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The locally constant field approximation (LCFA) has to date underpinned the numerical simulation of quantum
processes in laser-plasma physics and astrophysics, but its validity has recently been questioned in the parameter
regime of current laser experiments. While improvements are needed, literature corrections to the LCFA show
inherent problems. Using nonlinear Compton scattering in laser fields to illustrate, we show here how to
overcome the problems in LCFA corrections. We derive an LCFA+, which, compared with the full QED result,
shows an improvement over the LCFA across the whole photon emission spectrum. We also demonstrate an
implementation of our results in the type of numerical code used to design and analyze intense laser experiments.

DOI: 10.1103/PhysRevA.99.042121

I. INTRODUCTION

Strong electromagnetic fields are found in intense laser-
matter interactions, around astrophysical objects such as
magnetars, and in the collision point of particle colliders.
The coupling between particles and a strong field is, by
definition, larger than unity and so must be accounted for
nonperturbatively. This may be achieved, in the calculation
of quantum processes, by employing the Furry expansion of
QED scattering amplitudes [1]. Analytically, however, such
calculations are limited to simple field models; lasers, for ex-
ample, are almost universally modeled as plane waves [2–4].
Within this model, calculations involving even a single seed
electron are challenging, while experiments typically employ
bunches of the order of 108 electrons and laser pulses which
are tightly focused in space, i.e., far from the plane wave.
In order to bridge the gap between theory and experiment,
particle-in-cell (PIC) simulations are used, in which quan-
tum probabilities are calculated using Monte Carlo event
generators (for a review see [5]). A key ingredient is the
locally constant field approximation (LCFA) [6,7], which
assumes that strong fields can be regarded as instantaneously
constant over the timescales of QED processes. The LCFA
allows known scattering amplitudes in constant crossed fields
(the zero-frequency limit of plane waves) to be adapted
to arbitrary fields in simulations, thus aiding experimental
programs.

However, the LCFA’s region of validity is limited. Consider
nonlinear Compton scattering (NLC), that is, photon emission
from an electron in a strong laser field [6,8–13]. The LCFA
for this process fails in some parts of the emitted photon
spectrum [14] and fails to capture interference effects [14,15]
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and, critically, its applicability in interpreting experimental
results [16–18] has recently been called into question [18,19].
Literature approaches to improving the LCFA are typically
based on adding to it corrections in the form of a gradient
expansion (of a QED result) [20–22]. However, compar-
isons with the LCFA and QED are lacking. An examina-
tion of the corrections (below) reveals that they can give
large and unphysical contributions, rather than the expected
small corrections which improve on the accuracy of the
approximation. These results are not suitable for improving
numerics.

In this paper, using NLC as the context, we identify the
origin of the problems with the LCFA corrections and, cru-
cially, find a method to resolve them. From this, we derive an
improved photon emission rate which reproduces QED results
better than the LCFA. We demonstrate its use in (single-
particle) numerical simulations and provide a prescription
for extending the results to the PIC simulation of particles
interacting with realistic focused pulses.

II. THE LCFA AND BEYOND

To begin, consider an electron of initial momentum pμ

colliding with a plane wave traveling in the kμ direction,
i.e., depending on the phase k · x, of peak intensity parameter
a0, central frequency ω = k0, and arbitrary temporal profile.
Define the invariant energy parameter b = k · p/m2, for m the
electron mass. The electron emits a photon of momentum k′

μ,
which has a light-front momentum fraction s = k · k′/k · p.
The NLC probability may be written as an integral over s
and two phases ϕ and θ , the latter of which parametrizes
interference effects (see [15] and Appendix A for details).

The LCFA is supposed to hold when a0 � 1 and the
electromagnetic field invariants scaled by the Schwinger field
are much less than 1 and the quantum nonlinearity parameter
χ := a0b [3]. The NLC probability is then approximated by a
phase (ϕ) integral over the constant crossed field result but

2469-9926/2019/99(4)/042121(11) 042121-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.042121&domain=pdf&date_stamp=2019-04-23
https://doi.org/10.1103/PhysRevA.99.042121


A. ILDERTON, B. KING, AND D. SEIPT PHYSICAL REVIEW A 99, 042121 (2019)

with the field strength replaced by the local field strength
depending on ϕ. Now, constant field or LCFA results in the
literature are obtained by taking a leading-order asymptotic
limit of the full QED results (see [3,6,22] for examples).
Therefore, the LCFA can be written as the leading term of
some asymptotic expansion of the QED result, and corrections
to this may, as is standard for asymptotic series, give a better
or worse approximation than the leading-order (LCFA) term.
(We will see examples of this below.) Starting from large
a0, we show in Appendix A that when the parameter ζ :=
sa2

0(ϕ)/8b(1 − s) [19] is also large, the asymptotic expan-
sion in a0 can be mapped to a perturbative (or derivative)
expansion of the QED result in (small) inverse powers of
ζ [23]. In this situation corrections to the LCFA are well
behaved and under control. Such corrections have previously
been written down [21,22], but those results are not used by
the community, and have not been implemented in numer-
ical simulations. One reason for this is that for s → 0 or
a0(ϕ) → 0 the “corrections” become very large, rather than
small. This is precisely when the accuracy of the derivative
expansion breaks down. The solution we propose is straight-
forward: In keeping with asymptotic methods, we include
derivative corrections when the change is small compared to
the LCFA, but not when the change is large. We will see
that this strategy makes physical sense and better approxi-
mates QED.

We now write down the standard LCFA and its first cor-
rection, for arbitrary plane-wave fields. Let the two compo-
nents of the plane-wave electric field, made dimensionless, be
ε j (ϕ) := eEj (ϕ)/mω = a0h j (ϕ), where a0 is the peak abso-
lute value and h j is a profile function. From this we define
the local χ factor of the electron and local a0 by χe(ϕ) :=√

ε j (ϕ)ε j (ϕ) b ≡ a0(ϕ)b. The analogous nonlinearity param-
eter for the emitted photon is χγ (ϕ) = a0(ϕ)sb. Define also z
and g by

z(ϕ) :=
(

1

χe(ϕ)

s

1 − s

)2/3

, g(ϕ) := 2

z(ϕ)
+ χγ (ϕ)

√
z(ϕ).

(1)

The LCFA to the probability of NLC is then

PLCFA(ϕ) = −α

b

∫
dϕ

∫ 1

0
ds{Ai1[z(ϕ)] + g(ϕ)Ai′[z(ϕ)]}

=:
∫

dϕ RLCFA(ϕ), (2)

where α ≈ 1/137 is the fine-structure constant. For a constant
crossed field this result is exact, RLCFA ≡ RCCF, thus (2) is
indeed the LCFA. It depends only on local χe(ϕ) (aside from
the flux prefactor 1/b [24]). This locality is what allows for
the identification of RLCFA as a photon emission rate. The
first corrections to the LCFA depend explicitly not only on
the local value of the electromagnetic fields but also on their
derivatives, through the two dimensionless combinations

1

a2
0

F1 = 3ε jε
′′
j + ε′

jε
′
j

45 a0(ϕ)4
,

1

a2
0

F2 = 3ε jε
′′
j − 4ε′

jε
′
j

45 a0(ϕ)4
. (3)
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FIG. 1. (a) Emitted photon spectrum from an electron, γ =
1250, colliding head-on with a monochromatic field of a0 = 5 and
optical frequency ω = 1 eV. (b) Emitted (light-front) energy density,
shown at small s. The LCFA overestimates the QED result across the
spectrum and is blind to the harmonic structure. The LCFA+ follows
the QED curves much more closely and cuts through the harmonics
such that the total (integrated) emitted energy agrees better with the
QED.

Otherwise, the form of the corrections is very similar to that
of the LCFA itself, explicitly,

δR(ϕ) = 1

a2
0

α

b

∫ 1

0
dsF2(ϕ)g(ϕ)

(
Ai(z)

z
+ Ai′(z)

)

− F1(ϕ)

(
g(ϕ) − 1

z

)
(z2Ai(z) + 2Ai′(z)). (4)

Let us illustrate the problems of naively using the LCFA and
its corrections by considering a monochromatic, circularly
polarized field. In this case corrections equivalent to (4)
were written down in [22], Eq. (4.16), but no comparison
with the LCFA was made, nor were problems with the cor-
rections highlighted or resolved. The generic forms of the
QED photon spectrum [6,8], the LCFA, and the corrected
LCFA including (4) (LCFA+) are shown in Fig. 1. We have
F1(ϕ) = −2/45 and F2(ϕ) = −7/45, constants. First, nei-
ther the LCFA nor the LCFA+ recover harmonic structure at
low s [14,19]. The reason is that this structure is generated by
contributions from large θ [14], while (see Appendix A) the
LCFA is explicitly tied to a small-θ expansion [14,19,25,26].
The second problem of the LCFA is that it overestimates the
QED result at larger s. We can clearly see, though, that the
LCFA+ solves this problem of overestimation, agreeing much
more closely with the QED result. It cuts the “middle” of
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the harmonic structure and so, as we have verified, integrated
observables such as the total emitted energy agree much more
closely with QED than those of the LCFA. This improvement
holds down to small s where, from the introductory discus-
sion, we expect things to break down. Here the LCFA+ rate
becomes infinitely negative, as opposed to infinitely positive
in the LCFA, but a rate corresponding to probability per unit
time clearly cannot be negative. This problem comes from
the correction term gAi/z ∼ Ai/z2 in (4). This diverges like
s−4/3 at small s, which is worse than the LCFA, where the
singularity goes like s−2/3 and is integrable. The technical
reason for these behaviors is that expanding the QED result
in the parameter of [19] requires Taylor expanding Kibble’s
effective mass [27] in powers of θ . The mass asymptotes to a
finite value as θ → ∞ [28], but any order of the expansion
naturally gives a power-law dependence, with the approx-
imated mass diverging to infinity more rapidly the higher
the order of expansion taken.1 (See Fig. 4 in Appendix A.)
Because it is large θ which determines the small-s behavior
of the photon spectrum [14], poorly approximating the former
introduces errors in the latter.

The above illustrates that naively applying corrections
to the LCFA gives some improvements, but that problems
remain. Further problems are revealed by looking at the
more physical case of pulsed fields. Then (in contrast to
the monochromatic case) the F j (ϕ) will in general blow
up, independently of s, when the field strength goes to zero
a0(ϕ) → 0, as it does both outside the pulse and also when-
ever the field oscillates. Numerical investigation shows that
this is where the apparently small corrections become large:
The corrected rate (4) exhibits very large peaks which exceed
the LCFA result and which do not appear in the full QED
result. (The Airy functions go to zero exponentially faster in
the same limit, so there is no divergence, but we can still have
F j large while the Airy functions remain small, leading to the
large peaks.)

Physically, we expect only low emission from regions of
very small a0(ϕ) and hence negligible contributions to the
total probability. Observe that, despite the nature of its asymp-
totic series, the leading-order LCFA gets this behavior right,
returning zero at low intensity; when χe ∼ a0(ϕ) → 0 the
Airy functions go to zero exponentially quickly (and there are
no prefactors), killing low-intensity contributions. In this way
the LCFA self-regulates, removing contributions from small
a0(ϕ) which we expect to be small. Thus, in this situation, the
leading-order asymptotic result (the LCFA) is enough. Thus
we do not include the correction δR at low intensity. Practi-
cally, this just means filtering the correction (4) by multiplying
it by �i := �(a(ϕ) − c) for some positive constant c to be
determined below.

Returning now to the low-s behavior, we also need to
make sure that the rate stays positive. [This is not fulfilled
even by the full QED rate dP/dϕ because of quantum in-
terference effects, which frequently give negative contribu-
tions [29]. However, our interest is not in directly approximat-

1For a finite pulse it approaches the electron rest mass m, while for
an infinite plane wave the limiting value is the intensity-dependent
effective mass m� [28].

FIG. 2. Double differential QED probability showing that low
s corresponds to large r⊥, i.e., large angles. The parameters are
γ = 1000, a0 = 5, short pulse envelope g = cos2(ϕ/8)�(4π − |ϕ|),
and circular polarization. The finite value of the spectrum as s →
0 comes from the first harmonic, for large angles, which can be
described by the usual Klein-Nishina formula for linear Compton
scattering. The horizontal dashed line shows the angular cutoff r⊥ =
7a0.

ing QED observables, which are readily calculable by other
means [30,31], but in generating an improved rate suitable
for eventual implementation in MONTE CARLO (MC) codes.]
Because of its singular behavior at low s, the magnitude
of the LCFA correction exceeds that of the LCFA below
some small s and the corrected rate becomes negative. [This
assumes F2(ϕ) < 0, which seems to be the generic case;
fringe cases are discussed in Appendix D.] Hence we again
exclude corrections to the LCFA, as for low intensity, above.
Unlike for low intensity, though, the standard LCFA does not
gives a physically sensible result, diverging at low s instead of
going to a constant [19,26]. There is therefore still a need to
fix the low-s behavior of the LCFA itself.

Consider Fig. 2, which shows the double-differential QED
spectrum d2P/ds dr⊥ as a function of s and the dimensionless
transverse photon momentum r⊥ = k′

⊥/ms; this has magni-
tude r⊥ = p+

m tan ϑ
2 ∼ γϑ , with ϑ the photon emission angle.

The figure clearly shows that the low-s part of the full QED
spectrum corresponds to wide-angle photon emission, as the
only spectral contribution at small s comes from the spectral
line characterized by s 
 2b/r2

⊥, which is in fact the linear
Compton line. This relation between small s and large angles
raises an important issue regarding numerical implementation
of emission rates. Monte Carlo codes typically assume photon
emission parallel to the electron momentum direction, but
we can now see that this is not applicable at small s, where
photons should rather be emitted at wide angles.

Because of this, and because the LCFA fails at low s, we
conclude that it is advisable to exclude the low-s part of the
photon spectrum in MC codes. Indeed, a low-energy or low-s
cutoff2 is often implemented in simulations to prevent the
emission of large numbers of low-energy photons originating

2The specific value depends on the physical scenario to be studied.
For instance, a cutoff on the order of the electron mass has been
suggested for the investigation of cascades [32], while a cutoff
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in the infrared divergence of the LCFA rates [5,32]. We
therefore choose to impose the required positivity condition
by removing all contributions at small s, from both the LCFA
and its corrections. We do so by imposing a positivity filter,
multiplying the intensity-filtered rate by a Heaviside function
of the form �p := �(dRLCFA/ds + dδR/ds). Altogether, we
define the LCFA+ rate as

dRLCFA+

ds
≡

(
dRLCFA

ds
+ dδR

ds
�i

)
�p. (5)

This is positive and well behaved by construction, and we
will now show that (5) approximates QED results to a better
degree than the LCFA. In Figs. 3(a)–3(c) we consider a short
laser pulse with envelope g = cos2(ϕ/4τ )�(2πτ − |ϕ|). The
introduction of the positivity filter means we are not just
adding a correction to the LCFA, but we are redefining the
LCFA in an improved form. We plot the QED emitted photon
number spectrum dP/ds and spectral energy density sdP/ds,
along with the same spectra calculated with an angular re-
striction on the emitted photon momentum. In Appendix C
we derive analytically the appropriate cutoff angle for the
tractable cases of linear and circular polarization. Here we
take the intermediate value r⊥ < 7a0. The only difference in
the spectra is at small s, for the reasons given above. We also
plot the LCFA, and our LCFA+. For large s, above the angular
cutoff, the LCFA+ shows a significant improvement over the
LCFA. This is particularly clear in Fig. 3(b), which shows
that the LCFA overestimates the emitted energy, whereas the
LCFA+ does much better. Turning to small s, we see that the
behavior of the LCFA+(in which emission at low s is removed
by the positivity filter) matches with that of the angularly
restricted QED rate. Numerical testing shows that the results
are insensitive to the precise value of the intensity cutoff c for
1 � c � 2 for all a0 � 5; in these examples we took c = π/2.
A series of further examples is provided in Appendix B all
showing improvement over the whole emission spectrum for
a wide range of parameters including, notably, intensities as
low as a0 = 2 [35].

Having now formed an LCFA+ which is a demonstrable
improvement on the LCFA, we turn to numerical implemen-
tation. In MC-based codes particles propagate (according to
the Lorentz force equation) over discrete time steps between
instantaneous quantum emission events [5]. Such codes allow
us to model multistage photon emission and pair creation
processes which cannot be calculated analytically [36,37].
Ideally, we would like to simply replace the LCFA rate in
existing codes with the LCFA+ rate. However, our consid-
erations so far have been for plane waves, where laser phase
ϕ is the natural evolution parameter [38,39] and where only
phase derivatives of the laser field can occur. For use in
simulations we need to extend our results to more realistic
laser fields. First, we extend the variable χe to arbitrary fields
using, as in existing approaches, its universal definition χe =
(e/m2)

√
u · F 2 · u in which u is the instantaneous classical

four-velocity of the particle between emission events. Second,

in χγ = O(10−5) has been used in single-particle simulations of
radiation reaction [33,34].
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FIG. 3. (a)–(c) Comparison of the LCFA+ results with QED
for a0 = 10, τ = 4, linear polarization, and γ = 2000. Thick blue
dashed curves labeled QED include a finite angle cutoff, while the
thin curves do not. The LCFA+ shows improvements over the whole
spectrum, much more closely tracking the QED result than the LCFA
does. (d) and (e) Photon spectra, as a function of emitted frequency,
from a Monte Carlo simulation at a0 = 7 and τ = 23.

we convert from dP/dϕ, the probability rate per unit phase,
to a rate per unit time dP/dt . This replaces the prefactor
α/b with mα/γ (t ) [3]. Next we turn to the F j , which at
first sight seem intrinsically tied to plane waves. Applying the
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Frenet-Serret formalism [40], we find that the F j containing
the field derivatives can be written in terms of proper-time
derivatives of the four-velocity as

F1

a2
0

= − (ü · ü) + 3(u̇ · ...
u )

45(u̇ · u̇)2
,

F2

a2
0

= 4(ü · ü) − 3(u̇ · ...
u )

45(u̇ · u̇)2
.

(6)

The right-hand sides of (6) make no explicit reference to the
field in which the particle moves and therefore generalize the
plane wave F j to arbitrary fields. They can be determined
from simulated particle trajectories. (Encouragingly, F1 also
appears in corrections to synchrotron motion, i.e., non-plane-
wave fields [25].) Keeping in mind that current codes assume
a high-energy approximation, one may simply take the over-
dots in (6) to be time derivatives as a first approximation.
Generally, the proper-time derivatives may be traded for time
derivatives using ḟ = γ (t )df /dt .

Finally, we need a notion of intensity, not dissimilar to that
in a plane wave, in order to generalize the intensity filter. This
is a potential restriction on using the LCFA+. Now, at high
energy, as assumed in current codes, particles see any field as
effectively plane wave in a head-on collision [3,21,41]. Using
this, the transverse kick of an electron (relative to its direction
of motion) across a simulation time step, divided by the
electron mass, gives the needed measure of the intensity, as for
plane waves. One can be more explicit for a primary case of
interest, namely, focused laser beams, where there is a natural
laser direction and central frequency. This defines a laser
momentum kμ so intensity can be defined by a0 = mχ/(k · u)
as for plane waves [42]. This completes our candidate general
LCFA+ prescription.

As a first test we have implemented the LCFA+ in a
single-particle code [33]. In Figs. 3(d) and 3(e) we show the
results of an experimentally relevant simulation of a 1-GeV
electron beam colliding with a (plane-wave) background laser
pulse of a0 = 7 and τ = 23 (duration 45 fs) [17,35]. The
LCFA+ results, for which the average number of emission
events per simulation run was n 
 5, follow a similar pattern
to the one-photon emission results above, correcting for the
overestimate of the LCFA. We have thus demonstrated that
our results can be employed numerically, in the same way
as the LCFA, to study multiphoton processes in laser-particle
interactions.

III. CONCLUSION

We have considered corrections to the locally constant field
approximation of nonlinear Compton scattering. As presented
in the literature (see, e.g., [22] for the monochromatic case),
these corrections are not well behaved. The LCFA is, though,
the first term in an asymptotic expansion of the QED result
and thus corrections should be treated as appropriate for
an asymptotic expansion. If the asymptotic parameter is not
large, then these corrections should not be included. Phys-
ically, the reason for this difficulty is that while the LCFA
is intended to work at large a0, this must be understood
as a local statement, and in a pulse a0(ϕ) cannot remain
large indefinitely. We have shown that by adding the lowest-
order correction to the LCFA when it is, in a controlled

manner, small and neglecting the correction when it is large
(consistent with an asymptotic treatment), we can generate
a positive well-behaved rate which gives a significantly im-
proved approximation to the full QED result in plane-wave
backgrounds. The neglect of the LCFA corrections is also
physically motivated. Our results hold over a range of inten-
sity and energy parameters relevant to current and upcoming
laser experiments. We have also demonstrated the numerical
implementation of our results in a single-particle MONTE

CARLO code. Although we focused on nonlinear Compton
scattering, our calculations can be extended directly to the
nonlinear Breit-Wheeler process, the second quantum process
usually included in simulations.
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APPENDIX A: DERIVATION OF THE LCFA
AND ITS CORRECTIONS

Let kμ be a null vector, so k2 = 0, defining the prop-
agation direction of the plane wave. We can always take
k · x = ω(t + z), light-front time, where ω is, e.g., the central
frequency, used to define dimensionless variables. The plane
wave is then described by a potential eAμ(x) = maμ(k · x)
with only nonzero transverse components a⊥ = {ax, ay} (see,
e.g., [4,43]). The dimensionless electric field variables used
in the text, ε⊥(k · x) ≡ eE⊥(k · x)/mω, are then related to the
potential by ε⊥(k · x) = a′

⊥(k · x). Recall that we decompose
the field components into peak amplitude a0 and profile
functions h j by writing ε j (k · x) = a0h j (k · x).

The probability of photon emission in the plane wave
is an integral over s (the emitted photon momentum frac-
tion introduced in the text) and two light-front times, or
phases, ϕ and θ arising as the average and difference of the
interaction point phase in the scattering amplitude and its
complex conjugate. As a result, θ is naturally associated with
quantum interference effects (see [15]). In terms of ϕ and
θ , we define the floating average 〈·〉 over the phase interval
θ by

〈 f 〉 = 1

θ

∫ ϕ+θ/2

ϕ−θ/2
d (k · x) f (k · x), (A1)

and from this Kibble’s (normalised) effective mass [27,28]

μ(ϕ, θ ) = 1 + 〈a2
⊥〉 − 〈a⊥〉2. (A2)

In terms of μ, the energy parameter b, and the photon mo-
mentum fraction s, the total emission probability is compactly
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expressed as [30]

P=− α

πb

∫ 1

0
ds

∫
dϕ

∫
∞
0 dθ sin(x0θμ)

[
1

μ

∂μ

∂θ
+ g〈a′〉2θ

]
,

(A3)

where the leading 1/b comes from state normalization [24],
x0 := s/2b(1 − s), the function g contains spin effects,

g := 1

2
+ 1

4

s2

1 − s
, (A4)

and the integrand of (A3) is a function of a0 and b, in general,
not of χ .

The LCFA is usually said to hold at a0 � 1 and has
been obtained in various cases as an asymptotic limit, in
which emission probabilities are functions of χ alone, up to
normalization. It is however not immediately obvious how
to include corrections to the LCFA starting from the general
QED expressions above, due to the complexity of the multi-
dimensional integrals which must be performed. The existing
literature suggests though that the LCFA is related to a small-θ
expansion of the probability [14,25,26]. We will use this to
express the desired asymptotic expansion to a perturbative
expansion in powers of 1/a0, in doing so encountering a
condition which indicates when the expansion breaks down.

First, rescale θ to a new variable T = a0θ . Doing so
turns the integrand into a function of a0 and χ ; observe that
the argument of sin(·), which is the only place b appears,
behaves as

x0θμ(ϕ, θ ) → s

2χ (1 − s)
T μ(ϕ, T/a0). (A5)

We then expand the entire integrand in powers of 1/a0, at fixed
χ . The lowest-order terms are independent of a0 (and corre-
spond to the formal limit a0 → ∞ at fixed χ ). Using (A5) to
illustrate this point, we find

x0θμ(ϕ, θ ) ≈ s

2χ (1 − s)

(
T + 1

12
T 3h(ϕ)2 + O

(
a−2

0

))
.

(A6)

Figure 4 shows different orders of this expansion. The key
point is that this rescaling and expansion turns the Kibble
mass into, at lowest order, a cubic function, which is typical of
the constant crossed field case. Indeed, these terms lead (see
immediately below) to the LCFA. The higher-order terms,
which begin with a power of 1/a2

0, are to be expanded out
and hence seem to give corrections to the LCFA in powers of
a small parameter. (See also [44] for a 1/a0 expansion of the
trident process.)

To be explicit, consider first only the lowest-order terms.
However, to obtain the LCFA we need to perform a further
change of variables from T to a new variable t such that
the argument of sin(·) is brought into Airy form proper. The
required change of variable is

T =
(

8χ (1 − s)

h2(ϕ)s

)1/3

t . (A7)

Proceeding from here to evaluate the t integrals yields the
LCFA to zeroth order and then the corrections. However,
before describing the calculation, we emphasize an important
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O(T 5)
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Exact

FIG. 4. Expansion of T times the effective mass T μ(ϕ, T/a0) for
a linearly polarized Gaussian pulse with h = sin(φ) exp(−φ2/�2).
The expansion to several orders T n is shown (ϕ = 0, a0 = 5, and
� = 10) for n from 3 (giving the LFCA) to 9. As n increases
the small-T behavior improves, but the large-T behavior worsens,
leading to problems at small s as discussed in the main text.

point. We began with the QED probability and made an
expansion in 1/a0, small. In order to bring the integrals to the
required form to reproduce the LCFA and LCFA+, though,
means using an overall change of variables

θ =
(

8b(1 − s)

a2
0(ϕ)s

)1/3

t (A8)

and an expansion in powers of θ . Hence the change of
variables needed to pass from the general QED result (A3)
to the known LCFA (plus corrections) is singular when local
a0(ϕ) → 0. Considered as a perturbative series, the expan-
sion (A6) represents a good approximation when higher-order
terms that are present, but not included, are negligible. In
terms of the old and new variables, this condition corresponds
to the coefficient relating θ to t in (A8) remaining small, as
otherwise higher powers in the Taylor series will dominate
lower powers. This holds only when

ζ−1/3 :=
(

8b(1 − s)

a2
0(ϕ)s

)1/3

� 1, (A9)

which is violated when a0(ϕ) → 0, locally, or when s → 0.
This confirms earlier results [15,45] and provides a straight-
forward derivation of the result that (A9) is a relevant expan-
sion parameter for the LCFA [19]. We interpret this break-
down at small a0(ϕ) in the sense of an asymptotic series as
giving a condition for when corrections to the asymptotic re-
sult (the LCFA) should be included or discarded. The physical
justification is clear; emission rates are small in regions of
low laser intensity and already the LCFA rates are small there,
producing the expected physics without need of a correction.
The mathematical justification is that in regions of low laser
intensity, the effective asymptotic parameter ζ is no longer
large and asymptotic corrections are therefore not accurate.
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Proceeding, the leading-order term of our expansion brings
the probability to the form

P 
 − α

πb

∫
dϕ

∫ 1

0
ds

×
∫ ∞

0
dt sin

(
zt + 1

3
t3

)[
2t

3z + t2
− 4t

z
g

]
, (A10)

in which z is given by (1). It remains only to perform the t
integrals, turning them into the Airy functions familiar from
the constant field case. The term containing g is simplest:∫ ∞

0

dt

π
t sin

(
zt + 1

3
t3

)
= −Ai′(z). (A11)

Turning to the first term in square brackets in (A10), we
introduce a parameter integral to write the integrand in terms
of cosine, then perform the t integral to obtain the second
derivative of the Airy function; using the Airy differential
equation, one then obtains

−2

3

∫ ∞

0

dt

π

∫ ∞

1
dα t2 cos

[
α

(
zt + 1

3
t3

)]

= 2

3

∫ ∞

1
dα zα−1/3Ai(zα2/3). (A12)

To bring the integral into a more standard form, we change the
integration variable to β defined by zα2/3 = z + β, giving

(A12) =
∫ ∞

0
dβ Ai(z + β ) ≡ Ai1(z). (A13)

Thus we have

P 
 −α

b

∫
dϕ

∫ 1

0
ds Ai1(z) +

(
2

z
+ χγ

√
z

)
Ai′(z), (A14)

which is precisely the LCFA to NLC. It is common in the
literature to replace the s integral with an integral over local
χγ (ϕ) = a0(ϕ)bs, for which

∫ 1

0
ds =

∫ χe(ϕ)

0

dχγ (ϕ)

χe(ϕ)
. (A15)

This completes the calculation of the LCFA terms. The first
correction to the LCFA, (4) in the main text, is found by
including, in (A3) and (A5), terms of order 1/a2

0, expanded
perturbatively. The O(a−2

0 ) term in (A6) is, for example (see
also Fig. 4),

T 5

a2
0

h′
jh

′
j + 3h jh′′

j

720
. (A16)

When expanded out this gives F1 multiplying the same
trigonometric or exponential functions as appear in the LCFA
terms, which again yield Airy functions of the same argument.
Similarly, the expansion of the exponential and of the average
appearing outside it in (A3) generates F2. The explicit calcu-
lation of these terms proceeds similarly to that for the LCFA.

APPENDIX B: EXAMPLES OF THE IMPROVED LCFA

In this Appendix we provide a series of examples illustrat-
ing our improvement of the LCFA over a wide range of pa-
rameters corresponding to χe = 0.024, . . . , 0.91. We compare

with both the full QED rate and the angularly restricted QED
rate, the latter comparison serving to illustrate that the effect
of our filters is essentially the same as imposing an angular
cutoff on the QED rates.

Figure 5 shows the improvement of the LCFA+ relative
to the normal LCFA, even in the low-s region where the im-
proved rate matches much better the angularly resolved QED
rate. It is remarkable that the LCFA+ works well even down
to a0 = 2, where one would not expect local approximations
to hold. This is also relevant for future laser experiments [35].

A quantitative analysis of the improvements is given in
Fig. 6, where we list the relative differences of the total
probabilities as given by the LCFA+ and the LCFA for all
the examples here and in the main text. This confirms that
the improvement of the LCFA+ over the LCFA is signif-
icant. (We find that it is unimportant, for this comparison,
whether we compare with the angularly restricted or full QED
probability).

APPENDIX C: ESTIMATION OF THE SIZE OF
THE LCFA AND LCFA+

As already explained, the global positivity filter in the
LCFA+ implies that it cannot be reduced to the form LCFA
plus correction term. In this Appendix we use the word “cor-
rection” to refer to the extra terms introduced by the derivative
expansion. Here we estimate the size of the different terms of
the LCFA (2) as the leading-order asymptotic approximation
of the full QED expression and the higher-order derivative
terms (4) as next-to-leading-order terms. For a2

0/b large and
s not too small the asymptotic parameter ζ = a2

0s/8b(1 − s)
is large [19] and the LCFA by itself represents a good approx-
imation, with the correction terms small and well behaved.

Looking instead at the infrared behavior for small s � 1
and χe, we find three different classes of terms. These are
IR finite terms, integrable IR-divergent terms proportional
to s−2/3 occurring in both the LCFA and the higher-order
derivative terms, and a non-integrable IR-divergent term pro-
portional to s−4/3 in the correction. We only need to discuss
the latter two cases, starting with the integrable terms.

The IR-divergent, but integrable, term of the LCFA be-
haves as Ai′(0)(s/χ )−2/3 and the corresponding terms in the
correction are

F2

a2
0

Ai′(0)

(
s

χ

)−2/3

,
F1

a2
0

Ai′(0)

(
s

χ

)−2/3

. (C1)

This means that the correction terms remain small when
F j/a2

0 � 1. Hence, as discussed above, the intensity filter
excludes the corrections when the local value of a0 is small
and the corrections become large. In principle, this also sets
limitations on the field gradients (which are hidden in the F j),
which is not surprising given that the corrections have been
expressed as a gradient expansion. Taking for the sake of def-
initeness the case of a circularly polarized plane wave, where
F1 = −2/45 and F2 = −7/45, we can conclude that even for
intensity filter cutoff values O(1) the IR-finite corrections are
well behaved.

Now consider the nonintegrable IR divergent term in the
LCFA+. As s → 0, this term proportional to s−4/3 will out-
grow the LCFA IR-divergent term going like s−2/3. The fact
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FIG. 5. Comparison of the LCFA+ with the QED result (thin blue dashed lines) and the angularly restricted QED result (thick blue dashed
lines) for linear laser polarization and (a)–(c) a0 = 2 and γ = 2000, (d)–(f) a0 = 25 and γ = 10 000, and (g)–(i) a0 = 30 and γ = 5000 and
for circular polarization with (j)–(l) a0 = 5, τ = 2, and γ = 1000. There is improved agreement compared with the LCFA and the effect of the
filters is clearly comparable with the imposition of an angular cutoff. Note that for (a)–(c) a lower intensity filter cutoff of c = 0.5 was used
since the usual value is too close to the peak a0. The finite-angle condition imposed was, in all cases, r⊥ < 7a0.

that already the LCFA is IR divergent, in contradiction to
the exact QED result which approaches a finite value, has
prompted attempts to fix the LCFA [19] or more often to
just impose a low-energy (or small-s) cutoff. In our analysis,
however, we now also have the next-to-leading-order correc-
tion and we can compare the two for small s, giving further
insights into the accuracy of the asymptotic expansion. The
point s = s� where the correction is the same size as the
leading-order term can be calculated as

s� = 2b

a2
0(ϕ)

‖F2‖3/2

2

(
Ai(0)

Ai′(0)

)3/2

. (C2)

Then, according to the IR behavior of the two terms, we find
the approximate scaling

δR

RLCFA
∼

(
s

s�

)−2/3

. (C3)

That means one order of magnitude above s� the ratio is only
0.2, two orders of magnitude above it is only 0.05, and three
orders of magnitude above s� it is only 1%. This analysis
only involves the leading IR-divergent terms and is strictly
only valid for small s � 1. Taking again the case of circular
polarization to estimate the value of the field gradients in F2,
we find s� ≈ 0.05 2b

a2
0 (ϕ)

. For linear polarization, we can find the
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FIG. 6. Quantification of the improvement of the LCFA+ (red)
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scale). Both the full and angularly restricted QED probabilities are
used (� and ∇, respectively).

approximate values for s� ≈ 0.013[2b/a2
0(ϕ)] for laser phases

close to the peak of the electric field.
In the LCFA+ we add the LCFA and the correction.

Because F2 is negative the LCFA+ rate turns negative for
s < s�, and these negative values are removed by the positivity
condition for the rate discussed in the main text.

How does s� compare to typical frequencies of the emitted
photons? To answer this we compare with the first nonlinear
Compton edge, i.e., with the smallest on-axis (r⊥ = 0) fre-
quency of the redshifted first nonlinear Compton harmonic,
which is characterized by, for circular polarization,

s1 = 2b

1 + 2b + r2
⊥ + a2

0

. (C4)

Assuming b � 1 + a2
0 and setting r⊥ = 0, we find that s� < s1

for a0 � 0.23 and s� < 0.1s1 for a0 � 1. This means, for
all relevant cases, that the radiation emitted with light-front
momentum fraction s� (where the rate would become negative
without the positivity condition) is emitted well below the first
Klein-Nishina edge. Such radiation must therefore be emitted
under a large angle r⊥ � 1. Solving (C4) with s1 = s�, we
find that the typical angle r⊥

� ≈ γ θ� ≈ 4.35a0. Repeating the
calculation for linear laser polarization, we find instead r⊥

� ≈
8.4a0. In both cases photons are emitted far outside the usual
1/γ radiation cone. These results motivate our choice for
the angular restriction of the QED emission used in the text,
taking a midpoint value r⊥ < 7a0 for comparison with the
LCFA+.

BWe consider a numerical example, the collision of a
10-GeV electron beam with a laser pulse of a0 = 5 and ω =
1.55 eV. This gives b = 0.12. This corresponds to a cutoff
value of s� = 4.8 × 10−4, which corresponds to a photon
energy of the order of ω� = 4.8 MeV. According to the pre-
scription above, all photons with energy below ω� should be
considered as low energy and discarded from the simulation.
How can it be justified that photons with energies higher
than the electron rest mass should be neglected? The answer
lies in two points. First, s� or ω� should be compared to

the typical frequencies in the photon spectrum. For instance,
we can compare to the Compton edge, which in this case
is s1 = 9 × 10−3 or ω1 = 90 MeV and which represents the
typical energy in the low-energy part of the QED spectrum.
Most of the emitted photons will have energies larger than ω1.
BThe mean energy of the emitted photons can be estimated
using the constant crossed field results as being on the order
of 〈ω〉 = 870 MeV. Since the constant crossed field results
are affected by the infrared divergence, we expect the full
QED result to be even slightly higher [3]. The critical energy
(which bisects the power spectrum) is estimated as ωcrit =
2.4 GeV, i.e., half of the electron energy loss is due to photons
emitted with energies higher than 2.4 GeV. Second, when
it comes to the possibility of subsequent pair production by
the emitted photons, the decisive parameter is χγ , which,
for a head-on collision, is χγ ≈ 2ωω′

m2 a0 ∼ sba0. Pair produc-
tion only occurs with a high probability for χγ ∼ 1 and it
is exponentially suppressed for χγ � 1. For our numerical
example we have χ�

γ = 1.4 × 10−4 � 1. Photons below the
low-energy cutoff cannot produce paris efficiently. More gen-
erally, we can estimate that χ�

γ ∼ s�ba0 ∼ 0.1b2/a2
0 � 1 for

a0 � b. The latter condition requires that we are in the high-
intensity regime of strong-field QED [15,45], in contrast to
the high-energy regime, where the behavior of emission rates
is quantitatively different [15,46,47]. BThe estimates above
show that, as a self-contained description of high-intensity
laser-plasma interactions, it is reasonable to discard all pho-
tons below s� as they (i) only marginally affect the energy
losses of the electrons and (ii) are very unlikely to produce
pairs.

APPENDIX D: FRINGE CASES WITH POSITIVE F2

The sign of F2 is important for the low-s behavior of the
corrections to the LCFA rate, determining whether the rate
goes to plus or minus infinity. For plane-wave pulse shapes
typically considered in the literature, we have found that
F2(ϕ) < 0 is always fulfilled for all reasonable pulse shapes,
as we saw in the case of monochromatic fields. It is never-
theless possible to find pulse shapes for which F2(ϕ) > 0 for
some ϕ. These examples are, though, somewhat contrived,
describing nonstandard pulse shapes. As such we consider
them to be, at least for the case of plane waves, fringe cases.
The situation for general fields is less clear, and a detailed
examination is left for future work.

However, as an initial investigation we have performed
simulations of the classical propagation of electron bunches
through focused Gaussian laser pulses (focal spot 5 μm
and a0 = 10, . . . , 100) in order to understand this physically
relevant case. These calculations show that F2 < 0 holds
everywhere in the vicinity of the laser focus where a0 is
large. We have found that F2(ϕ) > 0 only occurs in re-
gions where a0(ϕ) � 1, far from the pulse focus, and it is
not certain if this genuinely is positivity or an effect due
to numerical error. We therefore looked for F2(ϕ) > 0 in
all regions where a0(ϕ) > 10−6 and found no occurrences.
This implies that the positive values of F2(ϕ), if they exist
somewhere, would in any case be removed by the intensity
filter already present in the LCFA+ for such Gaussian beams.
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FIG. 7. Contour plot of the LCFA+ rate as a function of s and
laser phase ϕ. The green curve is a local low-s cutoff equivalent
to a finite emission angle in QED, determined according to s�(ϕ) =
2b/75a2

0(ϕ).

Returning to general fields, the positivity filter discussed
in the main text protects against the case when F2(ϕ) < 0.
In the fringe case when F2(ϕ) > 0 for some ϕ, we can show
here that a solution is to impose an additional hard cutoff at
small s. To motivate this, consider again Fig. 7, which shows
that the low-s cutoff introduced by the positivity filter matches
well with a corresponding large r⊥ cutoff. Indeed, because at
large r⊥ only linear Compton scattering contributes to the full
rate (see Fig. 2), a small-s cutoff can be mapped to a large-
angle cutoff as s > s�(ϕ) = 2b/[c̃a0(ϕ)]2 for some constant c̃,
motivated by (C2). The value of c̃ can be determined locally
from the magnitude of the field gradients. This means that if
we impose a hard cutoff at low s, s > s�(ϕ), acting as a failsafe
in the case F2(ϕ) > 0, then we can understand the resulting
rate simply as being angularly restricted. In Fig. 7 we used
c̃2 = 75, effectively multiplying (5) by �(s − s∗(ϕ)). This
means that all photons emitted within a cone with aperture
angle ϑ 
 17.3a0/γ are taken into account by the LCFA+
rates (and in a MC code they would be emitted parallel
to the electron), while photons falling outside this cone are
discarded.
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