 〈di|di〉 = Tr(E†

i Ei|ψ0〉〈ψ0|), where the
form of the post-measurement joint statistical operator (6) was
taken into account. The probability Pi can be generalized to
initial mixed states ρS

0 ,

Pi = Tr
(
E†

i Eiρ
S
0

) = Tr
(
Miρ

S
0

)
, i = ±.

III. SEPARATED SIMULTANEOUS MEASUREMENTS

In the previous section we saw how Peres’ interaction
Hamiltonian leads to an unsharp measurement of a qubit ob-
servable. Would we obtain twice as much data using the same
number of copies of a system, if we try to simultaneously
perform unsharp measurements of two observables. In the
context of this paper, we model the attempt to measure the
operators σz and σx, using meters A and B, respectively. Our
results show that each apparatus measures an operator, usually
not the intended one. There are instances in which σz or σx

can be measured, and instances in which both meters measure
exactly the same operator.

Figure 3 sketches the situation we consider in this section.
The effective dynamics of the global state ρ, which includes
the system and both meters, is given by

dρ

dt
= i

h̄
[K (t ), ρ] + LAB

D ρ, (19)

where K (t ) is the system-probes Hamiltonian and LAB
D de-

scribes the decoherence process. If each apparatus is assumed
to interact with its own reservoir, we can write LAB

D ρ =
LA

Dρ + LB
Dρ = γA(σ A

x ρσ A
x − ρ) + γB(σ B

x ρσ B
x − ρ), where γA

and γB are the decoherence rates associated with the probes

A and B. If the reservoirs of both meters are not completely
independent, but it is still possible to describe the decoherence
process of the system by a Markovian master equation with
constant coefficients, we can write [28]

LAB
D = LA

D + LB
D + γC

2

(
2σ A

x · σ B
x − σ B

x σ A
x · − · σ B

x σ A
x

)
+γ ∗

C

2

(
2σ B

x · σ A
x − σ A

x σ B
x · − · σ A

x σ B
x

)
, (20)

where we have employed the dot convention. The complex
coefficient γC satisfies the inequality |γC |2 � γAγB [28].

The simultaneous interaction of the observed system with
the measuring apparatuses is described by the Hamiltonian

K (t ) = 1
4 gA(t )

(
IS + σ S

z

)(
IA + σ A

z

)
+ 1

4 gB(t )
(
IS + σ S

x

)(
IB + σ B

z

)
= gA(t )�S

+�A
+ + gB(t )�S

+x�
B
+, (21)

where gA and gB are much larger than any other energies
(in the common interval [0, T ] where they do not vanish).
Our conventions for the projectors are similar to those of the
previous section. For example, �S

+x designates the projection
over the system’s state |+S

x 〉, the eigenstate of σ S
x with positive

eigenvalue. The initial state of the probes and the observed
system is assumed to be ρ(0) = ρS (0)|+A

x ,+B
x 〉〈+A

x ,+B
x |.

The basic ingredients of the model described so far are
the decoherence basis (eigenstates of σ A

x ⊗ σ B
x ), the system-

meters Hamiltonian [K (t )], and the initial states of the meters
(|+A

x ,+B
x 〉〈+A

x ,+B
x |). This is a particular but typical model, in

the sense that its qualitative features hold for most choices
of decoherence basis, Hamiltonian, and initial meters’s state,
provided each meter in isolation is able to measure a system’s
observable.

As in the previous section, without loss of generality and in
order to simplify the calculations, we consider the initial state
of the system to be pure; thus, the joint initial state is also pure,
|ψ0〉 = (α|+S〉 + β|−S〉) ⊗ |+A

x 〉|+B
x 〉. Since gA, gB 
 γA, γB

we can approximate the statistical operator, for t > T, by

ρ(t ) ≈ eL
AB
D tT

(
e

1
ih̄

∫ T
0 dτ [K (τ ),·])ρ(0) = eL

AB
D tρ(T ). (22)

We have used Dyson’s time-ordering operator T , which puts
operators at earliest times to the right of operators at later
times,

T (K (t1)K (t2)) =
{

K (t1)K (t2) if t1 � t2,

K (t2)K (t1) if t2 > t1.
(23)

If the initial state is pure, the statistical operator ρ(T ) =
|�(T )〉〈�(T )| is also pure. The state |�(T )〉 can be written as

|�(T )〉 = 1

2

∑
m,n=±

Umn

∣∣ψS
0

〉|mA, nB〉, (24)

where U−− = I,

U+− = e−iθA(IS+σ S
z )/2 = e−iθA�S

+ ,

U−+ = e−iθB (IS+σ S
x )/2 = e−iθB/2

[
cos(θB/2)IS − i sin(θB/2)σ S

x

]
,

where θA = 1
h̄

∫ T
0 dτgA(τ ) and θB = 1

h̄

∫ T
0 dτgB(τ ). Finally,

U++ = T
(
e

1
ih̄

∫ T
0 dτ [gA(τ )(IS+σ S

z )/2+gB (τ )(IS+σ S
x )/2]

)
.
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The precise form of U++ depends on the details of the
functions gA(t ) and gB(t ). We focus in the case defined by
gα (t ) = λαg(t ), where λα , α = A, B, are constants. In this
case we can give a more explicit expression for U++,

U++ = e−iθA(IS+σ S
z )/2−iθB (IS+σ S

x )/2

= e−i θA+θB
2

(
cos

θC

2
IS − i

sin θC
2

θC

(
θAσ S

z + θBσ S
x

))
,

where θA and θB have already been defined and θC =√
θ2

A + θ2
B . Besides the expected contributions in which only

one apparatus couples with the observed system U+− and
U−+, there is a contribution U++ in which both measuring
devices simultaneously interact with the system.

At times much larger than the inverses of the decoherence
rates, the global statistical operator is given by

ρ∞ =
∑

k,l=±
|dkl〉〈dkl | ⊗ ∣∣kA

x lB
x

〉〈
kA

x lB
x

∣∣.
Each unnormalized system state |dkl〉 can be written as a linear
transformation of the initial pure state of the system

|dkl〉 = 1

2

∑
m,n=±

〈
kA

x lB
x

∣∣mAnB
〉
Umn

∣∣ψS
0

〉 = Ekl

∣∣ψS
0

〉
.

Here the Kraus operators Ekl are given by the following linear
combinations of the unitary operators Umn,

Ekl = 1
4 (U++ + lU+− + kU−+ + klI ), k, l = ±1,

where the overlaps 〈±x|+〉 = 1√
2

and 〈±x|−〉 = ± 1√
2

were
used.

In terms of Kraus operators, the long time statistical oper-
ator reads

ρ∞ =
∑

k,l=±
EklρS (0)E†

kl ⊗ ∣∣kA
x lB

x

〉〈
kA

x lB
x

∣∣.
The final state of meter A is |kx〉 with probability

pA
k = Tr

(〈
kA

x

∣∣ρ∞
∣∣kA

x

〉) = Tr

(∑
l

MklρS (0)

)

= Tr
[
MA

k ρS (0)
]
, (25)

where Mkl = E†
kl Ekl . A similar expression holds for the

probability that the final state of meter B is |lx〉, pB
l =

Tr [
∑

k MklρS (0)] = Tr [MB
l ρS (0)]. Though the previous ex-

pressions were found assuming a system’s pure initial state,
it is not difficult to show they are also valid for initial mixed
states.

The measurement operators Mkl can be written as

Mkl = (1/4)I +
⎛
⎝ 3∑

μ=0

aμσμ

⎞
⎠k +

⎛
⎝ 3∑

μ=0

bμσμ

⎞
⎠l

+
⎛
⎝ 3∑

μ=0

cμσμ

⎞
⎠kl, (26)

where σ0 is the identity and σi, i = 1, 2, 3, designate the
Pauli matrices, as usual. The coefficients aμ, bμ, cμ are real

functions of θA and θB, explicitly given in the Appendix. The
measurement operators MA

k and MB
l can be also written in

terms of these coefficients,

MA
k = 1

2
I + 2k

⎛
⎝ 3∑

μ=0

aμσμ

⎞
⎠, (27)

MB
l = 1

2
I + 2l

⎛
⎝ 3∑

μ=0

bμσμ

⎞
⎠. (28)

Measurement operators (27) are similar to (17) and (18),
discussed in the previous section. Equations (27) and (28)
show that we can associate an unsharp measurement to each
apparatus ([MA

+, MA
−] = 0 = [MB

+, MB
−]). Meters A and B mea-

sure observables a · σ = ∑3
μ=1 aμσμ and b · σ, respectively.

Consider apparatus A; the difference between the probability
of obtaining the plus outcome and that of obtaining the minus
outcome is pA

+ − pA
− = 4(a0 + a · s). The expectation value of

the operator a · σ is 〈a · σ〉 = Tr[a · σ( 1
2 I + s · σ)] = a · s. We

finally have

〈a · σ〉 = a · s = pA
+ − pA

−
4

− a0. (29)

A similar equation holds for the observable b · σ measured by
apparatus B.

A numeric search shows that any observable (up to a posi-
tive or negative scale factor) can be measured by either meter.
However, there are isolated points in the (θA, θB) parameter
space, where no information is acquired about the system.
In effect, when θA and θB are integer multiples of 2π, the
operators Ui j , i, j = ± are proportional to the identity, except
U++. In contrast to operators Ekl k, l = ±, which have a
nontrivial contribution U++, the four measurement operators
MA

k and MB
l k, l = ±, are all proportional to the identity.

When only θA is an integer multiple of 2π, θA =
2πm, m ∈ Z, only meter B obtains information on the sys-
tem: it measures any operator which is a linear combination of
σx and σz. In particular, it measures observable σz when θB =
±2π

√
n2 − m2 for integers n such that |n| > |m| (clearly√

n2 − m2 must not be an integer), and measures σx when θA

satisfies sinc(θB/2) = (−1)m+1 sinc[
√

θ2
B + (2πn)2/2]. Simi-

lar results hold for meter A (obtained by exchange of θA and
θB, on one hand, and of σx and σz, on the other).

The squared magnitude of the vector v = a × b, v2, van-
ishes when both meters measure the same observable, that
is, when a(θA, θB) = λb(θA, θB) for some nonzero constant λ.
After eliminating factors that either are always positive or that
correspond to previous cases (θA or θB even multiple of π ),

v2 turns out to be proportional to sin (
√

θ2
A + θ2

B/2) fS (θA, θB).
The first factor vanishes for points on circles centered
on the origin, when θ2

A + θ2
B = (2πn)2, n ∈ Z+. The ze-

ros of fS, which lie on the straight lines θA = θ = ±θB,
are integer multiples of

√
2π or satisfy the condition

tan ( θ
2 ) tan ( θ

2
√

2
) = −√

2.
No choice of parameters allows one of the meters to mea-

sure σz while the other measures σx. However, the observables
a · σ and b · σ are rotated versions of σz and σx whenever
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the nonzero vectors a and b are orthogonal. This situation is characterized by

fO = −2 sin2

(
θA

2

)
cos

(
θC

2

)
+ θA sin

(
θA

2

)
sinc

(
θC

2

)[
cos

(
θA

2

)
− cos

(
θB

2

)]

+ sinc

(
θC

2

)2[
cos

(
θA

2

)
cos

(
θB

2

)
− 1

4
θAθB sin

(
θA

2

)
sin

(
θB

2

)]
+ (θA ↔ θB) = 0,

provided that neither θA nor θB are integer multiples of 2π. As
usual, the sine cardinal function is defined by sinc(x) = sin x

x .

IV. STATE ESTIMATION

When two probes simultaneously interact with a system,
generally two observables can be measured. In this section we
show that, excluding (infinitely many) exceptional cases, one
would have enough information to estimate the probability
distributions of σx, σy, and σz; hence, we would be able to
estimate the state of the observed system. It is convenient to
parametrize the statistical state operator as ρ = 1

2 (1 + s · σ )
where s is the Bloch vector. Taking into account that for
qubits the estimation of a Bloch vector component (e.g., sz)
allows the determination of the probability distribution of the
respective operator (e.g., σz), we will make little distinction
between measurement of observables and estimation of Bloch
vector components.

In the preceding section we wrote the long time statis-
tical operator in terms of the Kraus operators Ekl , ρ∞ =∑

k,l=± EklρS (0)E†
kl ⊗ |kA

x lB
x 〉〈kA

x lB
x |. Kraus operators not only

are helpful to express the final state of the system in terms of
its initial state

ρS
f =

∑
k,l=±

Eklρ0E†
kl , (30)

but also to calculate the probability that probes A and B end
up, respectively, in the states |kA

x 〉 and |lB
x 〉:

pkl = Tr(E†
klEklρ0) = Tr(Mklρ0) (31)

= 1

4
s0 +

3∑
μ=0

(aμk + bμl + cμkl )sμ. (32)

In contrast to the previous approach, where only the separate
outcomes of each meter were considered, in this section we
take coincidences into account, that is, the joint outcomes of
both meters. While the probabilities of each meter’s final state,
pA

k and pB
k , k = ±, do not depend on cμ, μ = 0, 1, 2, 3, these

coefficients are essential for state estimation.
If we define the vectors p = (p++, p+−, p−+, p−−)T and

S = (s0, s1, s2, s3)T , Eq. (32) can be written as

p = TS. (33)

A simple inversion provides S as S = T−1 p. The first compo-
nent of this vector equation shows that s0 = ∑

i j=± pi j = 1.

The other three components of S can be written as

sq = − 1

4�

∑
k,l=±

[Cq1(4a0 − k) + Cq2(4b0 − l )

+Cq3(4c0 − kl )]pkl , (34)

q = 1, 2, 3, where � is the determinant of the matrix D:

D =
⎛
⎝a1 b1 c1

a2 b2 c2

a3 b3 c3

⎞
⎠, (35)

and Cqr are the co-factors of the same matrix.
Formula (34), which gives the estimation of the state from

the probabilities of detection of the two measuring apparatus,
constitutes one of the main results of this paper. Equation (34)
shows that for generic values of the coupling constants it is
possible to estimate the measured state attempting to simul-
taneously measure σx and σz (or other noncommuting qubit
operators). Of course, when concurrently performed, these
measurements are no longer unsharp, because the POVM
elements Mkl do not mutually commute.

Instead of the purely algebraic approach employed so far
in this section, we can follow a more intuitive path. Besides
the measurement operators MA

± and MB
± associated with me-

ters A and B, we can define MC
m = M+,m + M−,−m = 1

2 I +
2m

∑3
μ=0 cμσμ with m = ±. MC

+ corresponds to a situation in
which the final state of both meters is the same (++ or −−).
While the meters A and B measure the observables a · σ and
b · σ, the coincidences counts allow the measurement of c · σ.

We write the equations for the expectation values of these
operators [see Eq. (29)] as a system of equations⎛
⎝〈a · σ〉

〈b · σ〉
〈c · σ〉

⎞
⎠ =

⎛
⎝ax ay az

bx by bz

cx cy cz

⎞
⎠
⎛
⎝sx

sy

sz

⎞
⎠

= 1

4

⎛
⎝p++ + p+− − p−+ − p−−

p++ + p−+ − p+− − p−−
p++ + p−− − p−+ − p+−

⎞
⎠−

⎛
⎝a0

b0

c0

⎞
⎠. (36)

The solution of this equation,

⎛
⎝sx

sy

sz

⎞
⎠ = (DT )−1

⎛
⎜⎝

p+++p+−−p−+−p−−
4 − a0

p+++p−+−p+−−p−−
4 − b0

p+++p−−−p−+−p+−
4 − c0

⎞
⎟⎠, (37)

where DT denotes the transpose of the matrix defined in (35),
is equivalent to the solution given before, Eq. (34).

In general, the measurement described by operators
Mkl , k, l = ±, is a POVM. However, as shown in Fig. 4, there
are points where there is no measurement, points in which
the measurement is unsharp (when exactly one component
of the Bloch vector of the initial state of the system can be
estimated, but not all measurement operators are projectors),
and finally points where the measurement is projective. When
θA ≈ −5.49388, θB ≈ 9.0341 (and its reflections on the lines
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FIG. 4. Type of measurement as a function of the parameters θA

and θB. Generic points in the parameter space correspond to POVMs.

θA = ±θB), vectors a, b, and c are approximately orthogonal
(θa,b = 90.71◦, θa,c = 89.46◦, θb,c = 89.96◦).

We define their Bloch rank of a POVM as the number
of independent Bloch components that it allows to estimate.
For the model studied in this paper, this number is equal to
da,b,c, the dimension of the space spanned by a, b, and c. If
the POVM is informationally complete, that is, if it allows
us to completely estimate the state, its Bloch rank attains its
maximum value (three, for qubits). If, on the contrary, its
Bloch rank is strictly smaller than the maximum, the POVM
is called informationally incomplete (IIC).

V. INFORMATIONALLY INCOMPLETE MEASUREMENTS

Under the assumptions of this paper, the final joint state (of
the system and both meters) depends on two real parameters,
θA and θB. For generic values of the parameters, it is possible
to estimate the state of the system. If at least one of the
parameters vanishes (only one meter is coupled to the sys-
tem), state estimation is impossible. However, given arbitrary
(nonzero) values of θA and θB is full state reconstruction
always possible? The answer is negative for parameters in S,
a set of dimension d = 1. For parameters in S, we find which
part of the system’s state can be estimated.

Full state reconstruction is not possible when the matrix D,

defined in the previous section, becomes singular. The deter-
minant of D can be geometrically interpreted as the volume
of the parallelepiped defined by the vectors a, b, and c. We
can write this determinant as � = f S

0 f A
0 = f S

0 ( f S
1 f A

1 + f S
2 f A

2 ),
where the functions f S and f A are, respectively, symmetric
and antisymmetric under the permutation of θA and θB. More
explicitly, we have f S

0 = − sin2 ( θA
2 ) sin2 ( θB

2 ) sinc ( θC
2 )/2048,

where θC =
√

θ2
A + θ2

B. The antisymmetric functions are

f A
1 = −(θ2

A + θAθB − θ2
B

)
sin θA + (

θ2
A − θAθB + θ2

B

)
× sin(θA − θB) + (− θ2

A + θAθB + θ2
B

)
sin θB

FIG. 5. Number of independent Bloch vector components of the
system which can be estimated (Bloch rank) as a function of the
parameters θA and θB.

and f A
2 = 4 sin ( θA−θB

2 ). The remaining symmetric functions
are more cumbersome, f S

1 = sinc ( θC
2 )/2, and

f S
2 = cos

(
θC

2

)[
θB sin

(
θA

2

)
cos

(
θB

2

)

+ θA cos

(
θA

2

)
sin

(
θB

2

)]
.

It is easy to prove that the determinant is antisymmetric,
respectively symmetric, under reflection with respect to the
straight line θA = θB, respectively θA = −θB. Hence, the de-
terminant on the whole plane θA-θB can be reconstructed from
the quadrant defined by θA � 0, −θB � θA � θB (gray area of
Fig. 5).

The points of the set S are those for which the determinant
� vanishes, that is, when sin θC

2 = 0, sin θA
2 = 0, or sin θB

2 = 0,

and when the function f A
0 vanishes. The former case corre-

sponds to the circles
√

θ2
A + θ2

B = 2nCπ, nC = 1, 2, . . . , and
the straight lines θA = 2mπ, θB = 2nπ, m, n integers, and the
latter to θA = θB and to an infinite number of closed curves
(like the egg shaped curve of Fig. 5). Thus, state estimation
is possible on the whole parameter plane with the exception
of the one-dimensional set of points S. The dimension da,b,c,

which ranges from zero (no information is gained about the
state) to three (full knowledge of the state), is depicted in
Fig. 5. In Table I we list bases for the “singular curves” (curves
where the determinant � vanishes) which were analytically
characterized in this work.

When both θA and θB are even multiples of π no informa-
tion is acquired of the system (a = b = c = 0). When only θA

(θB) is an even multiple of π, both B (A) and C measure the
same operator. For points on the parameter plane belonging to
circumferences of radii 2πn, n ∈ Z+, centered at the origin,
though both A and B measure the same observable, C (coinci-
dences) obtains information about a different observable (see
Table I). However, c vanishes for points on the circumferences
for which the difference between θA and θB is an even multiple
of π ; these points correspond to the intersections with the
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TABLE I. On each curve on the parameter space (θA, θB ), Bloch vectors which are linear combinations of the basis vectors can be estimated.
The subscript gives information about the type of curve: horizontal line (H), vertical line (V), circumference (C), and diagonal line (D). Vectors
aD, bD, and cD lie on the same plane.

Curve Nonorthogonal basis vectors

θB = 2πn

θC = √
(2πn)2 + θ2

A

aH = cH = 1
8 sin θA

2

(
2nπ sinc θC

2 , 0, 2(−1)n sin θA
2 + θA sinc θC

2

)
θA = 2πn

θC = √
(2πn)2 + θ2

B

bV = cV = 1
8 sin θB

2

(
2(−1)n sin θB

2 + θB sinc θC
2 , 0, 2nπ sinc θC

2

)
θA = 2πn cos θ

θB = 2πn sin θ

aC
sin θA/2 = bC

(−1)n+1 sin θB/2
= 1

8

[
(−1)n sin

(
θB
2

)
, 0, − sin

(
θA
2

)]
cC = − 1

8 sin
(

θA−θB
2

)(− cos θA
2 sin θB

2 , sin θA
2 sin θB

2 , sin θA
2 cos θB

2

)

θA = θ

θB = θ

θ ′ = θ√
2

aD = − 1
8 sin θ

2

(
1√
2

cos θ

2 sin θ ′ − sin θ

2 cos θ ′, sin θ

2 sin θ ′, sin θ

2 + 1√
2

cos θ

2 sin θ ′)
bD = − 1

8 sin θ

2

(
sin θ

2 + 1√
2

cos θ

2 sin θ ′,− sin θ

2 sin θ ′, 1√
2

cos θ

2 sin θ ′ − sin θ

2 cos θ ′)
cD = − 1

8
√

2
sin θ sin(θ ′)(1, 0, 1)

odd-shaped curves. On the diagonal, and on the odd-shaped
curves, a, b, and c lie on the same plane; hence, only two
independent components of the system’s Bloch vector can be
estimated.

One might think that, due to the symmetry, along the diag-
onal θA = θB only one component of the Bloch vector could
be estimated. In fact, since the interaction Hamiltonians are
proportional to σz and σx, when θA = θB = θ , the Bloch vector
components which can be estimated by meters A and B are
related: if the former allows the reconstruction of (n1, n2, n3) ·
σ, the latter allows the reconstruction of (n3,−n2, n1) · σ.

Intersection of three or four singular curves occur only
when θA and θB are both even multiples of π (no observable
can be estimated). Points where the circles intersect with
only one of the other singular curves, correspond to POVMs
allowing the reconstruction of a single observable. Finally, the
Bloch rank of points at the intersection of only an odd-shaped
curve and the diagonal line is two.

On the regular points and on the circles, coincidences add
new information. The circles are specially interesting, because
both meters allow reconstruction of the same Bloch vector
component. In fact, this is a property of any POVM which
can be parametrized as

⎛
⎜⎝

M−−
M−+
M+−
M++

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

x y x
az − x −y a2z − x
z − x −y az − x

x − (a + 1)z y −za2 − za + x

⎞
⎟⎟⎟⎟⎟⎠σ,

(38)
where a, x, y, z are real numbers. Here contributions propor-
tional to the identity were ignored. Either apparatus gives
information only on the observable σx + aσz. If we use the
simultaneous information about both apparatuses, we can
also obtain information on the observable (a − 1)axσx +
(a2 + 1)yσy + (1 − a)xσz.

VI. SIMULTANEOUS STRONG AND WEAK
MEASUREMENTS

Strong projective measurements, those for which all of the
measurement operators are projectors, occur only for pairs
of parameters in which either θA or θB is an odd multiple of
π and the other vanishes, as shown in Fig. 4. In the same
figure one can see that if one uses pairs of parameters in
which both are odd multiples of π , the resulting measurement
is a POVM. However, for these values, the whole initial
state cannot be estimated, because they belong to one of
the singular curves shown in Fig. 5: either the diagonal line
or one of the odd-shaped curves. Thus, “two simultaneous
projective measurements” permit the determination of only
two components of the Bloch vector.

Weak measurements are associated small values of the
system-probe coupling parameters θA and θB. To estimate
the statistics of a single observable using single-probe weak
measurements, θA � 1, it is necessary to perform an ex-
pansion to order θ2

A. The vector of measurement opera-
tors M = (M−−, M−+, M+−, M++)T is a linear transforma-
tion of the matrices � = (I, σx, σy, σz )T . Hence, we write
M = T(θA, θB)�, where T(θA, θB) is a 4 × 4 matrix. Set-
ting θA = r cos φ, θB = r sin φ, and assuming r � 1 we have,
to second order in r, T(r, φ) ≈ T0 + r2

8 T2(φ). Here T0 is
a matrix whose only nonvanishing entry is the component
(1, 4), T(1,4)

0 = 1 (for small r, the probability p++ is close
to unity, the remaining ones pkl are close to zero). Taking into
account that T2(φ) is given by

⎛
⎜⎜⎜⎝

0 0 0 0

cos2(φ) 0 0 cos2(φ)

sin2(φ) sin2(φ) 0 0

−1 − sin2(φ) 0 − cos2(φ)

⎞
⎟⎟⎟⎠, (39)
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we see that, unless φ is an integer multiple of π/2, two Bloch
vector components can be estimated. Indeed,

sz = 8

r2 cos2(φ)
P−+ − 1, sx = 8

r2 sin2(φ)
P+− − 1.

The expansion of T(r, φ) as a power series of r, shows
that, although the third order and the fourth order are both
nontrivial, it is necessary to go to fourth order to be able to
estimate three independent components of the Bloch vector.
In other words, we expect that, in order to estimate the whole
system’s initial state, many more runs of the experiments will
be required than those necessary to estimate a single Bloch
component, with a single meter.

VII. GENERALIZATION AND CONCLUSIONS

By studying a particular model we have shown that the
attempt to simultaneously measure two noncommuting qubit
observables, generally allows state estimation (of the mea-
sured system). While each of the meters measures a differ-
ent observable, coincidences of their outcomes permits the
measurement of a third observable. The space of parameters
contains lower dimensional subsets where none, one, or two
components of the Bloch vector (Bloch rank zero, one, and
two) can be estimated. Although the details of these subsets
depend on the particular model under study, the qualitative
behavior of the measurements on the parameter space is
similar to the one discussed in this work.

When the measurement is characterized by four measuring
operators, three independent vectors can be defined. They not
only determine observables which can be measured, but also

allow us to determine the Bloch rank of the measurement (the
dimension of the linear space generated by them).

We have explored some models similar to the model de-
scribed in this paper. Meter-system interaction Hamiltonians
were assumed to be separable and proportional to the operator
I + σz of the corresponding meter. Several choices for system
operators appearing on the interaction Hamiltonians, initial
states of the meters, and decoherence bases were tried. Only
the lines θA = 0 and θB = 0 are singular for any choice of
the initial states of the meters and of the decoherence bases;
when the same initial state and the same decoherence basis
are used for both meters, the line θA = θB is singular. No state
estimation is possible if the initial state of the meter is an
eigenvector of σz or if the decoherence basis is σz.

For the model discussed in this work, attempting to per-
form two projective measurements of different Pauli matrices
results in IICMs of Bloch rank two; simultaneous weak mea-
surements allow complete state estimation, but with a slower
converge rate than the single-meter weak measurement.

Real experimental setups may require us to explore the
interplay between decoherence and system-probe interaction
that we have disregarded in this work. An analysis of the con-
vergence rates of the measurement on the space of parameters
(how many runs of the experiment are needed to estimate an
observable or the statistical operator with a given error) is also
lacking. An exploration of different interaction Hamiltonians,
as well as the extension to qudits might be interesting.

ACKNOWLEDGMENTS

We wish to acknowledge D. Angulo for fruitful discus-
sions, and an anonymous reviewer for his/her insightful com-
ments.

APPENDIX: ELEMENTS OF THE MATRIX D

Recall that θC =
√

θ2
A + θ2

B. The coefficients not explicitly listed below can be given in terms of other coefficients b0(θA, θB) =
a0(θB, θA), b1(θA, θB) = a3(θB, θA), b2(θA, θB) = −a2(θB, θA), b3(θA, θB) = a1(θB, θA), c3(θA, θB) = c1(θB, θA):

a0 = 1

8
cos

(
θA

2

)[
cos

(
θA

2

)
+ θB sin

(
θB
2

)
sin

(
θC
2

)
θC

+ cos

(
θB

2

)
cos

(
θC

2

)]
,

a1 = 1

8
sin

(
θA

2

)[
sin

(
θB

2

)
cos

(
θC

2

)
− θB cos

(
θB
2

)
sin

(
θC
2

)
θC

]
,

a2 = −θA sin
(

θA
2

)
sin

(
θB
2

)
sin

(
θC
2

)
8θC

,

a3 = −1

8
sin

(
θA

2

)[
θA cos

(
θB
2

)
sin

(
θC
2

)
θC

+ sin

(
θA

2

)]
,

c0 = 1

32

[
4 cos

(
θC

2

)
cos

(
θA

2
+ θB

2

)
+ cos(θA − θB) + cos(θA) + cos(θB) + 1

]
,

c1 = 1

8

[
cos

(
θA

2

)
sin

(
θB

2

)
sin

(
θA − θB

2

)
− θB sin

(
θC
2

)
sin

(
θA+θB

2

)
θC

]
,

c2 = −1

8
sin

(
θA

2

)
sin

(
θB

2

)
sin

(
θA − θB

2

)
.
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