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Fidelity susceptibility in one-dimensional disordered lattice models
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We investigate quantum phase transitions in one-dimensional quantum disordered lattice models, the Anderson
model and the Aubry-André model, from the fidelity susceptibility approach. First, we find that the fidelity
susceptibility and the generalized adiabatic susceptibility are maximum at the quantum critical points of the
disordered models, through which one can locate the quantum critical point in disordered lattice models. Second,
finite-size scaling analysis of the fidelity susceptibility and of the generalized adiabatic susceptibility show that
the correlation length critical exponent and the dynamical critical exponent at the quantum critical point of the
one-dimensional Anderson model are respectively 2/3 and 2 and of the Aubry-André model are respectively 1
and 2.375. Thus the quantum phase transitions in the Anderson model and in the Aubry-André model are of
different universality classes. Because the fidelity susceptibility and the generalized adiabatic susceptibility are
directly connected to the dynamical structure factor which are experimentally accessible in the linear response
regime, the fidelity susceptibility in quantum disordered systems may be observed experimentally in the near
future.
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I. INTRODUCTION

Quantum phase transitions (QPT) [1] occur at zero tem-
perature when the control parameter in the Hamiltonian of
a quantum many-body system is tuned to a critical value,
termed quantum critical point (QCP). Quantum many-body
system at its QCP exhibits scaling and universality, which
states that the equilibrium properties of physical observables
close to QCP can be characterized by a few critical expo-
nents [1,2]. To extract the entire phenomena at QCP, for
instance, the critical control parameter, the universal criti-
cal exponents, and the scaling functions, physical quantities
borrowed from the quantum information science [3], such as
the quantum entanglement [4,5] and the quantum fidelity [6]
and the fidelity susceptibility [7], have been extensively stud-
ied in various physical systems [4–39]. In contrast to the
order parameter in characterizing phase transition, the ad-
vantage of using concepts in quantum information science
in studying QPTs is that one does not need to know the
microscopic symmetry of the quantum many-body systems in
advance [8].

While most investigations of the fidelity susceptibility
and QPTs concentrate on the traditional quantum systems
driven by competing quantum Hamiltonian [6–39], the
fidelity and fidelity susceptibility in characterizing
localization-delocalization phase transitions in quantum
disordered systems [40–42] are largely overlooked [18,43]. A
natural question is can the fidelity and fidelity susceptibility
be used to locate the QCP in quantum disordered systems?
Can we extract the universal critical exponents and the
universal scaling functions of the QCP in quantum disordered
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systems from the fidelity and fidelity susceptibility? The aim
of this paper is to provide solutions to these problems.

In this work, we study the fidelity susceptibility and the
generalized adiabatic susceptibility in two paradigmatic quan-
tum disordered lattice models, namely the one-dimensional
(1D) Anderson model [40] and Aubry-André model [41,42].
We show the following. (i) One can locate the quantum critical
points in the 1D Anderson model and in the Aubry-André
model from the fidelity susceptibility and the generalized
adiabatic susceptibility. (ii). One can extract the correlation
length critical exponent and the dynamical critical exponent
of the QPT in the 1D Anderson model and in the Aubry-André
model from the finite-size scaling analysis of the fidelity
susceptibility and the generalized adiabatic susceptibility.
Recently, two experiments [44,45], one with a real-random
potential (Anderson model) [44] and one with a quasiperiodic
potential (Aubry-André model) [45], showed that cold atoms
can be employed to simulate disorder effects in quantum
lattice models. Meanwhile, the fidelity susceptibility and the
generalized adiabatic susceptibility are directly connected
to the dynamical structure factor [31,34] which is experi-
mentally accessible in the linear response regime; thus the
universality of fidelity susceptibility and of the generalized
adiabatic susceptibility in the disordered lattice models re-
ported in this work could be experimentally observed in cold
atoms.

This paper is organized as follows. In Sec. II, we briefly
present the quantum disordered models and their quantum
phase transitions. In Sec. III, we review the physics of fidelity
and fidelity susceptibility. In Sec. IV, we show the numerical
results of the fidelity susceptibility in the Anderson model.
In Sec. V, we present the numerical results of the fidelity
susceptibility in the Aubry-André model. Finally, Sec. VI is
a discussion and summary.
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II. QUANTUM DISORDERED LATTICE MODELS

We consider the following disordered Hamiltonian in a
one-dimensional (1D) lattice:

H (�) = −J
N∑

i=1

(c†
i ci+1 + H.c.) + �

N∑

i=1

εic
†
i ci, (1)

where ci and c†
i are respectively the creation and annihilation

operators at site i with i = 1, 2, . . . , N , J is the hopping
amplitude between nearest-neighbor sites, εi is the on-site
potential, and � is the overall strength of the on-site potential.
In the following, we take J as the unity of energy. In this
work, we consider two kinds of disordered models defined by
different forms of local on-site potential εi.

The first kind of model is the Anderson-like disorder [40],
where the on-site potential is distributed uniformly in the
interval

εi ∈ [−1, 1]. (2)

For Anderson-like disorder in one dimension, all eigenstates
of the system are localized for � > 0 and all eigenstates are
delocalized at � = 0. Thus there is a quantum phase transition
at �c = 0. It was shown that [46] the correlation length of the
1D Anderson model at the QCP diverges as ξ ∼ |� − �c|−1/ν

with the correlation length critical exponent ν = 2/3 and the
energy gap above the ground state vanishes as EG ∼ |� −
�c|νz with the dynamical critical exponent z = 2.

The second kind of disordered model is the Aubry-
André (AA) model [41,42], where the on-site potential is
quasiperiodic,

εi = cos(2παi + φ). (3)

Here α = (1 + √
5)/2 is the golden ratio. The disorderlike

effects in the AA model come from the incommensurability
between the local potential and the lattice. Aubry and André
have shown that this model presents a QPT at �c = 2 from
a delocalized phase (� < 2) where all the eigenstates are
extended to a localized phase (� > 2) where all the eigen-
states are localized. For a finite-size lattice, it is convenient
to replace α by αn = Fn+1/Fn where Fn and Fn+1 are two
consecutive Fibonacci numbers and it is well known that
limn→∞ Fn+1/Fn = α. The lattice size can be chosen as N =
Fn for periodic boundary conditions. It was shown that [46]
the correlation length of the Aubry-André model at the QCP
diverges as ξ ∼ |� − �c|−1/ν with the correlation length crit-
ical exponent ν = 1 and the energy gap vanishes as EG ∼
|� − �c|νz with the dynamical critical exponent z ≈ 2.374.

Note that, in both models, the overall strength of the
random potential � can take negative values, which do not
affect the QPTs in both disordered models. In the Anderson
model, � and −� are totally identical because the range of the
local random potential is the same. In the AA model, the local
potential at site i is � cos(2παi + φ), which is equivalent to
−� cos(2παi + φ + π ). Thus, in the AA model, � and −�

are different by any overall π phase shift, which also does not
affect the QPTs in the AA model.

Quantum phase transitions induced by true random disor-
der and induced by quasiperiodic potential are of different uni-
versality classes as demonstrated by superfluid density [46].

Because the Anderson model and the Aubry and André are
two paradigmatic models for understanding localization tran-
sitions, such phase transitions well deserve theoretical studies
in a more physical observable. Next, we show the physics
of the fidelity susceptibility and of the generalized adiabatic
susceptibility and their relations to QPTs.

III. FIDELITY SUSCEPTIBILITY AND
QUANTUM PHASE TRANSITIONS

Let us consider a family of many-body systems with
Hamiltonian

H (λ) = H0 + λH1, (4)

where H0 and H1 are two competing Hermitian operators
and λ is a control parameter. We assume that the many-body
system described by H (λ) undergoes a second-order QPT at a
critical point λ = λc. Close to the QCP, the correlation length
diverges ξ ∝ |λ − λc|−ν with ν being the correlation length
critical exponent and the gap above the ground state van-
ishes as EG ∝ |λ − λc|νz with z being the dynamical critical
exponent. The universal critical exponents ν and z classify
the universality of QPT and govern the universal scaling
of physical observables close to QCP. In the following, we
will review how to extract the critical exponents ν and z
from the fidelity susceptibility and the generalized adiabatic
susceptibility.

The ground-state fidelity is defined as [6] the overlap be-
tween ground states at two different parameters λ and λ + δλ,

F (λ, δλ) = |〈�0(λ)|�0(λ + δλ)〉|. (5)

The fidelity depends on two parameters λ and δλ, where δλ

is usually taken to be small. Because the quantum states of a
many-body system within one macroscopic phase are similar,
the fidelity is approximately one when two ground states are
in the same phase, while the ground states at two sides of a
QCP are qualitatively different, and thus one may expect that
the fidelity exhibits a sharp drop at the QCP. The dominant
contribution in the fidelity is the fidelity susceptibility [7],
which may be defined as

χF (λ) = lim
δλ→0

−2 ln F (λ, δλ)

(δλ)2
. (6)

In the eigenstates representation of the Hamiltonian, the fi-
delity susceptibility is [7]

χF (λ) =
∑

n �=0

|〈�n(λ)|H1|�0(λ)〉|2
[En(λ) − E0(λ)]2

, (7)

where |�n(λ)〉, n = 0, 1, 2, . . . are the eigenstates of H (λ)
with eigenenergy En(λ). Assuming that the Hamiltonian
H (λ) satisfies the eigenvalue equation, H (λ)|�n(λ)〉 =
En(λ)|�n(λ)〉. Equations (6) and (7) can be considered as two
different methods to evaluate the fidelity susceptibility.

If the control parameter is tuned as λ(t ) = λc + btr/r!θ (t )
with θ (t ) being the step function and b the adiabatic control
parameter, then the adiabatic fidelity is the overlap between
the instantaneous ground state |�0(λ(t ))〉 and the time depen-
dent driving state |�(t )〉,

F (t ) = |〈�(t )|�0(t )〉|. (8)
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As the energy gap at the quantum critical point vanishes, thus
the system is excited by the time-dependent driving and the
probability of excitations is [47–49]

Pex = 1 − F (t )2 = b2χ2r+2(λc), (9)

where the adiabatic fidelity susceptibility is [47–49]

χ2r+2(λ) =
∑

n �=0

|〈�n(λ)|H1|�0(λ)〉|2
[En(λ) − E0(λ)]2r+2

. (10)

One can see that the fidelity susceptibility is the generalized
adiabatic susceptibility of order two (r = 0). For r = 1, we
have the generalized adiabatic susceptibility of order four, χ4.

The behaviors of fidelity susceptibility at QCP have been
extensively studied [6–39]. It was shown that the fidelity sus-
ceptibility of a finite system with size L in the neighborhood
of a QCP takes the universal form [15,21]

χF (λ, L) = L2/ν�0((λ − λm)L1/ν ), (11)

where λm is the control parameter at which the fidelity sus-
ceptibility is maximum, ν is the correlation length critical
exponent of the QCP, and �0(x) is a universal scaling function
as it is independent of the size of the system. From Eq. (11),
the maximum of fidelity susceptibility for a system with size
L, χF,max ≡ max[χF (L, λ)] = L2/ν�0(0), and thus we have

χF (λ, L)

χF,max
= �0((λ − λm)L1/ν )

�0(0)
. (12)

Equation (12) implies that if we plot χF (λ,L)
χF,max

for systems of

different sizes as a function of scaled parameter (λ − λm)L1/ν ,
then all curves of different sizes collapse into a single curve
defined by �0(x)/�0(0). Of course, in reality, one needs
to choose ν to obtain the best data collapse. Thus fidelity
susceptibility provides a simple approach to determine the
universal critical exponent ν [8].

The generalized adiabatic susceptibility of a finite system
with size L in the neighborhood of a QCP takes the universal
form [49]

χ2r+2(λ) = L2/ν+2zr�r ((λ − λm)L1/ν ), (13)

where λm is the position of the parameter at which the gener-
alized adiabatic susceptibility is maximum, z is the dynamical
critical exponent, and �r (x) is a set of universal scaling
functions which are independent of the size of the system.
The maximum of the generalized adiabatic susceptibility
for a system with size L, χ2r+2,max ≡ max[χ2r+2(L, λ)] =
L2/ν+2zr�r (0), and thus we have

χ2r+2(λ, L)

χ2r+2,max
= �r ((λ − λm)L1/ν )

�r (0)
. (14)

Equation (14) tells us that if we plot χ2r+2(λ,L)
χ2r+2,max

for systems
with different sizes L as a function of scaled parameter (λ −
λm)L1/ν , then all curves for different system sizes collapse into
a single curve defined by �r (x)/�r (0). In practice, one needs
to choose ν to achieve the best data collapse. Thus investiga-
tions of fidelity susceptibility and of the generalized adiabatic
susceptibility provide a simple approach to extracting the
universal critical exponents ν, z and the universal scaling
function, which determine the universality class of a QPT.

IV. FIDELITY SUSCEPTIBILITY IN
THE ANDERSON MODEL

In this section, we present the numerical results of the
fidelity susceptibility in the 1D Anderson model. We cal-
culate the fidelity susceptibility (in units of 1/J2) through
Eq. (7) and the averaged fidelity susceptibility is obtained
by performing averages over 7000 realizations of a uniform
random potential of a strength � (in units of the hopping
amplitude J). According to the central limit theorem, we
estimate that the relative error bars of the averaged fidelity
susceptibility δχF /χF � 0.1%. In Fig. 1(a), we show the
average fidelity susceptibility for the 1D Anderson model
as a function of the disorder strength � for different lattice
sizes N = 50, 100, 150, 200. One can see that the maximum
of fidelity susceptibility always appears at � = 0, which is
the QCP of the 1D Anderson model. As the disorder strength
increases, the fidelity susceptibility decreases monotonically
because one deviates from the QCP. Also the peak in the fi-
delity susceptibility denoted by χF,max increases as the size of
the lattice increases. We present ln χF,max as a function of ln N
in Fig. 1(b) and a linear fit of the data shows that ln χF,max =
2.985 × ln N − 7.496 and thus the correlation length crit-
ical exponent is ν = 0.670 ± 0.002. While if we plot the
scaled fidelity susceptibility, namely χF (N,�)/χF,max, as a
function of scaled variable (� − �m)N1/ν , then all curves
for different system sizes collapse into a single one when
we choose ν = 0.667 ± 0.002 and �m = 0 [Fig. 1(c)]. The
extracted correlation length critical exponents from Fig. 1(b)
and from Fig. 1(c) are close to the exact solution ν = 2/3 [46].
Furthermore, it seems that the critical exponents extracted
from the data collapse of different lattice sizes [Fig. 1(c)] is
closer to the exact value than that extracted from the fitting
of the peak of the fidelity susceptibility [Fig. 1(b)]. In the
method of collapsing several curves, much more data are used
while few data points are used in the method of fitting the
peak of the fidelity susceptibility. In Fig. 1(d), we present
the distributions of the fidelity susceptibility generalized by
7000 realizations of uniform disorder with strength � = 0.03
for different lattice sizes, N = 50, 100, 150, 200. One can see
that the probability distributions of fidelity susceptibility have
a peak structure, which is close to the average value of the
fidelity susceptibility.

In order to extract the dynamical critical exponent, we
study the generalized adiabatic susceptibility χ4 (in units of
1/J4) in the 1D Anderson model in Fig. 2. In Fig. 2(a),
we show the generalized adiabatic susceptibility χ4 as a
function of disorder strength for different lattice sizes N =
50, 100, 150, 200. Similar to that of the fidelity susceptibility,
one can see that the maximum of the generalized adiabatic
susceptibility also appears at the QCP �c = 0. According to
finite-size scaling theory [Eq. (13)], the peak in the general-
ized adiabatic susceptibility χ4,max ∝ N2/ν+2z. We thus show
the logarithm of the maximum of the generalized adiabatic
susceptibility as a function of the logarithm of the system
sizes in Fig. 2(b) and perform a linear fit to the data, i.e.,
ln χ4,max = a ln N + b with a = 6.961 and b = 1.939. Since
the correlation length critical exponent we have extracted
is ν ≈ 0.667 ± 0.002, thus the dynamical critical exponent
is z = 1.982 ± 0.002, which agrees with the exact solution
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FIG. 1. Universal finite-size scaling of the fidelity susceptibility
in the 1D Anderson model. (a) The averaged fidelity susceptibility
χF (N,�) as a function of disorder strength � (in units of hopping
amplitude J) for different lattice sizes, N = 50 (red circle), N =
100 (blue square), N = 150 (green upper triangle), and N = 200
(magenta lower triangle). (b) The logarithm of the maximum of the
fidelity susceptibility (in units of 1/J2) as a function of the loga-
rithm of the system sizes. Linear fit shows that ν = 0.670 ± 0.002.
(c) Scaled fidelity susceptibility χF (N,�)/χF,max as a function of
scaled variable (� − �m )N1/ν . All curves for different system sizes
collapse into a single curve when we choose the correlation length
critical exponents ν = 0.667 ± 0.002 and �m = 0. (d) Distributions
of the fidelity susceptibility generalized by 7000 realizations of
uniform disorder with strength � = 0.03 for different lattice sizes,
N = 50 (red solid line), N = 100 (magenta short-dashed line), N =
150 (green dotted line), and N = 200 (blue long-dashed line). Here
� is in units of the hopping amplitude J and the fidelity susceptibility
is in units of 1/J2.

FIG. 2. Universal finite-size scaling of the generalized adiabatic
susceptibility χ4 in the 1D Anderson model. (a) The natural log-
arithm of the generalized adiabatic susceptibility χ4(N,�) as a
function of disorder strength � for different lattice sizes, N = 50
(red circle), N = 100 (blue square), N = 150 (green upper triangle),
and N = 200 (magenta lower triangle). (b) The logarithm of the
maximum of generalized adiabatic susceptibility as a function of
the logarithm of the system sizes. Linear fit shows that z = 1.982 ±
0.002. (c) Scaled fidelity susceptibility χ4(N,�)/χ4,max as a function
of scaled variable (� − �m )N1/ν . All curves for different system
sizes collapse into a single curve when we choose the correlation
length critical exponents ν = 0.667 ± 0.002 and �m = 0. Here � is
in units of the hopping amplitude J and the generalized adiabatic
susceptibility χ4 is in units of 1/J4.

z = 2 [46]. In Fig. 2(c), we plot the scaled generalized adi-
abatic susceptibility, χ4(N,�)/χ4,max, as a function of scaled
variable (� − �m)N1/ν ; then all curves for different system
sizes collapse into a single one when we choose ν = 0.667 ±
0.002 and �m = 0 [Fig. 2(c)]. Thus we get the correlation
length critical exponent and the dynamical critical exponent at
the QCP of the 1D Anderson model through finite-size scaling
analysis of the fidelity susceptibility and the generalized adi-
abatic susceptibility, ν = 0.667 ± 0.002, z = 1.982 ± 0.002;
both of them are close to the exact values [46].
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V. FIDELITY SUSCEPTIBILITY IN
THE AUBRY-ANDRÉ MODEL

The Aubry-André (AA) model cannot be analytically
solved except in some extreme cases. But we can numeri-
cally exactly diagonalize the Hamiltonian. Because H (�) is
quadratic, we assume the eigenstate of H (�) takes the form
|�〉 = ∑

j φ( j)c†
j |0〉, where φ( j) is the amplitude of the wave

function at site j. Substituting the assumed wave function
into the Schrödinger equation, we get the following system
of linear equations for the amplitude of the wave function:

−Jφ( j + 1) − Jφ( j − 1) + �φ( j) cos(2πα j) = Eφ( j),
(15)

where j = 1, 2, . . . , N . Diagonalizing the set of linear equa-
tions, we obtain all the eigenenergies and their corresponding
wave functions. Then we can numerically evaluate the fidelity
susceptibility and the generalized adiabatic susceptibility in
the Aubry-André model through Eq. (7) and Eq. (10). For fi-
nite lattice sizes, one can replace α =

√
5+1
2 by αn = Fn+1/Fn,

where Fn and Fn+1 are two consecutive Fibonacci numbers and
we know that limn→∞ Fn+1/Fn = α. Meanwhile, the lattice
size can be chosen as N = Fn for periodic boundary condi-
tions.

We study the finite-size scaling of the fidelity susceptibility
(in units of 1/J2) in the AA model for odd number of lattice
sizes in Fig. 3 and for even number of lattice sizes in Fig. 4.
Figure 3(a) shows the fidelity susceptibility in the AA model
as a function of the disorder strength � for odd number
of lattice sizes N = 89, N = 233, N = 377, and N = 987.
First, one can see that the fidelity susceptibility shows a
peak around the QCP in the AA model at �c = 2. Second,
the peak in the fidelity susceptibility becomes sharper as the
size of the system increases. We then present ln χF,max as
a function of ln N in Fig. 3(b) and a linear fit of the data
shows that ln χF,max = 2.04 × ln N − 6.68 and thus the corre-
lation length critical exponent is ν = 0.98 ± 0.01. We plot the
scaled fidelity susceptibility χF (N,�)/χF,max as a function of
scaled parameter (� − �m)N1/ν for different lattice sizes. All
curves for odd number of system sizes collapse into a univer-
sal curve [Fig. 3(c)] when we choose ν = 1.00 and �m is the
parameter where the χF is maximum. Figure 4(a) shows the
fidelity susceptibility for an even number of lattice sizes, N =
34, N = 144, and N = 610, as a function of control parameter
�. Figure 4(b) presents ln χF,max as a function of ln N and
a linear fit of the data shows that ln χF,max = 1.99 × ln N −
5.35 and the correlation length critical exponent is ν = 1.01 ±
0.01. Figure 4(c) presents the scaled fidelity susceptibility
as a function of scaled control parameter (� − �m)N1/ν . To
achieve data collapse, we choose ν = 1.00 ± 0.01 [Fig. 4(c)].
Although the universal scaling functions are different for the
odd number of system sizes [Fig. 3(c)] and for the even
number of system sizes [Fig. 4(c)], the critical exponent for
collapsing the data in two cases is the same.

To extract the dynamical critical exponent, we study the
generalized adiabatic susceptibility χ4 (in units of 1/J4) in
the AA model for an odd number of lattice sizes in Fig. 5 and
for an even number of lattice sizes in Fig. 6. In Fig. 5(a), we
show the generalized adiabatic susceptibility χ4 as a function
of disorder strength for different odd number of lattice sizes

FIG. 3. Universal finite-size scaling of the fidelity susceptibility
in the Aubry-André model with odd number of lattice sizes. (a) The
logarithm of the fidelity susceptibility χF (N,�) as a function of
disorder strength � for different odd number of lattice sizes, N = 89
(red circle), N = 233 (blue square), N = 377 (green upper triangle),
and N = 987 (magenta lower triangle). (b) The logarithm of the
maximum of fidelity susceptibility as a function of the logarithm of
the system sizes. Linear fit shows that ν = 0.98 ± 0.01. (c) Scaled
fidelity susceptibility χF (N,�)/χF,max as a function of scaled vari-
able (� − �m )N1/ν with �m being the position of the maximum of
the fidelity susceptibility. All curves for odd number of lattice sizes
collapse into a single curve when we choose the correlation length
critical exponents ν = 1.00 ± 0.01. Here � is in units of the hopping
amplitude J and the fidelity susceptibility is in units of 1/J2.

N = 89, N = 233, N = 377, and N = 987. The generalized
adiabatic susceptibility for even number of system sizes, N =
34, N = 144, and N = 610, are presented in Fig. 6(a). One
can see that the maximum of generalized adiabatic suscep-
tibility also appears at the QCP �c = 2. According to the
finite-size scaling theory described in Eq. (13), the peak in the
generalized adiabatic susceptibility χ4,max ∝ N2/ν+2z. We then
show the logarithm of the maximum of generalized adiabatic
susceptibility as a function of the logarithm of the system
sizes in Fig. 5(b) and Fig. 6(b), which are respectively for
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FIG. 4. Universal finite-size scaling of the fidelity susceptibility
in the Aubry-André model with even number of lattice sizes. (a) The
logarithm of the fidelity susceptibility χF (N,�) as a function of
disorder strength � for different even number of lattice sizes, N = 34
(red circle), N = 144 (blue square), and N = 610 (green upper trian-
gle). (b) The logarithm of the maximum of fidelity susceptibility as
a function of the logarithm of the system sizes. Linear fit shows that
ν = 1.01 ± 0.01. (c) Scaled fidelity susceptibility χF (N,�)/χF,max

as a function of scaled variable (� − �m )N1/ν with �m being the
position of the maximum of the fidelity susceptibility. All curves
for even number of lattice sizes collapse into a single curve when
we choose the correlation length critical exponents ν = 1.00 ± 0.01.
Here � is in units of the hopping amplitude J and the fidelity
susceptibility is in units of 1/J2.

an odd number of lattice sizes and for an even number of
lattice sizes. We perform a linear fit of the data in Fig. 5(b) and
Fig. 6(b), ln χ4,max = a ln N + b, with a = 6.77, b = −16.61
[Fig. 5(b)] and a = 6.74, b = −13.15 [Fig. 6(b)]. Because the
correlation length critical exponent ν = 1.00, the extracted
dynamical critical exponent in the AA model is z ≈ 2.38 (odd
system sizes) and z ≈ 2.37 (even system sizes). Both of them
are close to the value extracted from the superfluid density
z ≈ 2.374 [46]. In Fig. 5(c), we plot the scaled generalized
adiabatic susceptibility, χ4(N,�)/χ4,max, as a function of

FIG. 5. Universal finite-size scaling of the generalized adiabatic
susceptibility χ4 in the Aubry-André model with odd number of
lattice sizes. (a) The logarithm of the generalized adiabatic suscep-
tibility χ4(N,�) as a function of disorder strength � for different
odd number of lattice sizes, N = 89 (red circle), N = 233 (blue
square), N = 377 (green upper triangle), and N = 987 (magenta
lower triangle). (b) The logarithm of the maximum of generalized
adiabatic susceptibility for odd number of lattice sizes as a function
of the logarithm of the system sizes. Linear fit shows that z ≈ 2.38 ±
0.01. (c) Scaled generalized adiabatic susceptibility χ4(N,�)/χ4,max

as a function of scaled variable (� − �m )N1/ν . All curves for odd
number of lattice sizes collapse into a single curve when we choose
the correlation length critical exponents ν = 1.00 ± 0.01. Here � is
in units of the hopping amplitude J and the generalized adiabatic
susceptibility χ4 is in units of 1/J4.

scaled variable (� − �m)N1/ν for all odd number of system
sizes; then all curves for different odd number of system
sizes collapse into a single one when we choose ν = 1.00.
Figure 6(c) is the same as that of Fig. 5(c) except for an
even number of system sizes. Thus we get the correlation
length critical exponent ν = 1.00 and the dynamical critical
exponent z ≈ 2.375 at the QCP of the AA model through
finite-size scaling analysis of the fidelity susceptibility and of
the generalized adiabatic susceptibility.
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FIG. 6. Universal finite-size scaling of the generalized adiabatic
susceptibility χ4 in the Aubry-André model with even number of
lattice sizes. (a) The logarithm of the generalized adiabatic suscep-
tibility χ4(N,�) as a function of disorder strength � for different
even number of lattice sizes, N = 34 (red circle), N = 144 (blue
square), and N = 610 (green upper triangle). (b) The logarithm of the
maximum of generalized adiabatic susceptibility for even number of
lattice sizes as a function of the logarithm of the system sizes. Linear
fit shows that z ≈ 2.37 ± 0.01. (c) Scaled generalized adiabatic
susceptibility χ4(N,�)/χ4,max as a function of scaled variable (� −
�m )N1/ν . All curves for even number of lattice sizes collapse into a
single curve when we choose the correlation length critical exponents
ν = 1.00 ± 0.01. Here � is in units of the hopping amplitude J and
the generalized adiabatic susceptibility χ4 is in units of 1/J4.

In the AA model, the fidelity susceptibility (the generalized
adiabatic susceptibility) collapse into two universal curves
for odd numbers of system sizes and for even numbers of
system sizes. This is of course a finite-size effect. For finite
lattice sizes, we replace the α by the ratio of two Fibonacci
numbers Fn+1/Fn and the random potential at site i is εi =
cos(2πFn+1/Fni) for a system with lattice size N = Fn. The
profile of the random potentials are reflection symmetric about
the middle site when we exclude the last site where the
random potential is always fixed at one (εN = 1). However,

FIG. 7. Fidelity susceptibility χF in the Aubry-André model as a
function of disorder strength � for lattice sizes N = 13. Here � is in
units of the hopping amplitude J and the fidelity susceptibility χF is
in units of 1/J2.

for an even number of lattice sizes N = Fn, the lattice of the
system has one middle site where the strength of the random
potential is always fixed at −1, while for an odd number of
lattice sizes N = Fn, there is no middle site. The two different
profiles of the random potential for odd number of lattice sizes
and for even number of lattice sizes govern that the physical
quantities in the AA model for odd number of lattice sizes
and for even number of lattice sizes collapse into two different
universal functions.

Before closing, we note that the typical system sizes one
should consider for using finite-size scaling of the fidelity
susceptibility ranges from ten to several hundreds. For small
lattice sizes, one can extrapolate the true quantum critical
point �c from the estimated critical points �m where the fi-
delity susceptibility presents a peak because finite-size scaling
theory predicts that |�m − �c| ∼ N−1/ν [2,21]. In Fig. 7, we
show the fidelity susceptibility χF (in units of 1/J2) in the
Aubry-André model as a function of disorder strength � (in
units of J) for lattice sizes N = 13. One can see that, even for
such small lattice size, the fidelity susceptibility as a function
of control parameter still presents a peak, while the location
of the control parameter �m where the fidelity susceptibility
is maximum deviates from QCP because |�m − �c| ∼ N−1/ν

[2,21]. Thus the bigger the lattice size of the system, the closer
between the control parameter where the fidelity susceptibility
is maximum and the exact QCP.

VI. SUMMARY

In summary, we have investigated the fidelity susceptibility
and the generalized adiabatic susceptibility in two paradig-
matic disordered models: the 1D Anderson model and the
Aubry-André model. Both of them present delocalization to
localization quantum phase transition as the strength of the
disorder increases. We found that the fidelity susceptibility is
maximum close to the quantum critical point in both models,
through which one can locate the quantum critical point in
disordered systems. Finite-size scaling analysis of the fidelity
susceptibility and of the generalized adiabatic susceptibility
shows that the correlation length critical exponent and the
dynamical critical exponent at the QCP of the 1D Anderson
model are ν = 2/3 and z = 2, which are respectively ν =
1 and z = 2.375 in the Aubry-André model. The fidelity
susceptibility and the generalized adiabatic susceptibility are
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directly connected to the dynamical structure factor [31,34]
which is experimentally accessible through linear response
theory. Recently, two experiments [44,45], one with a real-
random potential (Anderson model) [44] and the other with
a quasiperiodic potential (Aubry-André model) [45], showed
that the disorder effects in quantum lattice models can be
simulated in cold atoms; the universality of fidelity suscep-
tibility in quantum disordered systems may be observed ex-
perimentally in the near future. Besides, we have investigated
the quantum phase transitions induced by disorder in non-
interacting systems from the fidelity susceptibility approach
and it would be very interesting to investigate the fidelity

and the fidelity susceptibility in the many-body localization
transitions [50–56] and the fidelity susceptibility approach
may be able to extract accurate universal critical exponents
at the many-body localization transitions and clarify some
unsolved issues there [56].
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