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Enhancing test precision for local Lorentz-symmetry violation with entanglement
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A recent proposal for testing Lorentz-symmetry violation (LSV) presents a formulation where the effect of
violation is described as a local interaction [R. Shaniv et al., Phys. Rev. Lett. 120, 103202 (2018)]. An entangled
ion pair in a decoherence free subspace (DFS) is shown to double the signal-to-noise ratio (SNR) of one ion,
while (even)-N/2 such DFS pairs in a collective entangled state improve SNR by N times, provided the state
parity or the even or odd numbers of ions can be measured. It remains to find out, however, how such fiducial
entangled states can be prepared at nonexponentially small success rates. This work suggests two types of many-
particle entangled states for testing LSV: the maximally entangled NOON state, which can achieve Heisenberg
limited precision; and the balanced spin-1 Dicke state, which is readily available in deterministic fashion. We
show that the latter also lives in a DFS and is immune to stray magnetic fields. It can achieve classical precision
limit or the standard quantum limit (SQL) based on collective population measurement without individual atom
resolution. Given the high interests in LSV and in entanglement assisted quantum metrology, our observation
offers additional incentives for pursuing practical applications of many-atom entangled states.
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I. INTRODUCTION

Invariance under Lorentz transformation constitutes one of
the most fundamental principles of modern physics. A more
complete theory including quantum gravity, however, implies
the possibility or even necessity for Lorentz-symmetry vio-
lation (LSV) [1–3]. Hence, the study of this violation has
attracted wide attention. Over the past 20 years a theoret-
ical framework called the standard-model extension (SME)
[4–6] is developed, which formally contains all possible
symmetry-breaking terms generated by couplings between the
standard fields and the vacuum expectations of the tensor
fields parametrizing symmetry violations. Within the SME,
the symmetry-breaking terms collectively do not cause LSV
in the Planck scale. But in low energy scale (due to sponta-
neously symmetry breaking) every term causes violation in
the presumed absence of the others [5], and can be studied
experimentally.

Of direct relevance to this study concerns several recent
efforts using atoms or ions to test LSV through precision
measurements. The specific LSV term usually concerns the
isotropy of the speed of light (for recent results, please refer
to Ref. [7]), with the most sensitive tests to date using neutral
Dy atoms [8], Ca+ ions [9], and Yb+ ions [10]. An alternative
proposal recently suggests testing atomic level spacing with
an atomic clock [11] (augmented by dynamic decoupling),
predicting an extremely high sensitivity to LSV. Yet another
term in the SME concerns the dependence on the direction of
motion and the momentum of a particle, which also violates
local Lorentz invariance (LLI) [12]. If the total angular mo-
mentum of a physical system is fixed, this latter term becomes
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proportional to the square of the z component of the total
angular momentum operator, as in quadratic Zeeman shift for
an atomic hyperfine spin, which constitutes a typical local
interaction [11].

The first two types of tests mentioned above all reduce
to atomic clock measurements. Their precisions can reach
beyond the classical precision limit, or the standard quantum
limit (SQL) (∝1/

√
N), when ensembles of entangled particles

are employed [13]. Our studies indicate that the third type
of term, an equivalent quadratic Zeeman shift or a local
interaction form, can also be tested beyond the SQL with
entangled particles.

This paper is organized as follows. First we introduce the
relevant background as well as the formulation for the specific
LSV term (from the SME) we study. This is followed by a dis-
cussion of the recent experimental proposal for estimating its
strength with the help of a DFS. Our main contribution is then
presented by suggesting two types of many-atom entangled
states instead. First, the maximally entangled NOON state,
with which Heisenberg limited (HL) precision ∝1/N becomes
possible. Second, the balanced spin-1 Dicke state [14], which
lives in its own DFS and is thus also immune to stray magnetic
fields, can be employed to reach the SQL based on collective
population measurement without requiring individual atom
resolution.

II. LORENTZ-SYMMETRY VIOLATION

Based on the modern description of nature at the most
fundamental level, Lorentz symmetry might be violated at
experimentally accessible energy scales due to spontaneous
symmetry breaking, hence the development of its experimen-
tal test [7–11,15–18]. In relativistic physics, Lorentz sym-
metry implies an equivalence of observation or observational
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symmetry according to special relativity, which is formally
equivalent to stating that the laws of physics stay the same
for all observers moving at constant velocities with respect
to each other in inertial frames. It is also described as the
independence of experimental results on orientation or boost
velocity of the apparatus setup through space [12]. When LSV
is considered for the electron sector within the framework of
SME, the QED Lagrangian (for electron) becomes [4,5]

L = 1
2 i ψ (γν + cμνγ

μ)
←→
D νψ − ψ meψ, (1)

where me denotes the electron mass, ψ is a Dirac spinor, γ μ

are the usual Dirac matrices, and ψ
←→
D νψ ≡ ψDνψ − ψDυψ

with Dυ the shorthand for the covariant derivative. The cμν

tensor in the above Eq. (1) quantifies the strength of LSV for
the electron sector by the frame dependent interaction term,
which gives an energy level shift [18–20]: δHLSV = −[C(0)

0 −
2Uc00/(3c2)]p2/2 − C(2)

0 T (2)
0 /6, responsible for the first two

types of LSV tests mentioned in the last section. Here U is
the Newtonian gravitational potential and the more specific
parameters C(0)

0 and c00 quantifying the strength of LSV have
been discussed and tested before [8], but are not required for
the following discussions.

The relativistic form of rank 2 irreducible tensor oper-
ator T (2)

0 is T (2)
0 = cγ0(γ p − 3γz pz ), with pz the momen-

tum component along the quantization axis fixed in the
laboratory frame. Its nonrelativistic form becomes T (2)

0 =
(p2 − 3p2

z )/me. Thus the second LSV term ∝C(2)
0 of δHLSV

reduces to

δH = −C(2)
0

(
p2 − 3p2

z

)
6me

, (2)

which is responsible for breaking of the symmetry on inde-
pendence of orientation or velocity in a bound electron system
such as a Ca+ ion [9]. Its diagonal matrix element

〈 j, m|T (2)
0 | j, m〉 = [− j( j + 1) + 3m2]〈 j|T (2)| j〉√

(2 j + 3)( j + 1)(2 j + 1) j(2 j − 1)

(3)

is calculated using Wigner-Eckart theorem [9], with j and
m the corresponding quantum numbers for the total and
z-component electron angular momentum. The latter (∝m2

term) corresponds to raw LSV signal. For a physical system
with a fixed j, such as a bound electron system first suggested
in Ref. [11], the LSV dynamics is thus described by an
equivalent Hamiltonian HV = κ j2

z , which is analogous to a
quadratic Zeeman shift.

In earlier LSV tests of the local interaction term Eq. (2),
eigenstates of distinct absolute angular momentum jz (=m)
are chosen in order to extract the relative (time) phase from
a coherent superposition, over days or even longer times. In
Ref. [11], the selected states are | 7

2 ,− 7
2 〉 and | 7

2 ,− 1
2 〉, their

relative time phase is measured by Ramsey interferometry,
sometimes augmented by dynamical decoupling (DD) [21],
as described in the following. In terms of the total angular
momentum operator for a particle, the time evolution operator
for the Ramsey interferometry becomes [22,23]

Uφ = e−iπ jx/2eiφ jz eiπ jx/2 = e−iφ jy ,

with the free evolution term eiφJz (rotation of an angle φ

around the z axis) sandwiched in between two π/2 pulses
that effectively serve as 50:50 beam splitters. Thus the relative
phase φ maps onto the familiar differential optical path of the
Mach-Zehnder interferometry. With the LSV term included
into free evolution, the total time evolution changes into

Uφ,κ = e−iπ jx/2eiφ jz e−iκt j2
z eiπ jx/2 = e−iφ jy−iκt j2

y ,

where the second term in the exponent above ∝κ resembles
the one-axis spin squeezing [24] or its associated quadratic
interaction in nonlinear Ramsey interferometry [25–27]. A
careful examination reveals, however, that this is simply not
the case as the quadratic spin operator j2

z here refers to one
particle rather than the collective spin of an ensemble [24].

It is well known according to parameter estimation theory
[28,29] that an ensemble of uncorrelated particles, even in the
ideal case, provides the best achievable precision for estimat-
ing δκ ∝ 1/

√
N , consistent with the SQL. The total LSV

Hamiltonian for an ensemble of N atoms can be expressed as

HV = κ
(

j (1)
z

)2 + κ
(

j (2)
z

)2 + · · · + κ
(

j (N )
z

)2 ≡ κH, (4)

where j (i)
z denotes jz for the ith atom, and H = ∑N

i=1( j (i)
z )2

is the generator for estimating κ . Evidently the ensemble
evolution operator is

Uφ,κ =
N∏

i=1

e−iφ j (i)
y −iκt ( j (i)

y )2
, (5)

which remains local as HV induces no entanglement if all
atoms are initially in product states. Nevertheless, various
techniques can be implemented for improved estimation
of κ based on simple population measurements in spin
components in the end [11].

Quantum estimation theory [28,29] allows for the precision
of estimating a local parameter to go beyond the SQL, e.g.,
with quantum entangled ensembles. For the LSV term [11]
we discuss, it was pointed out that an entangled pure state of
two Yb+ ions,

1√
2

(∣∣∣∣7

2
,

7

2

〉∣∣∣∣7

2
,−7

2

〉
+

∣∣∣∣7

2
,

1

2

〉∣∣∣∣7

2
,−1

2

〉)
, (6)

gives a factor of
√

2 improvement in the signal-to-noise ratio
(SNR), beating the SQL [9]. In addition, such a two-ion state
forms a decoherence free subspace (DFS), which significantly
suppresses stray magnetic fields. Extrapolating further (in
the Supplemental Material of Ref. [9]), an analogous paired
entangled state

1√
2

(∣∣∣∣7

2
,

7

2

〉⊗ N
2
∣∣∣∣7

2
,−7

2

〉⊗ N
2

+
∣∣∣∣7

2
,

1

2

〉⊗ N
2
∣∣∣∣7

2
,−1

2

〉⊗ N
2

)
(7)

is shown to provide N-times enhanced precision (for N even).
The two states in Eqs. (6) and (7) provide enhanced estimation
of κ , but require parity measurements, i.e., the ability to
determine even or odd of the total numbers of ions projected
into a specific internal state, although Ramsey interferome-
tries are applied to all ions at once. The required parity
measurement, however, represents a serious constrain against
the most significant advantages for ensemble based precision
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measurement: collective manipulations and measurements,
with Ramsey pulses applied to all particles at once indiscrimi-
nately and total populations in different single particle internal
states counted in the end without single atom resolution. In the
following, we suggest two alternative multiparticle entangled
states for estimating κ with enhanced precision.

III. NOON STATE AND THE BALANCED
SPIN-1 DICKE STATE

The state Eq. (7) is very suggestive, as it represents nothing
but an equal superposition of two twin-Fock states [30]. Each
of the twin-Fock modes satisfies m = −m, offering the com-
bined advantages of: DFS or immunity (or insensitivity) to
stray magnetic fields, and a cumulative relative m2-dependent
LSV phase. For any meaningfully large N , however, it is
unclear how such a state can be generated with high yield as
the method of Refs. [9–11] is exponentially ineffective.

More generally, estimating κ starts with encoding an input
state ρ by a unitary transformation U = e−iκtH and follows
with measurements to the output state ρκ = UρU †. The ul-
timate precision is given by the quantum Cramér-Rao bound
(QCRB) [31,32]

δκ � 1√
ν

1

T
√

FQ
, (8)

where FQ denotes quantum Fisher information (QFI) and is
determined by the output state ρκ , T is the time duration of
an ensemble state (used to probe) under HV , and ν is the
number of experimental trials. If the probe state is pure |ψ〉,
QFI simplifies to

FQ = 4(�H)2 = 4(〈H2〉 − 〈H〉2), (9)

which gives the QCRB for a pure probe state [33]

δκ � 1√
ν

1

2T �H , (10)

with the variance (�H)2 = 〈H2〉 − 〈H〉2, bounded by

�H � (�max − �min)/2. (11)

�max and �min are the maximum and minimum eigenvalues of
H [31]. This bound can be achieved by using the initial probe
state (|�max〉 + |�min〉)/

√
2, a cat state with |�max〉 (|�min〉)

the eigenstate of corresponding eigenvalue �max (�min). The
maximum and minimum eigenvalue for H defined in Eq. (4) is
Nλmax and Nλmin respectively, where λmax (λmin) denotes the
maximum (minimum) eigenvalue of the single particle ( j (i)

z )2.
Thus the QCRB is given by

δκ � 1√
ν

1

T N |λmax − λmin| , (12)

which is clearly capable of reaching HL precision δκ ∼
1/N , significantly beyond the SQL. For instance, assum-
ing an ensemble of N spin-1 particles, according to
the analysis above, the QCRB gives δκ � 1√

ν

1
T N , and

a proper initial probe state that saturates this bound is
(| j = 1, m = 1〉⊗N + | j = 1, m = 0〉⊗N )/

√
2, which is noth-

ing but the N-particle GHZ state, or the NOON state [34,35],
a cat state of spin-1 particles all in spin state m = 0 or 1.

The HL estimation of κ in Eq. (12) with the NOON state
discussed above also requires measurement of parity, i.e., P̂ =
(−1)a†

0a0 , where a0 (a†
0) denotes the annihilation (creation) of a

condensed particle in m = 0 spin component. If a π/2 rotation
between m = 0 and m = 1 states is applied to all particles at
once, we find 〈P̂〉NOON = (−1)N/2 cos (Nκt ) [36,37], whose
unambiguous determination calls for single atom resolution
in detecting N . In addition, as with the paired DFS entangled
state of Eq. (7), NOON state with a meaningfully large N
remains to be generated. Were it to become available, such
a Schrödinger cat state is known to be extremely fragile to
the environment perturbations or imperfections of the control
protocols [38–40].

Recent years have witnessed tremendous progresses in the
generations of other forms of entangled ensembles with in-
creasingly larger N [30,41,42]. Compared to the state Eq. (7)
suggested earlier, an analogous superposition based on the
two particle DFS is

1√
2

(|m = 1〉⊗ N
2 |m = −1〉⊗ N

2 + |m = 0〉⊗N
)
, (13)

which is also immune to stray magnetic fields. The above state
reminds us of a superposition of two twin-Fock states Eq. (7),
except for a subtle difference which might make it realizable
in a spin-1 atomic condensate [30]. The two components of
the superposition in Eq. (13), one twin-Fock state and one
Fock state, can both be realized with quality, as the normal
Fock state is simply the polarized state of all atoms in spin
(m = 0) component.

Yet a more promising many-particle entangled state for
estimating κ is the balanced atomic spin-1 Dicke state, which
is readily available for experimental applications [14]. Spin
squeezed [41,43] will also work along the similar line of
thoughts discussed below. Although spin-1/2 particles cannot
be used because ( j (i)

z )2 = 1/4 leading to a constant generator
H = N/4, different m-states of higher spins (pseudospins) can
be employed instead.

Dicke states are broadly defined as the eigenstates of col-
lective spin or angular momentum J2 (�J = ∑

i
�j (i)) and Jz. For

a spin-1 atomic condensate and assuming all spin components
with the same spatial mode function, the balanced Dicke state
with zero magnetization (Jz = 0) is described by the following
wave function:

|D〉 =
N/2∑
k=0

2(N−2k)/2
√

Ck
NCk

N−k/CN
2N |k, N − 2k, k〉, (14)

in the Fock state basis |k, N − 2k, k〉 of k atoms each in j (i)
z =

m = ±1 and the other N − 2k atoms in j (i)
z = m = 0 spin

component [14]. In the notation of Eq. (7), the above basis
state takes the form |1, 1〉⊗k|1, 0〉⊗(N−2k)|1,−1〉⊗k in terms of
spin-1 eigenstate | f = 1, m〉. Ck

N denotes the combinatorial
factor of choosing k out of N . The balanced Dicke state
possesses exceptional coherence [14]. Its basis states also
forms a DFS, and is thus immune to linear Zeeman shifts from
stray magnetic fields like states Eqs. (7) and (13).

The allowed precision limit for estimating κ by the bal-
anced Dicke state is shown in Fig. 1, where potential im-
provement over the SQL, or −10log10(N/δ2κ ), is plotted
in a blue solid line. Although HL (red dashed line) is not
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N

FIG. 1. The quantum Cramér-Rao bound (QCRB) for the bal-
anced spin-1 Dicke state. The black dot-dashed line denotes SQL
(1/

√
N), while the red dashed line refers to the HL (1/N), saturable

by NOON state with parity measurement. The blue solid line shows
the QCRB of the balanced spin-1 Dicke state, which clearly impli-
cates its ability for estimating κ beyond the SQL.

saturated, its QFI scaling shown in Fig. 2 clearly supports
an enhanced precision over the SQL, provided a suitable
measurement scheme is found. Unfortunately, despite of our
earnest effort, we have not been able to find an observable
with its associate measurement protocol to saturate the QFI.
If we follow the standard Ramsey interferometry and measure
J2

x (or J2
z after a π/2 rotation), we find a precision scaled as

∼1.48/N0.46, which asymptotically approaches the SQL, but
not beyond. Nevertheless, we consider this an encouraging
result as single atom resolution in number counting is not
required here. Furthermore, the structure of a DFS facilitates
prolonged coherence time.

In more detail, the numerically computed QFI for estimat-
ing κ by the balanced spin-1 Dicke state Eq. (14) is shown in
Fig. 2. The fitted scaling exponent gives a γ = 1.94 for FQ ∝
Nγ at large N , which indicates that the ultimate precision for
its estimation of κ would asymptotically approach the HL.

FQ N

F
Q

FIG. 2. A numerical fit to the QFI ∝Nγ for the estimation of κ

by the balanced spin-1 Dicke state gives γ ≈ 1.98, implicating that
precision at the HL is possible.

Our proposal is equipped with at least two advantages:
first it can be more readily applied to systems of large
particle numbers; and second the suggested Dicke states are
already available experimentally with more than 10 000 atoms
[14,30]. According to results of Fig. 1, at N = 104 atoms,
the optimal improved measurement sensitivity for the LSV
parameter κ can be close to 2 (for SQL) to 4 (for HL) orders
of magnitude smaller than experiments with two ions [10,11].
The precision for the LSV parameter C(2)

0 likewise can be im-
proved potentially by the same orders of magnitude, according
to the proportional relationship between the parameters κ and
C(2)

0 ,

κ

2π
=

[
�E/

(
hC(2)

0

)]
�

(
j2
z

) C(2)
0 , (15)

which is obtained from Eq. (3) with �E [�( j2
z )] denoting

the energy (angular momentum) deviation (fluctuation) for the
experimentally selected states and h is the Planck constant.
For the balanced Dicke state we suggest with 87Rb atoms,
a rough estimate using the method of Refs. [11,44] gives
�E/hC(2)

0 = 8.6 × 1015 Hz and �( j2
z ) = 1 for the m = 1 and

m = 0 states. Thus, assuming a year-long measurement with
104 atoms, �κ ∼ 10−9 can be expected in the SQL. This
implies the parameter C(2)

0 is bound at the level of 10−25 which
is about 2 orders of magnitude higher than the results reported
previously [10,11].

IV. CONCLUSION

This paper discusses LSV effect for the directional depen-
dent interaction (from the SME) of a single bound valence
electron. A recent proposal for estimating its strength employ-
ing Ramsey interferometry is described, and possibilities of
reaching enhanced estimation precision beyond the SQL in
terms of entangled particles are studied. Two alternative but
less complicated many-particle entangled states are suggested,
both capable of reaching the precision of HL. Of particular
relevance, we show that the balanced spin-1 Dicke state,
which can be deterministically produced in spin-1 atomic
Bose-Einstein condensate of 87Rb atoms [14], lives in a DFS,
and can reach the precision of SQL by collective Ramsey
interferometry without single atom counting resolution. Al-
though its QFI implicates its ability for asymptotically reach-
ing the HL precision, we have not been able to nail down
an actual observable or measurement scheme for achieving
this.

Finally, we note that there exist other LSV terms of the
SME that reduce to interactions proportional to the z com-
ponent of Pauli operators [18] and thus are also testable
using our proposed states. The details of how their associated
energy level shifts arise may be different from our discussed
Hamitonian (4), and deserve further investigations.
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