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Quantum interference test of the equivalence principle on antihydrogen
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We propose to use quantum interferences to improve the accuracy of the measurement of the free-fall
acceleration g of antihydrogen in the gravitational behavior of antihydrogen at rest (GBAR) experiment. This
method uses most antiatoms prepared in the experiment and it is simple in its principle, as interferences between
gravitational quantum states are read out without transitions between them. We use a maximum likelihood
method for estimating the value of g and assess the accuracy of this estimation by a Monte Carlo simulation.
We find that the accuracy is improved by approximately three orders of magnitude with respect to the classical
timing technique planned for the current design of the experiment.
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I. INTRODUCTION

Gravitational properties of antimatter raise an important
question in the context of the matter-antimatter asymmetry
problem [1–4]. Experimental knowledge on this question is
much less precise than for gravitational properties of ordinary
matter [5–7]. For example, the aim of measuring the free-fall
acceleration g of antihydrogen (H) in Earth’s gravitational
field has been approached only recently [8], with the sign
of g not even known yet. Several collaborations are working
with antihydrogen atoms produced at CERN to improve the
accuracy of g measurement in dedicated experiments [9–11].

The Gravitational Behavior of Antihydrogen at Rest
(GBAR) Collaboration is installing an experiment at CERN,
using the techniques of ultracold atom physics to cool down
antihydrogen atoms to microkelvin temperatures [12]. This
makes feasible the aim of measuring g with an accuracy of
the order of 1% by timing the classical free fall of antiatoms
from a well-defined free-fall height [13,14]. In this paper, we
propose to improve the accuracy of this measurement with the
same cloud of ultracold antihydrogen atoms by using the idea
of quantum techniques drawn from experiments performed by
inducing transitions between gravitationally bound quantum
states (GQSs) of ultracold neutrons [15–18].

Ultracold neutrons bounce above a matter surface due
to the repulsive Fermi interaction [19]. For atoms, quantum
bounces may be produced by the rapidly varying attractive
van der Waals–Casimir-Polder interaction above the surface
[20–32]. The mechanism is expected to work with antihy-
drogen atoms, thus preventing their annihilation at the matter
surface [33–36].
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Atoms with a low vertical velocity above the surface are
trapped by the combined action of quantum reflection and
gravity [37,38]. They can thus stay in quantum levitation
states for long times which can exceed 1 s over a helium sur-
face [39]. With the quantum interference technique studied in
this paper, which is inspired by studies of neutron whispering
gallery modes [40], the transition frequencies between these
states are not perturbed by any mechanism inducing transi-
tions. They are well known in the case of perfect quantum
reflection and only submitted to shifts due to the Casimir-
Polder interaction which have been precisely calculated [41].
It follows that the accuracy of the g measurement can be
improved by using quantum interference techniques on these
quantum levitation states.

II. OUTLOOK

In this article we propose a method that consists of mea-
suring the coordinates in space and time of the annihilation
of antihydrogen atoms on a detector, thus producing an in-
terference pattern. Similar methods were used in experiments
on the neutron whispering gallery [40] and we present here a
detailed study of the method applied to antihydrogen atoms.
In contrast to previous ideas [42], there is no need for selection
of a velocity, which allows for a large gain in accuracy while
effectively using most the antihydrogen atoms.

The method assumes simultaneous measurement of many
gravitational quantum states, thus enormously increasing
statistics compared to previous proposals [43,44] which con-
sidered one or a few quantum states. Practical implementation
of this method is also simple, since it does not require preci-
sion optics and mechanics or the selection of a single quantum
state.

We give below a precise description of the quantum inter-
ference technique which should lead to a largely improved
accuracy for g measurement. Starting from the ultracold
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FIG. 1. Schematic of the experimental setup. The mirror, of
length d , is shown as the blue horizontal line and the detector, a
distance H below, as the red horizontal line. X and T are the positions
in space and time of the detection events (ex axis horizontal, ez

axis vertical). The wave packet has initially a mean height h above
the mirror, a dispersion ζ , and a horizontal velocity v0. Parabolas
represent a classical motion with rebounds above the mirror, while
dashed horizontal lines represent the paths through different quantum
states which interfere in the detection pattern.

antihydrogen H
+

ions prepared in the GBAR experiment, the
method appears as the sequence of steps schematized in Fig. 1.

First, the H
+

wave packet is prepared as the ground state
of an ion trap [10,13], submitted to a kick giving it a mean
horizontal velocity v0 and irradiated with a laser photodetach-
ment pulse which releases freely falling H atoms. The kick
can be produced, for example, by electrostatic means or by
the photodetachment process.

Atoms then bounce above a surface, treated here as a
perfect quantum reflector, and the quantum paths correspond-
ing to different GQSs interfere. The interference pattern thus
produced is detected after a macroscopic free fall down to a
horizontal detection plate. Analysis of the distribution in space
and time gives access to the estimation of g.

This estimation is in principle sensitive to the initial distri-
bution of the atoms after the kick, and this distribution will
have to be determined from the envelope of the detection
pattern, as discussed below. In the following, we choose a
simple model for this distribution, which is sufficient for the
purpose of the present paper.

In Fig. 1 as well as in the text, lowercase letters represent
quantities relative to the first stages of preparation and inter-
ference above the mirror, while uppercase letters represent
quantities associated with the free-fall and detection stages.
In the following, g is simply written g and the standard value
g � 9.81 m s−2 is used for numerical applications and plots.

III. INTERFERENCE OF GRAVITATIONAL
QUANTUM STATES

Atoms of mass m are released at height h above the
perfectly reflecting mirror, in a Gaussian wave packet

factorized along the x and z axis �0(x, z) = φ0(x)ψ0(z),
which minimizes the Heisenberg uncertainty relation

ψ0(z) =
(

1

2πζ 2

)1/4

exp

(
− (z − h)2

4ζ 2

)
,

φ0(x) =
(

1

2πζ 2

)1/4

exp

(
− x2

4ζ 2
+ i

mv0

h̄
x

)
, (1)

where ζ is the dispersion of positions, identical along the 2
axis, and v0 the velocity kick.

Here, we consider the simple model where this distribution
is not modified by the kicking mechanism. As stated, this
point will have to be verified in forthcoming experiments, and
this can be done by analyzing the envelope of the detection
pattern. The purpose of the present paper is to evaluate the
accuracy which can be obtained once the initial distribution is
known and our simple model is sufficient for this purpose.

The wave packet obeying the Schrödinger equation re-
mains factorized �t (x, z) = φt (x)ψt (z) as long as the atoms
remain in the quantum levitation states above the reflecting
surface. This condition of separability of the Hamiltonian in
x and z coordinates imposes constraints on the quality of the
mirror surface roughness and material homogeneity, and the
latter can be met.

The horizontal evolution leads to a mere spreading of the
wave packet. The vertical evolution can be decomposed on the
orthogonal basis of Airy functions,

ψn
t (z) = �(z)

Ai(z/�g − λn)√
�g Ai′(−λn)

exp(−iλnt/tg) , (2)

where � is the Heaviside step function describing a perfect
reflection at the surface, Ai is the first Airy function, and
(−λn) its nth 0; tg, �g, and pg are the typical time, length, and
momentum scales determined by h̄, m, and g, respectively:

tg ≡
(

2h̄

mg2

)1/3

� 1.09 ms ,

pg ≡ h̄

�g
≡ (2h̄m2g)1/3 � 1.79 × 10−29 kg m s−1 . (3)

The wave function ψt (z) can be read
∑

n cnψ
n
t (z), with the

cn’s obtained by using the orthogonality properties of the ψn
t

basis. When the vertical dispersion of ψt is sufficiently small
compared with h, they have an analytical expression [36]:

cn � ζ 1/2

�
1/2
g

(8π )1/4

Ai′(−λn)
Ai

(
h

�g
− λn + ζ 4

�4
g

)

× exp

[
ζ 2

�2
g

(
h

�g
− λn + 2

3

ζ 4

�4
g

)]
. (4)

Parameters in the initial wave packet �0, namely, the mean
height h, standard deviation ζ , and velocity kick v0, have to
be chosen so as to optimize the measurement. By tuning the
initial Gaussian wave packet up to reasonable values, one can
indeed achieve different superposition of states. For example,
choosing parameters so that the number of low-lying GQSs
involved remains small leads to a simple interference pattern
with a good contrast on the detector screen. On the contrary,
a mixture of a large number of higher-lying GQSs leads to a
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smaller contrast, because the different states present minima
and maxima at different positions. We restrict the discus-
sion of the range of parameters that can be experimentally
achieved, as known from the existing analysis of the GBAR
experiment [13,14].

We choose for all calculations and plots a length of the
reflecting surface d = 5 cm and a height of free fall H =
30 cm, an initial height above the surface h = 10 μm, and a
position dispersion ζ = 0.5 μm. The latter value corresponds
to atoms released from an harmonic trap with an oscillation
frequency ω/(2π ) = 20 kHz, which is also a velocity disper-
sion �6.3 cm s−1 or a zero-point energy �42 peV (�0.48 μK
in equivalent temperature units).

These parameters lead to a large number of interfering
GQSs, which produces patterns with a high resolution and
allows for a good sensitivity to the value of g, as discussed
below. The final results do not depend in a critical manner
on these choices, though the detailed values are in principle
affected.

The high-lying QGSs are truncated by putting an absorber
at some height above the quantum reflecting mirror [42]. We
account for 100 GQSs, which corresponds to an absorbing
mirror placed at ∼360 μm above the mirror and leads to
∼20% H atoms lost in the absorber.

The interaction of a wave with a rough surface was studied
for neutrons [45–48], and the physics is the same for the
antihydrogen case. The presence of the absorber may induce
a couple of extra quantum states (above the absorber height)
which do not affect significantly the interference pattern,
which involves many states.

Finally, the kick velocity v0 is chosen with the prime
criterion that most prepared antiatoms are used in the mea-
surement. This requires that v0 exceeds the standard deviation
of the initial velocity distribution by a large enough factor.
Another constraint is that most atoms survive their flight
above the reflecting surface in a realistic situation where
quantum reflection is not perfect.

Estimations in [39] have shown that the best surface for that
purpose is liquid helium at a sufficiently low temperature to
suppress the effect of residual vapors, on which antihydrogen
in GQSs can bounce for times exceeding 1 s, which also
applies for a number of bounces exceeding a few hundred.
Additionally, a velocity that is too low results in a final pattern
of detections concentrated around the same spot on the plate,
making accurate estimation more difficult.

Several values are chosen below for the kick velocity which
satisfy all of the constraints discussed above. Figures are
plotted for v0 = 0.8 m s−1 for the sake of good visibility,
while Monte Carlo simulations at the end of the paper are done
with an optimized v0 = 0.25 m s−1.

IV. READOUT OF THE INTERFERENCE PATTERN

The interference pattern produced in the interference zone
above the reflecting surface is read out after a free fall from
the positions in space and time of annihilation events of
antihydrogen at the detector. Since the height of the free fall is
much larger than the position dispersion of the wave packet
above the mirror, the free fall can be considered classical
(more details below). The free fall thus acts in a similar way

FIG. 2. Behavior of πn,m(pz ) for 1 � n, m � 4. The diagonal
cases m = n are real functions, shown as black curves. The nondiag-
onal cases are complex functions, with their real and imaginary parts
plotted, respectively, in blue above the diagonal and in red below the
diagonal.

as a diffraction process, with the space and time positions of
the annihilation event on the detector reading the interaction
time and momentum of the atom leaving the interference zone.

The description of quantum evolution is thus performed
by two different methods in the interference zone and in the
free-fall zone, with the wave function matched at the virtual
surface separating the two zones. This matching corresponds
to the continuity of the wave function (and its derivative) at
the surface x = d with �(d−, z) = �(d+, z), so that we can
write �(d, z) without creating confusion there.

This treatment amounts to neglecting diffraction at the end
side of the mirror and horizontal quantum reflection induced
by the change in the potential landscape at x = d . The same
approximation used in the theoretical description of neutron
whispering gallery modes leads to a satisfactory agreement
with experiments [40,44].

This implies that the relevant quantity after the interference
zone is the squared wave function in the momentum represen-
tation. We denote ψ̃t (pz ) the Fourier transform of ψt (z) and
calculate the relevant signal as the probability in momentum
space of the wave function: :

�t (pz ) = |ψ̃t (pz )|2 =
∑
n,m

cnc∗
mπn,m(pz )eiωnmt ,

πn,m(pz ) ≡ ψ̃n(pz )(ψ̃m(pz ))∗ . (5)

The functions πn,m(pz ) are represented in Fig. 2 for the first
values of n and m. The diagonal cases m = n are real-valued
functions |ψ̃n(pz )|2, shown as black curves. The nondiagonal
cases m �= n give complex functions; their real parts are plot-
ted as blue curves above the diagonal, while their imaginary
parts are plotted as red curves below the diagonal (exchanging
the roles of n and m corresponds to complex conjugation).

The diagonal cases show multibump camel shapes
corresponding to autocorrelation functions of the Fourier
transform of the Airy function (n bumps for πn,n). Meanwhile,
the off-diagonal terms contribute as oscillations with time fre-
quency ωnm ≡ (λn − λm)/tg in the expansion of �t (pz ), with
cross-correlation functions having more complex forms and
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FIG. 3. Probability density in momentum space �t (pz ) at the
end of the interference zone for ζ = 0.5 μm, h = 10 μm, and v0 =
0.8 m s−1 as a function of pz (horizontal axis, unit pg) and t (vertical
axis, unit tg; unit chosen for the distribution so that it is normed).

non-null phases. The final detection picture discussed below
reveals this complex interference pattern, which depends on
the value g, allowing one to estimate g from the observed
pattern.

At this stage, it is relevant to examine function (5) plotted
in Fig. 3 for the values of the initial parameters discussed
above. It corresponds to interference of hundreds of different
GQSs, with a high weight for the lower-lying energy states.
The resulting probability density in the momentum represen-
tation shows quasiperiodic oscillations with a somewhat com-
plex shape. The abrupt transitions from a negative pz to a sym-
metrically positive pz correspond to bounces. The time bounds
are chosen to delimit the portion of the signal that partakes in
the observed interference pattern on the detection plate.

We now compute the current probability density J (X, T )
on the horizontal detection plate, where X and T are the
positions in space and time of the detection event. We as-
sume for simplicity that antiatoms are annihilated with 100%
probability on the detection plate, as their kinetic energy is
high after a free-fall height H = 30 cm. The current J (X, T )
is written using the Wigner function [49,50]. The free-fall
evolution of this function is classical, as the potential varies
linearly with z, which implies the following relations [36],

J (X, T ) =
∫
R2

dPxdPz
Pz

m
WT (X, Z, Px, Pz )

=
∫
R2

d pxdxPz
Pz

m
Wt (x, z, px, pz ),

X = x + pxτ

m
, Z = z + pzτ

m
− gτ 2

2
,

Px = px, Pz = pz − mgτ, τ ≡ T − t, (6)

with WT the Wigner function at time T .
These relations can be solved for parameters t, x, z, px,

and pz in terms of those associated with the detection event. A
second-degree equation has to be solved to extract the free-fall

FIG. 4. Probability current density |J (X, T )| on the detection
plate for ζ = 0.5 μm, h = 10 μm, and v0 = 0.8 m s−1 as a function
of X (horizontal axis; in mm) and T (vertical axis, in ms; unit chosen
for the distribution so that it is normed).

time τ , but the extraction may be simplified by using the
fact that the free-fall height H is much larger than all typical
length scales h, ζ at the end of the interference zone, and
consequently, the final momentum Pz is much higher than the
typical momentum at the end of the interference zone.

Using this macroscopic approximation for the free fall to
the detection zone, we finally write J (X, T ) from the marginal
of the Wigner function after the interference zone, integrated
over the space variable, which is also the probability in
momentum space �:

|J (X, T )| ≡ gm2

τ
|φ̃t (px )|2�t (pz ) ,

t = τ
d

X − d
, τ ≡

√
2H

g
,

px = m(X − d )

τ
, pz = mg

(
T − τX

X − d

)
S. (7)

The probability density |J (X, T )| [J (X, T ) < 0 for freely
falling atoms] is given from the probability density �t (pz )
through a simple anamorphosis and weighting by the proba-
bility density of the horizontal momentum |φ̃t |2. The resulting
|J (X, T )| is plotted in Fig. 4 for the same parameters as in
Fig. 3. The units are millimeters for X and milliseconds for
T , with these scales showing clearly that the event detection
resolution, of the order of 0.1 mm in space and 0.1 μs in time
in the current GBAR design, is largely sufficient for getting
the interference pattern in full detail.

In order to understand the relationship between Fig. 3 and
Fig. 4, it is worthwhile to look at the anamorphosis relations
when fixing T or X and observe the resulting variations of t ,
px, or pz:

δX = 0 → δt = δpx = 0, δpz = mgδT ;

δT = 0 → δt

t
= δpx

px
= − δX

X − d
, δpz = −mgδt . (8)
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FIG. 5. Grids of lines transformed into one another by the
anamorphosis at the end side of the mirror (top) and on the detection
plate (bottom). Orange lines represent constructive interferences;
they correspond to classical free-fall trajectories on the mirror and to
horizontal lines on the detector (δT = 0). White lines are horizontal
in the upper plot (δt = 0) and vertical in the lower plot (δX = 0).
The bounds for the two plots are the same as in Figs. 3 and 4,
respectively.

The bright oblique lines corresponding to constructive inter-
ferences and classical free-fall movements in Fig. 3 become
the bright horizontal lines in Fig. 4, which correspond to
constructive interferences and are parallel to the X axis on
the detector plate. This discussion is illustrated by the two
plots in Fig. 5, where orange lines represent constructive in-
terferences transformed into one another by the anamorphosis.
Meanwhile, white lines, also transformed into one another by
the anamorphosis, are vertical on the detector (δX = 0) and
horizontal in the plot corresponding to the end of the mirror
(δt = 0).

We also stress at this point that the positions of X and T
in the detection pattern are directly measuring the momenta
along the two axes in the initial distribution. Analyzing the
envelope of the detection pattern thus allows one to assess
the parameters of this distribution, which would have to be
done as the first step of the analysis for real experimental data.

Here we subsequently consider that the initial distribution is
known.

V. UNCERTAINTY ESTIMATION

We now estimate the uncertainty in the estimation of the
value of g from the interference pattern registered on the
detection plate. As the distance between fringes depends on
g, it is tempting to measure g directly from it. This technique
is, however, unpractical here, because we have only a small
number of annihilation events with which to sample the details
of the probability distribution. We use a much more robust
maximum likelihood method to estimate the parameter g and
then deduce a variance for this estimation.

We assume that we have 1000 prepared H atoms, which
is also N = 800 detection events with 20% of H atoms lost
in the absorber. We thus draw randomly 800 detection events
in the probability distribution Pg0 , corresponding to an a
priori value of the acceleration, say the standard value g0.
We consider that this random draw of detection events D =
{(Xi, Ti ), 1 � i � N} simulates the output of one experiment.

We then use a maximum likelihood method to get an
estimator ĝ of the parameter g as would be done in the data
analysis of the experiment. This estimator ĝ maximizes the
likelihood of the random draw D to reproduce the distribu-
tions Pg corresponding to different a posteriori values of the
parameters:

LD(g) =
N∏

i=1

Pg(Xi, Ti ),

lnLD(g) =
N∑

i=1

lnPg(Xi, Ti ), (9)

(
∂ lnLD(g)

∂g

)
ĝ

= 0.

Figure 6 shows quadratic fits of the log likelihood functions
(i.e., Gaussian fits of the likelihood functions) around their
extrema. These fits correspond to 15 random draws of 800
events, with each fit yielding an estimator ĝ of the parameter
g and an estimator σ̂g of the dispersion associated with this
estimator:

ln LD(g) ≈ − aDg2 + bDg + cD ,

ĝ = bD
2aD

, σ̂g = 1√
2aD

. (10)

We have normalized the Gaussians so that the variation
of their variance is seen more easily as a variation of their
height. The variation of the peaks shows the dispersion of the
estimator ĝ around g0 for different random draws. The number
of 15 draws has been chosen to illustrate this variance while
simultaneously avoiding confusion in the figure. The variation
of ĝ and the value σ̂g are estimators of the uncertainty in
the measurement of g, which both tend to be reliable if the
statistical efficiency of the method is good [51].

The statistical efficiency of the method is indeed found to
be quite good, as the dispersions σ̂g in Fig. 6 are close to
the Cramer-Rao lower bound given by the Fisher information
Ig in the detection pattern [51,52] (E is used to denote
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FIG. 6. Gaussian distributions obtained by a quadratic fit of the
log-likelihood function calculated for 15 random draws of N = 800
atoms. The Gaussians are normalized so that the variation of their
variance is seen more easily as a variation of their height. Colors have
no meaning; they only allow one to distinguish the various functions.
The horizontal axis scales as (g − g0)/g0 × 105.

expectation values, �2
g is the variance of ĝ):

�2
g � 1

NI (g)
,

I (g) = E

[
− ∂2

∂g2
lnPg

]
= E

[(
∂

∂g
lnPg

)2
]

. (11)

The second expression in (11), giving the Fisher informa-
tion I (g), explains why the precision in the estimation of
g is greater for interference patterns exhibiting fine details
depending on the parameter g. In simple words, these details
act as thin graduations that make it easier to observe small
displacements and distortions of the interference pattern when
g is varied.

In order to give a robust estimation of the variance, we
have finally repeated the full procedure for M different ran-
dom draws of the N points. The histogram shown in Fig. 7
corresponds to M = 2300 such draws of the N points, with the
parameters ζ and h corresponding to Fig. 4, and the velocity
v0 = 0.25 m s−1. The dotted blue line is a Gaussian fit of the
histogram which gives the dispersion �g, now calculated on
a large number M of experiments repeated under the same
conditions:

�g � 7.8 × 10−6g. (12)

The dispersion �g is obtained by repeating a numerical
experiment under conditions where the real experiment cannot
be repeated due to the small number of available H atoms. It is
more reliable than the value obtained directly on a single draw
corresponding to a single experiment. Thanks to the good
efficiency, however, the expectation value of the estimator
σ̂g obtained in a single draw is close to it (E(σ̂g) � 7.5 ×
10−6g � �g), while its relative dispersion is small (dispersion
of σ̂g/E(σ̂g) � 8%).

FIG. 7. Histogram of the relative variations (ĝ − g0 )/g0 × 105

obtained by repeating 2300 times a Monte Carlo simulation on
800 events, for ζ = 0.5 μm, h = 10 μm, and v0 = 0.25 m s−1. The
vertical axis counts the number of events per channel. The dashed
blue line is a Gaussian fit of the histogram.

VI. DISCUSSION

The calculations presented in this paper show that a large
improvement in g measurement accuracy may in principle be
attained using quantum interference methods rather than clas-
sical timing. We now compare quantitatively the uncertainty
of the quantum interference method with that of the classical
timing measurement corresponding to the current design of
GBAR, by using the same parameters in the quantum and
classical methods. To this aim, we repeat the same discussion
as in the previous section for the classical experiment, which
leads to a relative uncertainty on that measurement �g/g =
1.7 × 10−3.

The initial position dispersion ζ = 0.07 μm considered in
the current design of GBAR corresponds to a larger vertical
velocity dispersion, which dominates the relative uncertainty
in that measurement and it leads to the relative uncertainty
�g/g = 1.2 × 10−2 expected for this current design.

The spectacular improvement of �g/g is due partly to the
change in the initial dispersion but the more important effect
is associated with the change from a classical measurement to
a quantum one. The interpretation of this change is intuitively
clear, as the quantum interference pattern contains much more
information than the classical one, which explains why the
uncertainty in the estimation of g is much better.

As discussed above, this analysis is reliable as long as the
variance obtained in the Monte Carlo simulation is close to the
Cramer-Rao lower bound. When the number N of atoms de-
creases, the distance of the two values increases, meaning that
the statistical efficiency is degraded. Our simulations show
that the efficiency would remain good enough if the number
of available atoms was smaller than currently expected, so
that the precision of the quantum method would remain by
far better than that of the classical method.

A lower kick velocity would enhance the duration of the
interference period above the mirror while also increasing
the probability of the atom’s being annihilated. For a realis-
tic treatment of the uncertainty calculation, we should thus
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describe the reflection on the surface by adding an energy-
dependent annihilation probability at each bounce of the atom
above the surface [41]. It would also be necessary to take into
account quantum reflection on the detection plate [35].

Of course, other improvements would be required to de-
velop a reliable data analysis of the experiment when needed,
as many details have been omitted in the preliminary analysis
presented in this paper. We feel that they would not change
the main conclusion of this paper, namely, that the quantum

interference technique opens attractive perspectives for more
accurate equivalence principle tests on antihydrogen atoms.
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