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Flow dynamics of the resonances of a two-dimensional circular quantum well
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Bound states and resonances are physically important solutions of the time-independent Schrödinger equation
for a given quantum-mechanical potential. One can find these states using numerical analysis techniques by
searching for poles of the scattering amplitude, or equivalently by locating the zeros of particular transcendental
complex-valued functions. We show that the evolution of these solutions displays much deeper behavior than one
may assume when parameters of the potential are varied, giving insight into the relationship between different
types of solutions.
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I. INTRODUCTION

The complex wave-number plane is a rich mathematical
structure, and a rather elegant way to represent the various
types of solutions of the time-independent Schrödinger equa-
tion for quantum-mechanical potentials. This is because it
allows the bound states and resonances of such potentials to
be displayed together in a natural way, and shows the inter-
play between them. The level dynamics of bound states and
resonances for one-dimensional (1D) potentials are studied in
Refs. [1–4]. In particular, using the square-well potential as
an example, it was calculated how these states move around
in the complex wave-number plane as the potential depth
is increased. The trajectories traced out as the states move
around the complex plane are known as flows.

Resonances are ubiquitous throughout all of physics, aris-
ing in mechanical, optical, quantum-mechanical, and gravitat-
ing systems. Moreover, the importance of the phenomenon of
resonance in modern technology is hard to overstate. This is,
in particular, due to significant progress in the field of semi-
conductor nanostructures, microcavity lasers, and biosens-
ing. For theoretical purposes, it is especially useful to know
the complete set of all possible resonances for a particular
quantum-mechanical system for every combination of the po-
tential parameters, as this facilitates the use of techniques such
as the resonant state expansion method (see Ref. [5]). More
broadly, owing to the global importance of resonance effects,
the ability to fully elucidate the evolution of resonances for
any physical system in response to variation of that system’s
parameters will be of great utility.

In this paper, we study the level dynamics of the bound
states and resonances of two-dimensional (2D) potentials,
using a circular finite well as an example. Bound states have
real energy eigenvalues and lie mostly inside the well, while
resonances have complex energy eigenvalues and lie mostly
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outside the well. Possible states of a circular infinite well were
investigated in Refs. [6,7]. Here, we calculate the flows of a
circular finite well as a function of its depth. We found that
the mechanism by which bound states are created beginning
with a potential of effectively zero depth has an interesting
interpretation in terms of the resonance-antiresonance pairs—
that the bound states can in some sense be considered as a
result of the convergence of the corresponding flows to the
positive imaginary axis. We also observe resonances which
never become bound states. In this regard we classify reso-
nances into two sets: those which lead to the generation of
new bound states, and those which converge asymptotically
to a complex limit. Following the common terminology (see
Refs. [8,9]), we will call the first set “internal” resonances
and the second set “external” (“shape”) resonances. In the
context of 2D optical microdisks, the behaviors of internal and
external resonances were studied in detail in Refs. [10–12]
(see also Ref. [13] for a general review). This paper is a
complete treatment of the behavior of complex eigenvalues,
including the internal and external resonances as well as
the bound states, of the 2D Hamiltonian corresponding to a
circular finite well.

II. PROPERTIES OF RESONANT STATES

The coordinate parts ψn(r) of the resonant state wave func-
tions �n(r, t ) are the eigensolutions of the time-independent
Schrödinger equation

[−∇2 + V (r)]ψn(r) = k2
nψn(r), (1)

subject to the outgoing wave boundary condition. For brevity
of notation we adopted the units h̄ = 1 and μ = 1/2, where μ

is the particle mass, and for further convenience we introduced
the wave number kn of the resonant state, which we simply call
the resonance, related to the eigenvalue of the resonant state
as

En = k2
n . (2)

2469-9926/2019/99(4)/042126(7) 042126-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.042126&domain=pdf&date_stamp=2019-04-29
https://doi.org/10.1103/PhysRevA.99.042126


MEETEN, DOCHERTY-WALTHEW, AND MOROZOV PHYSICAL REVIEW A 99, 042126 (2019)

For 2D problems the outgoing wave boundary condition takes
the form

ψn(r) → exp(iknr)√
r

, r → ∞, (3)

where r = |r|.
Solving Eqs. (1) and (2) with the boundary conditions

given by Eq. (3), one arrives at the fact that the eigenvalues
En are in general complex-valued numbers, often called the
complex-valued energies, with real and imaginary parts being
the resonance energy En and the resonance width �n, respec-
tively, i.e.,

En = En − 1
2 i �n, �n > 0. (4)

The (time-dependent) resonant state wave functions, �n(r, t ),
are then

�n(r, t ) = ψn(r) exp(−iEnt ) exp(−�n/2 t ). (5)

In terms of the corresponding wave numbers kn, the
complex-valued energies are expressed as

En = [Re(kn) + i Im(kn)]2. (6)

The bound states are then the states with Re(kn) = 0 and
Im(kn) > 0. Their energies are real negative and their wave
functions ψn vanish far from the potential. For antibound
states, if they exist (see Ref. [14]), Re(kn) = 0 and Im(kn) <

0, the wave functions ψn are purely growing waves outside
of the potential, even though their energies are still real and
negative. All resonant states with Re(kn) �= 0 have Im(kn) <

0. Their energies are complex-valued numbers and their wave
functions ψn(r) oscillate and grow exponentially outside the
potential.

Time-reversal invariance requires that if �n(r, t ) with
the complex-valued energy En is a solution of the time-
dependent Schrödinger equation then �∗

n (r,−t ) with the
complex-valued energy E∗

n should also be a solution of the
same equation. In terms of the coordinate parts of the res-
onant wave functions ψn(r) and the corresponding reso-
nant wave numbers kn, this means that if ψn(r) with kn =
Re(kn) + i Im(kn) satisfies Eqs. (1)– (3) then ψ∗

n (r) with k̃n =
−Re(kn) + i Im(kn) should also satisfy the same equations.
These states with negative real part are henceforth referred to
as antiresonances.

III. RESONANCE CONDITION

The finite circular potential well is described by

V (r) =
{−V0, r < R,

0, r > R,
(7)

where V0 is the depth of the well (positive number) and
R is the radius of the well. The natural geometry of the
problem suggests the use of polar coordinates (r, ϕ). The
time-independent Schrödinger Eq. (1) reduces to

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+ 1

r2

∂2ψ

∂ϕ2
+ κ2ψ (r, ϕ) = 0, r < R,

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+ 1

r2

∂2ψ

∂ϕ2
+ k2ψ (r, ϕ) = 0, r > R,

(8)

where

κ =
√

k2 + V0. (9)

At the boundary of the well, r = R, the wave function ψ and
its derivative have to be continuous. Moreover, for physical
reasons the value of the wave function at the well center
must be finite. These boundary conditions together with the
outgoing condition given by Eq. (3) define the resonant wave
functions in the form of the “whispering gallery” modes, given
as

ψm =

⎧⎪⎪⎨
⎪⎪⎩

NmJm(κr)

(
cos mϕ

sin mϕ

)
, r < R,

Hm(kr)

(
cos mϕ

sin mϕ

)
, r > R,

(10)

where the complex-valued wave numbers kn (resonances)
of the resonant states satisfy the system of transcendental
equations

NmJm(κR) − Hm(kR) = 0,

κ NmJ
′

m(κR) − k H
′

m (kR) = 0. (11)

Here Jm and Hm are Bessel and Hankel functions of the first
kind, respectively, and m = 0, 1, 2, . . . is the angular quantum
number. The constants Nm are given by

Nm = Hm(kR)/Jm(κR). (12)

The angular quantum number m = 0, 1, 2, . . . characterizes
the resonant wave-function variation along the azimuthal di-
rection, with the number of intensity hot spots being equal
to 2m. The resonances, kn, are twofold degenerate for m >

0, and nondegenerate for m = 0. For each m > 0 there are
infinitely many internal resonances and a finite number of
external or shape resonances (see Refs. [10,15]). Then, the
radial quantum numbers qi = 1, 2, . . . and qe = 1, 2, . . . , Q,
where Q is a finite positive integer, will be used to label
different internal and external resonances within the group
of resonances with the same angular quantum number m, in
accordance with increasing real parts of the wave numbers.
Thus, the overall quantum number n includes for the problem
at hand two physical quantum numbers: either m and qi or m
and qe. For the internal resonances which are relatively close
to the real axis of the complex wave-number plane the radial
quantum number qi gives in general the number of intensity
spots in the radial direction.

Further, it follows immediately from Eqs. (11) that the
resonances kn are solutions of the transcendental equation

k Jm(κR)H
′

m (kR) − κ J
′

m(κR)Hm(kR) = 0. (13)

The Hankel function Hm(z) is a multiple-valued function,
which can be represented (see Refs. [16,17]) as

Hm(z) = Jm(z) + i Sm(z) + i
2

π
Jm(z) ln

( z

2

)
. (14)

042126-2



FLOW DYNAMICS OF THE RESONANCES OF A … PHYSICAL REVIEW A 99, 042126 (2019)

Here Jm(z) is a Bessel (single-valued) function, Sm(z) is a
single-valued polynomial given by

Sm(z) = − 1

π

m−1∑
j=0

(m − j − 1)!

j!

( z

2

)2 j−m

− 1

π

∞∑
j=0

(−1) j 1

j!( j + m)!

( z

2

)m+2 j

× [�( j + 1) + �( j + m + 1)], (15)

where �(x) is the digamma function defined as the logarith-
mic derivative of the gamma function �(x) in accordance with

�(x) = d ln �(x)

dx
, (16)

while the function ln(z) is a multiple-valued function defined
on an infinite number of Riemann sheets. However, only
one of those sheets provides the asymptotics for the Hankel
function Hm(z) given by Eq. (3). This physical sheet has a
cut going from the branch point at z = 0 to infinity, and the
standard approach is to place the cut on the negative real axis,
i.e., define a single-valued function ln(z) with the modulus r
and the argument φ as

ln(z) = ln(r) + iφ, −π < φ � π. (17)

But such a choice destroys the time-reversal symmetry of
resonances across the negative imaginary axis (see the last
paragraph of the previous section). In order to keep that sym-
metry, the cut needs to be moved to the negative imaginary
axis as discussed in Ref. [18]. This can be done by redefining
the argument of the function ln(z) in Eq. (17) in accordance
with

φ → φ, −π/2 < φ � π,

φ → φ + 2π, −π < φ � −π/2 . (18)

As a result, the modified (branch cut placed on the negative
imaginary axis) Hankel function will have different values
from the original (branch cut placed on the negative real
axis) function in the third quadrant, preserving the required
symmetry, i.e., fulfilling the condition

[Hm(−z∗)]∗ = Hm(z). (19)

Now, using the standard expressions for the derivatives
of Bessel and Hankel functions (see Refs. [16,17]), we can
rewrite Eq. (13) as

k Jm(κR)H (1)
m+1(kR) − κJm+1(κR)H (1)

m (kR) = 0. (20)

This equation with the modified (branch cut placed on the neg-
ative imaginary axis) Hankel functions fulfilling the required
symmetry given by Eq. (19) is the resonance condition we
analyze. For particular potential depths, V0, and potential radii,
R, it can be solved numerically to obtain the resonances and
bound states of a circular finite well.

If the asymptotics of Eq. (20) are studied for V0 → ∞, it
becomes apparent that the limiting behavior of the external
resonances, for which qe � Q, is controlled by the zeros of
the Hankel functions of order m. The limiting behavior of

FIG. 1. The locations of complex zeros hm,qe of the Hankel
functions Hm(kR) with the (original) branch cut on the negative real
axis (upper panel) and with the (modified) branch cut on the negative
imaginary axis (lower panel).

the internal resonances is influenced by the locations of the
zeros of Bessel functions, which are real numbers. When the
potential depth exceeds some critical value, these real zeros
eventually result in purely imaginary values for kR, which are
bound states.

The distribution of complex zeros hm,qe , which has no
symmetry for the Hankel functions with the original cut
(see Refs. [19,20]), becomes symmetric with respect to the
negative imaginary axis for the Hankel functions with the
modified branch cut (see Fig. 1). It is known (see Ref. [21])
that there is only a finite number of such zeros for a given
m, which correspond to the number of external resonances,
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Q, for that m. In the fourth quadrant of the complex kR plane
for the Hankel functions with the original cut, or in both the
third and fourth quadrants for the Hankel functions with the
modified cut, the number of external resonances for a given
m is Q = 0 if m = 0 or 1, Q = m/2 if m is even, and, finally,
Q = (m − 1)/2 if m is odd.

IV. RESONANCE FLOWS

In this paper, a method originally due to Wagon (see
Ref. [22]) was adapted such that the complex equation f (z) =
0 is viewed from the vantage of the real system; i.e., given that
f (z) = u(x, y) + iv(x, y), one must solve the system

u(x, y) = 0,

v(x, y) = 0. (21)

The zero level curves of one of these functions are then
plotted, and for every point along these curves the sign of the
other function is tested. Where there is a sign change, this
corresponds to an approximate position where both u(x, y) =
0 and v(x, y) = 0, and is thus a crude approximation to a
complex root. These initial “seeds” can be fed into a root-
finding algorithm such as the Newton-Raphson method, and
should converge rapidly to the actual root, since the initial
approximation will be reasonably close to the true root. An
example output of this method is shown in Fig. 2.

It should be noted that the method illustrated in Fig. 2
appears to show extra crossings of the zero levels which we
have not included as physical states. The rationale for this is
that although these points are solutions of the transcendental

FIG. 2. Wagon’s method applied to the case m = 4 for a circular
well of V0 = 10. The gray (black) lines indicate where the imaginary
(real) part of the resonance condition Eq. (15) vanishes. Their
intersection represents a complex root of the resonance condition,
and is indicated by a black point. Note the removal of the extraneous
solutions at kR = ±i

√
10.

resonance condition given by Eqs. (19) and (20) they are not
solutions of the original system of transcendental equations
[see Eq. (11)], which arises from boundary conditions. They
are acquired when recasting the original system as a single
transcendental equation. These extraneous solutions occur on
the imaginary axis at kR = ±i

√
V0, and are filtered out in the

numerical procedure.
It can be fruitful to see how these resonances vary as a

function of the potential depth. The trajectory traced out by
incrementally varying the potential depth and following one
resonance is known as the flow of that resonance. What results
is some truly surprising dynamical richness, complete with
attractors and cycles, as well as a clear picture of the interplay
and conversion between resonances and bound states.

When analyzing the data, three cases emerge: the special
case m = 0 and the cases m > 0 where m is even or odd. Two
types of flows also become apparent: external- or “shape”-
type flows which result in spirals which asymptotically ap-
proach zeros of Hankel functions, and internal-type flows
which are responsible for the generation of new bound states
from resonances in the continuum.

The number and location of zeros of Hankel functions
seem to be the key features that determine the flow behav-
ior. In all cases, these zeros play the role of attractors in
the parlance of dynamical systems theory. The reason for
the aforementioned three cases stems from the fact that the
relevant Hankel functions have different distributions of zeros
for each case. Each zero, or attractor, appears to be “used up”
after influencing a flow, in that each zero alters the trajectory
of only a single flow.

A. Even m > 0

The full flow portrait is symmetric across the imaginary
axis, indicating that time-reversal symmetry now appears
naturally. For these resonances, only the principal branch of
the modified resonance condition [see Eqs. (19) and (20)]
is needed as the number of states is conserved, provided
that degeneracies are taken into account, i.e., that all state
flows in Fig. 3, with the exception of split antibound state
flows (see below), are doubly degenerate. The interesting and
unusual feature of these flows is in their splitting when a
new bound state is generated. To ensure the number of states
is conserved, it is supposed that every time a new doubly
degenerate bound state is created in coincidence with the
generation of a resonance-antiresonance pair very close to the
negative imaginary axis these “quasiantibound” states (states
which resemble antibound states but have a small nonzero
real part) are pulled away from one another by the attractor
character of Hankel function zeros. The quasiantibound states
then appear to recombine asymptotically as their flows move
away from the Hankel zeros. Note that those quasiantibound
state flows in Fig. 3 are actually two flows close together,
with one corresponding to each created bound state: one
from the pair of resonance-antiresonance flows with qi = 1
and one from the pair of resonance-antiresonance flows with
qi = 2. The symmetry in this case accords with the symmetric
distribution of zeros of the modified Hankel function about the
imaginary axis, as shown in Fig. 1(b).
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FIG. 3. Flows of the resonances and antiresonances, shown in
gray, of a 2D circular well of radius R and potential V0 in the complex
kR plane, as V0 is deepened beginning from effectively zero depth,
for values of m = 2 (upper panel) and m = 4 (lower panel). The
labels qi (qe) denote internal (external) flows, respectively. Each
pair of doubly degenerate internal resonance-antiresonance flows
produces a doubly degenerate bound-state flow and two symmetrical
nondegenerate quasiantibound-state flows.

B. Odd m > 0

In this case there is an additional complication. While it is
apparent that the internal flows are time-reversal symmetric,
their coalescence into a new bound state poses a problem.
The number of states is no longer conserved if we consider
only the principal branch of the modified resonance condition
[see again Eqs. (19) and (20)]. Each flow is doubly degenerate

FIG. 4. Flows of the resonances and antiresonances, shown in
gray, of a 2D circular well of radius R and potential V0 in the complex
kR plane, as V0 is deepened beginning from effectively zero depth, for
values of m = 1 (upper panel) and m = 3 (lower panel). The labels
qi (qe) denote internal (external) flows, respectively. Each pair of the
doubly degenerate internal resonance-antiresonance flows produces
a doubly degenerate bound-state flow and a doubly degenerate
quasiantibound-state flow (black) from the adjacent branch.

and produces a doubly degenerate bound state, which means
there are always two states missing as required by state con-
servation when a new bound state is manifest. This problem
can be resolved by augmenting the set of solutions of the
resonance condition with additional antiresonance (quasianti-
bound state) flows which are located in the adjacent branch
and appear upon creation of new bound states, as shown
in Figs. 4 and 5 as a black flow. Note that these figures
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FIG. 5. Same as Fig. 4 but for m = 5.

actually show two such flows which almost coincide: one
upon creation of the bound state from the pair of resonance-
antiresonance flows with qi = 1 and one upon creation of the
bound state from the pair of resonance-antiresonance flows
with qi = 2. We suppose that these supplementary flows must
be doubly degenerate to address the problem of noncon-

FIG. 6. Flows of the resonances and antiresonances, shown in
gray, of a 2D circular well of radius R and potential V0 in the complex
kR plane, as V0 is deepened beginning from effectively zero depth, for
m = 0. Note the absence of any split flows or spirals, which agrees
with the nonexistence of the modified Hankel function H0(z) zeros.

FIG. 7. The probability density |ψn(r)|2 for the first external
resonance with m = 3 and qe = 1 [see Fig. 4(b)]: V0 = 10 (left panel)
and V0 = 80 (right panel). High (low) density is shown as dark
(light). The black dotted ring at r = 1 is the well boundary.

servation. The addition of such flows is also motivated by
the presence of the analogous flows in the even case. The
difference here is that while these flows occur as nondegen-
erate pairs in the even case, as shown in Fig. 3, the lack of
symmetric partner flows dictates that they must now be doubly
degenerate in this case. This is consistent with the asymmetric
distribution of attracting zeros of the original Hankel function,
shown in Fig. 1(a). This hypothesis can be tested by perturbing
the symmetry of the potential with point scatterers, breaking
the degeneracy. If the multiplicities assigned to these states
are correct, the number of flows arising from the unperturbed
cases should be predictable.

C. Special case m = 0

This case (see Fig. 6) immediately distinguishes itself as
unique. The mechanism for creating bound states is different,
in that there is no splitting of the flows into two parts. Instead,
the bound state is created from the origin when resonance-
antiresonance flow pairs approach one another within some
tolerance. The time-reversal symmetry is present in this case,
however more work is needed to explain how this is consistent
with state conservation. The anomalous behavior here is a
reflection of the absence of modified Hankel function zeros
for m = 0.

FIG. 8. The probability density |ψn(r)|2 for m = 3 and V0 = 10,
for the first qi = 1 (left panel) and second qi = 2 (right panel)
internal resonances [see Fig. 4(b)]. High (low) density is shown as
dark (light). The black dotted ring at r = 1 is the well boundary.
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FIG. 9. The probability density |ψn(r)|2 for the ground (left
panel) and first excited (right panel) bound states with m = 3 and
V0 = 80 [see the positive imaginary axis of Fig. 4(b)]. High (low)
density is shown as dark (light). The black dotted ring at r = 1 is the
well boundary.

With reference to the somewhat similar optical problem
discussed in Ref. [10], the flows of internal resonances in that
work go to zeros of Bessel functions on the real axis in the
small opening limit n → ∞, where n is the refractive index of
a 2D microdisk, and no bound states are produced. Moreover,
there are no spirals for the external resonances.

When polar density maps of the eigensolutions are plotted,
the characteristic field pattern of whispering gallery modes
becomes apparent. For particular values of m, there are 2m
“hot spots” in the azimuthal direction, as expected for such
modes. For fixed m, there are increasing numbers of hot spots
in the radial direction as the radial modal index qi is increased.
The case m = 3 was chosen as a representative example
for which to show wave functions, since it encapsulates all
features observed for other values of m. The resulting plots are
shown in Figs. 7–10. The bound states have the expected den-
sity characteristics—the wave function exists almost entirely
inside the potential. Quasiantibound states resemble bound
states inside the potential, but diverge outside the well. The
field plots of the resonances are the most interesting. The plots

FIG. 10. The probability density |ψn(r)|2 for the first (left panel)
and second (right panel) quasiantibound states with m = 3 and V0 =
80 [see black colored flows in Fig. 4(b)]. High (low) density is shown
as dark (light). The black dotted ring at r = 1 is the well boundary.

are highly sensitive to both potential depth and the magnitude
of the imaginary part of the wave number.

V. CONCLUSIONS

The numerical solution of the time-independent
Schrödinger equation for various simple potentials is now
a common and vastly simplified endeavor given the power
of modern computers and the availability of mathematical
software. It is surprising that such rich dynamics emerges
for what is, after all, a simple two-dimensional symmetric
potential. We expect that a similar and perhaps even more
profound response might be observed for other relatively
simple potentials, and this will be investigated in due course.
The remaining question here, however, relates to degeneracy
and the issue of state conservation. This will be addressed
in future work by destroying the symmetry of the potential
by placing pointlike defects inside the well, and also by
distorting the geometry of the potential itself. These methods
will lift the degeneracy of the states, and will likely precipitate
even more intriguing flow dynamics.
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