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The notion of a quantum speed limit (QSL) refers to the fundamental fact that two quantum states become
completely distinguishable upon dynamical evolution only after a finite amount of time, called the QSL time.
A different but related concept is that of minimum control time (MCT), which is the minimum evolution time
needed for a state to be driven (by suitable, generally time-dependent, control fields) to a given target state. While
the QSL can give information about the MCT, it usually imposes little restrictions on it and is thus impractical
for control purposes. In this work, we revisit this issue by first presenting a theory of geometrical QSL for
unitary transformations, rather than for states, and discuss its implications and limitations. Then, we propose a
framework for bounding the MCT for realizing unitary transformations that goes beyond the QSL results and
gives much more meaningful information to understand the controlled dynamics of the system at short times.
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I. INTRODUCTION

Realizing the prospect of quantum-enabled technologies,
such as computation and simulation, demands an extremely
high degree of precision in the control of quantum systems.
Important advances have been made over the past years on
increasing the fidelities for one- and two-qubit operations in
various quantum computing platforms [1–3] and on precise
engineering of interactions in synthetic quantum materials
[4–6]. Since any unitary operation is ultimately the result of
a continuous-time evolution of a quantum system, to avoid
errors the goal is to control these systems as quickly and
accurately as possible, in order to reduce the nonunitary
effects induced by coupling to the environment. Consequently,
it is important to understand the scope and limitations of
controlled quantum dynamics at very short times.

One fundamental limitation is imposed by the so-called
quantum speed limit (QSL). In its original formulation [7–9],
the QSL referred to the fact that the state of a quantum
system evolving according to a time-independent Hamiltonian
would require a finite amount of time to become completely
distinguishable (i.e., orthogonal) to itself. Later on, this notion
was developed as a geometrical result generalizing to the
case of nonorthogonal states [10–12], leading up to results
for driven [13] and open [14–16] quantum systems (a recent
review article on this topic can be found in Ref. [17]).

From the perspective of quantum control, the geometric
QSL is a fundamental limitation to how quickly we can
achieve a predefined target state or transformation. However, a
more stringent limitation is given by the fact that, in every case
of interest, we have a limited set of controls available. Note
that, under certain assumptions, one can show that a system
is fully controllable [18], meaning that by suitably changing
in time that limited set of control fields one can perform any
unitary operation in the corresponding group, say, SU(d ) for
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a d-dimensional Hilbert space. Finding the particular shape of
those fields is usually done using the tools of quantum optimal
control (QOC), which have proven to be extremely useful and
versatile in various quantum information platforms over the
past two decades [19–22].

In QOC problems, we consider a driving Hamiltonian
H[ε(t )], where ε(t ) represents some time-dependent control
field (or a set of them). Given a target unitary V and the
evolution time T , we aim to minimize ||U (T ) − V || in some
appropriate metric, where U (T ) is the evolution operator at
the final time. It is expected that for each particular target,
there is a minimum control time (MCT), i.e., the minimum
value of the evolution time T for which the optimization has
(in principle) a solution. For any given target V , the MCT
will typically be larger than the QSL time [23]. Obtaining the
MCT is, however, not an easy task. One approach consists in
performing a two-objective optimization to reduce the error
in implementing the target, while simultaneously shortening
the protocol as much as possible [24–26]. An alternative is to
look for solutions within the usual QOC scheme for different
values of T [27–29]. In both cases, the optimization becomes
increasingly difficult and computationally expensive [30,31].
It is therefore desirable to establish a framework that allows us
to obtain bounds or estimates on the minimum time required
to implement a predefined gate. Going beyond the geometrical
QSL, these bounds should take into account a given set of
resources, related to which elements of the generating algebra
we can manipulate in time.

In this paper, we first explore geometric QSL bounds in the
space of unitary operations, and discuss their application to
quantum control problems. We do a thorough exploration of
the MCT for SU(2) and SU(3) models in order to gain insight
into how the available controls in the generating Hamiltonian
restrict the unitaries that can be achieved at a given time. Also,
by studying the short-time behavior of the time-dependent
Schrödinger equation for arbitrary control fields, we obtain
bounds on the MCT that are much more restrictive than the
geometric QSL.

2469-9926/2019/99(4)/042116(10) 042116-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.042116&domain=pdf&date_stamp=2019-04-22
https://doi.org/10.1103/PhysRevA.99.042116


PABLO M. POGGI PHYSICAL REVIEW A 99, 042116 (2019)

This paper is organized as follows. In Sec. II, we revisit the
geometric formulation of the QSL for states and then develop
an analogous construction for unitary transformations. We
derive two families of bounds and give examples for SU(2)
and SU(3). In Sec. III, we study the MCT for these examples
and present an analysis of the short-time behavior of quantum-
system-driven time-dependent fields. This will allow us to
construct bounds on the MCT that will serve as a refinement
of the QSL results. Finally, in Sec. IV, we discuss potential
future directions of work on these topics.

II. GEOMETRICAL QUANTUM SPEED LIMIT
FOR UNITARY OPERATIONS

A. QSL for pure state evolution

Let us first briefly revisit the QSL formulation for (pure) state
evolution. For that, we recall the definition of the Fubini–
Study distance between two states |ψ1〉 and |ψ2〉 [32],

s(ψ1, ψ2) = 2 arccos(|〈ψ1|ψ2〉|). (1)

Take |ψ (t )〉 to be the state of a d-dimensional quantum system
that evolves according to ih̄ d

dt |ψ (t )〉 = H (t )|ψ (t )〉. Consider
a curve C in the complex projective space CPd , given by the
set of points {|ψ (t )〉}0�t�T . The length of C according to the
Fubini-Study metric was derived by Anandan and Aharonov
[33], yielding

length(C) = 2

h̄

∫ T

0
�E (t ) dt, (2)

where �E (t ) =
√

〈H (t )2〉 − 〈H (t )〉2 is taken over the state
|ψ (t )〉. If we look at Fig. 1, we can make the straightforward
observation that the length of C is always larger or equal
than s(T ) ≡ s(ψ0, ψ (T )), which is the length of the geodesic

FIG. 1. Schematic picture of the evolution of a quantum system.
(a) Paths between an initial state |ψ (t = 0)〉 = |ψ0〉 and a final state
|ψ (T )〉 in the complex projective space CPd associated with a d-
dimensional Hilbert space. (b) Paths between unitary transformations
between the initial point U (t = 0) = I and final point U (T ) in
SU(d ).

path connecting those two points, and where we have set
|ψ0〉 = |ψ (0)〉. So, we have

s(T ) ≡ s(ψ0, ψ (T )) � 2

h̄

∫ T

0
�E (t ) dt, (3)

where the equality holds if and only if the system evolves
along the geodesic path. Equation (3) is usually referred to
as the Anandan-Aharonov relation. From it, we can see that

T � h̄ s(T )

2�E
, (4)

where, formally, �E can be regarded as the mean value of
the function �E (t ). Note, however, that such mean value will
depend on the specific time dependence of the Hamiltonian,
which could be a priori arbitrary. This is especially important
in control problems, where we seek a bound on the evolution
time, before solving the optimization problem. The right-hand
side of Eq. (4) gives a lower bound on the minimum time
required for state |ψ (t )〉 to become distinguishable from |ψ0〉
by an amount s(T ) (in the Fubini-Study metric). Note that,
in particular, it is also a bound for the minimum time that it
should take for the system to evolve |ψ0〉 into any target state
|ψG〉 that is at a distance s(T ) from it.

Finally, note that from Eq. (3) we can recover the known
Mandelstam-Tamm relation [8,34] by setting s(T ) = π (its
maximum possible value) and considering a time-independent
Hamiltonian, thus obtaining T � h̄π

2�E .

B. QSL for unitary transformations

We now turn to deriving an expression for the QSL time for
unitary operators. Some related work along this line has been
reported in Refs. [35–37]. We will proceed analogously to
what was described in the previous section. Let us first define
a distance between two operators U,V ∈ SU(d ), as

S1(U,V ) = max
ψ

[s(U |ψ〉,V |ψ〉)]

= 2 arccos
(

min
ψ

|〈ψ |U †V |ψ〉|) (5)

Note that this expression is a particular evaluation of the
Fubini-Study distance for states, and so it is easy to see
that it defines a proper distance for unitaries as well. If we
define W = U †V , we have that W is unitary. This definition
of distance was considered in Ref. [38], where its shown that
the minimization in Eq. (5) can be solved by defining δ as the
minimum arclength such that all eigenphases of W , say {ϕk},
are included in such arc. The minimization over all states then
involves two cases. If δ � π , then

min
ψ

|〈ψ |U †V |ψ〉| = 0, (6)

meaning that U and V are completely distinguishable because
there exists a state |ψ〉 such that U |ψ〉 and V |ψ〉 are orthog-
onal. If δ < π , then such state does not exist, and the optimal
case (i.e., the maximum distinguishability) is achieved by
choosing |ψa〉 = (|wmin〉 − |wmin〉)/

√
2 to get

|〈ψa|U †V |ψa〉| = cos

(
δ

2

)
. (7)
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Note that |wmax〉 and |wmin〉 are the eigenstates of W cor-
responding to the eigenphases which are furthest apart in the
circle. With this consideration, we obtain a closed expression
for the measure of distance S1:

S1(U,V ) = min(δ, π ). (8)

Having defined a distance between unitaries, we can com-
pute the differential element dS1 = S1(U (t ),U (t + dt )). We
now set h̄ = 1 for the remainder of the paper. To compute dS1,
we need to look at the eigenvalues of

U (t )†U (t + dt ) = U †(t ) e−iH (t )dtU (t ), (9)

which are the same as those of e−iH (t )dt alone. So, if we define

�ε(t ) = Emax(t ) − Emin(t ), (10)

we have that dS1 = �ε(t )dt . Integrating and imposing the
inequality as described before, we get

S1(T ) ≡ S1(U (T ), I) �
∫ T

0
�ε(t )dt . (11)

The inequality (11) is our first version of the Anandan-
Aharonov relation for unitary processes. Once again, if we
choose some particular (time-independent) �ε such that 0 �
�ε(t ) � �ε, we can bound the integral and write

T � S1(T )

�ε
≡ τ

(1)
QSL. (12)

Before we proceed, let us propose an alternative way of
obtaining a QSL time. For this, note that the definition in
Eq. (8) arises from optimizing the Fubini-Study distance over
all possible states. The expression obtained is deceptively
simple, since calculating δ requires diagonalizing U †V , and
calculating �ε requires diagonalizing H (t ) for all times.
However, we are at liberty of defining an alternative measure
of distance between unitaries, which we obtain by dropping
the maximization over all states in Eq. (5) and simply defining

S2(U,V ) = 2 arccos

(
1

d
|tr(U †V )|

)
. (13)

As we mentioned for S1(U,V ), this alternative definition
is also a particular evaluation of the Fubini-Study distance
for states, where now we choose |ψ〉 = (

∑
k |wk〉)/

√
d . We

can see again that the distance depends on the overlap unitary
W = U †V , but only via its trace. Note that the argument in
Eq. (13) corresponds to the fidelity function typically con-
sidered in quantum optimal control problems [39]. Also, note
that S1 � S2 by construction, since both of them are particular
instances of the Fubiny-Study distance, but the latter was
obtained from a maximization over all possible states. We now
proceed analogously to obtain an expression for a QSL time.
The differential element of distance is now

(dS2)2 = 4

(
1 − 1

d2
|tr(U (t )†U (t + dt ))|2

)

= 4dt2

d
tr(H (t )2), (14)

where we have imposed the fact that H (t ) is traceless and
properties of the trace. Note that we can introduce tr(H2) =
||H ||2 using the usual Hilbert-Schmidt inner product. We then

obtain another version of the Anandan-Aharonov relation for
unitaries

S2(T ) ≡ S2[U (T ), I] � 2√
d

∫ T

0
||H (t )||dt . (15)

From this, we can again bound the integral by using 0 �
||H (t )|| � ||H || and thus we get

T �
√

d

2

S2(T )

||H || ≡ τ
(2)
QSL. (16)

The obtained expressions (12) and (16) give bounds τ i
QSL

(i = 1, 2) on the minimum time required for U (t ) to become
distinguishable from U (0) = I by an amount Si(T ) and, in
particular, to reach some target transformation V ∈ SU(d )
such that Si(V, I) = Si(T ). Note that, in terms of control, both
results for the QSL time are geometric in nature: They depend
on the target process V only via its distance to identity. The
actual structure of the driving Hamiltonian does not come into
play when computing τ i

QSL.

C. Examples

In this section, we will use study the QSL expressions derived
above in two model systems. In Sec. III, we will come back to
these models and consider a wide range of control problems
which will allow us to compare the minimum control time and
quantum speed limit times in an unified setting.

We first introduce a two-level (d = 2) Hamiltonian

H2(t ) = 


2
[cos α(t )σx + sin α(t )σy], (17)

where {σi}, i = x, y, z are the usual Pauli operators. This
Hamiltonian describes the dynamics of a two-level atom
driven by a resonant electromagnetic field with a time-
dependent phase α(t ), which in principle is arbitrary [40].
Here 
 is the Rabi frequency, which is constant in time and
sets the energy scale of the problem.

For SU(2), it is easy to see that both metrics introduced
in the previous section [Eqs. (8) and (13)] are equivalent,
so we will drop the subindices and denote S = S1 = S2. The
model in Eq. (17) has a few nice properties. First, it is fully
controllable: Any element of SU(2) can be implemented in
finite time by suitable picking the shape of the field α(t ). Also,
irrespective of the particular shape of α(t ), the system evolves
at “constant speed” through state space, since

dS

dt
= �ε = 2√

d
||H2(t )|| = 
, ∀ t . (18)

In order to evaluate the QSL bounds and to draw a connec-
tion to the control problem, we introduce a family of target
unitaries

Vn(φ) = e−i σn
2 φ, 0 � φ � π, (19)

where σn = n̂ · �σ and n̂ is a unit three-dimensional vector.
We can calculate the distance between Vn(φ) and the identity
using Eq. (13), obtaining

S2(Vn(φ), I) = 2 arccos

(∣∣∣∣ cos
φ

2

∣∣∣∣
)

= φ. (20)
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Evaluating Eq. (16), we obtain a simple QSL bound for the
SU(2) case

τQSL(φ) = φ



. (21)

This result gives us a very simple example of a general
feature of the geometric QSL. Note that Eq. (21) is indepen-
dent of n̂. This isotropic property implies that we obtain the
same bound on the time required to implement either x, y or
z rotations, since all of them (for a fixed angle of rotation
φ) are at the same distance from I. Note, however, that the
Hamiltonian is not isotropic: x and y rotations are easy to
perform, but z rotations require more time. We will analyze
this difference in more detail in the next section.

Next, we introduce a three-level (d = 3) Hamiltonian

H3(t ) = 


2
[cos α(t )λA + sin α(t )λB], (22)

where λA = λ1, λB = (λ2 + λ4)/
√

2, and {λi}, i = 1, 2, . . . , 8
are the usual Gell-Mann matrices for su(3) (i.e., the Lie
algebra of skew-Hermitian 3 × 3 matrices). We choose this
model as a straightforward extension from the SU(2) case to a
slightly more complicated group; however, its actual physical
implementation is not as clear. Some of the properties men-
tioned before still hold: The system is also fully controllable,
and we show a proof of that in Appendix A. Also, the speed
of evolution in state space is constant, since

dS1

dt
= �ε = 
, ∀ t, (23)

dS2

dt
= 2√

d
||H3(t )|| =

√
2

3

, ∀ t . (24)

Note that the two metrics are not equivalent for d = 3. As
we did before, we will introduce a family of unitaries that will
serve as targets,

VX (φ) = e−iλX φ, 0 � φ � π, (25)

where −iλX are now elements of a basis of the Lie algebra,
which are normalized such that tr(λX λY ) = 2δX,Y . The ele-
ments of this basis are shown in Appendix A. Of particular
interest here will be λA, λB (already introduced) and

λC = −i

√
2

5
[λA, λB], λD = i

√
4

17
[λA, λC], (26)

For this system, we also calculate the QSL bounds τ
(i)
QSL

with i = 1, 2. Expressions are less transparent than in the
SU(2) case, so we show plots of them as a function of φ and
X in Fig. 2. There, we can see that both quantities grow with
φ, as expected. Note also that picking the bigger bound (i.e.,
the most meaningful) depends on which value of φ we are
considering, and typically we define an unified bound which
is simply τQSL = max{τ (1)

QSL, τ
(2)
QSL}.

D. Side note: Classical limit of the QSL

Before we move on to analyzing how the QSL bounds
relate to the minimum control time problem, let us explore
another simple example which will further clarify the physical
meaning of the quantum speed limit. As discussed in the

FIG. 2. QSL times for the SU(3) model described by the Hamil-
tonian (22) as a function of parameter φ. Results are shown for
different target unitaries VX , defined in Eq. (25). Left: X = A, B, D,
which give the same QSL times. Right: X = C.

previous section, the QSL time gives the minimum time that
takes for the unitary to achieve a certain degree of distin-
guishability from identity. Since the first discussions on the
QSL for states it has been noted that this notion was particular
to quantum dynamics, and it can be seen that the Mandelstam-
Tamm inequality (4) becomes trivial when h̄ → 0. Recent
works have shown that one could also derive speed limits
for classical systems when the state is characterized by some
distribution ρ(x, p, t ) in phase space [41,42]. However, it is
important to stress that this speed limit is not intrinsic to
classical dynamics, since it only arises from ignorance about
the state of our system. In quantum mechanics, a system will
always need a finite amount of time to become completely
distinguishable to its initial configuration.

Let us then explore the classical limit of the QSL for-
mulation for unitary operations. We go back to considering
SU(2) rotations as in Eq. (17), but we now choose the spin-J
representation, in which the generator takes the form

H (t ) = 
[cos α(t )Jx + sin α(t )Jy], (27)

where now Jn with n = x, y, z are the usual spin operators.
Analogously to Eq. (19), we define the target as Vn(φ) =
e−iJnφ . We can calculate the distance from Vn to the identity
in a straightforward way, yielding

S2(Vn, I) = 2 arccos

(∣∣∣∣∣ sin
(
(J + 1

2 )φ
)

(2J + 1) sin φ

2

∣∣∣∣∣
)

. (28)

The corresponding QSL time is then given by Eq. (16),
where

||H (t )||2 = J (J + 1)(2J + 1)

3

2. (29)

Note that maximum distinguishability is obtained when the
unitary is orthogonal to identity, and this happens for a certain
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value of φ = φ⊥(J ) (irrespective of the axis of rotation)

φ⊥(J ) = argmaxφ[S2(Vn, I)] = π

J + 1
2

. (30)

We observe that φ⊥ vanishes as J → ∞, which is effec-
tively the classical limit. In other words, the angle one needs
to rotate to get an orthogonal unitary becomes increasingly
smaller in this limit. Moreover, the rate at which the system
evolves in state space is given by ||H (t )||, which increases
with J . Putting these results together, we can see that

τ
(2)
QSL −−−→

J→∞
0. (31)

It can be easily shown that this results is independent of
the metric. In this way, we can appreciate how the QSL time
vanishes for classical systems.

III. MINIMUM CONTROL TIME

A. Motivation

In this section, we turn our attention to the minimum control
time (MCT) problem and its relation to the QSL time. For
that, let us recall the quantum control problem invoked in the
introduction. We consider a d-dimensional quantum system
described by a traceless Hamiltonian H[ε(t )], where ε(t ) de-
note the (typically) time-dependent control fields. The system
evolves according to

i
dU (t )

dt
= H[ε(t )]U (t ), with U (0) = I. (32)

For a given target unitary transformation V ∈ SU (d ), we
wish to study what is the minimum value of the evolution time
T for which this evolution can be such that U (T ) = V . As
mentioned before, obtaining the actual value of this minimum
control time TMCT would require solving a time-optimal con-
trol problem. However, our aim is to obtain lower bounds to
TMCT, without resorting to any optimization procedure.

One of such bounds is, indeed, given by the geometric QSL
formulation studied in Sec. II, i.e., Eqs. (12) and (16). Note
that these expressions give the same bound for all targets that
are equidistant from the identity and represent a fundamental
limit to how quickly the system can traverse that distance in
space of unitaries. However, a more stringent limitation to
how quickly we can perform a transformation is given by the
fact that we have limited control over the system. Formally,
what this means is that only a small subset of the d2 − 1
linearly independent generators can be directly manipulated.
As we will discuss in the following, the relation between these
directly controlled generators and the target V will have an
important impact in the MCT.

For concreteness, consider that the Hamiltonian has the
form

H (t ) =
M∑

j=1

ε j (t )Hj . (33)

To assess the controllability of the system, one introduces
its dynamical Lie algebra L = span j=1,...,M{−iHj}. Note that
the elements of this set will be given by the directly controlled
generators {Hj} and also repeated commutators of them, i.e.,
elements of the form [Hl , Hm], [Hl , [Hm, Hk]], etc. We define

the depth of each element of L as the maximum number of
commutation operators required to generate it. If L = su(d ),
the system is said to be fully controllable [18].

Given a particular target V = e−iXφ , we can qualitatively
see that we can associate a depth in L to the target generator
X . As noted previously in Ref. [43], we expect this depth to
impact the MCT. In order to obtain some intuition about this,
let us take as an example the two-level Hamiltonian of Eq. (17)
and the corresponding family of target gates of Eq. (19). In
this simple case, it is readily seen that targets of the form Vx(φ)
and Vy(φ) are easily achieved by setting the field α(t ) constant
and evolving for a time φ/
, thus meaning that the QSL time
coincides with the MCT for these cases. The attainability of
this fundamental speed limit is a direct consequence of having
direct control of the σx and σy in the Hamiltonian. On the other
hand, the targets Vz(φ) require explicit time dependence of the
control fields and longer control times. In the following, we
will explore this feature with a more systematic approach and
analyze the short-time attainability of unitary transformations
involving higher depth elements of the dynamical Lie algebra.

B. Nested commutators and analytic bounds for the MCT

In order to make the ideas presented in the previous subsection
more concrete, let us rewrite the Schrödinger equation, cf.
Eq. (32) in an alternative way. This will allow us to solve for
the dynamics at short times for arbitrary driving fields. Note
that no optimization problem is defined in order to do this, so
these procedure is general. For that, we will use the formula
for the derivative of the exponential map [44]. Given a Lie
group G and its associated Lie algebra g, we can think of the
exponential as a map exp : g :→ G, such that if we have a C1

path X (t ) in g we can compute

d

dt
eX (t ) = eX 1 − e−adX

adX

dX

dt
. (34)

Here, adX : g → g is given by adX (Y ) = [X,Y ]. We will
also use the definition of AdA(X ) = AXA−1, where A ∈ G, and
the important property that

Ad ex = eadX , X ∈ g. (35)

Let us now write the evolution operator U (t ) = e−iA(t ) ∈
SU(d ) such that −iA ∈ su(d ). We can use (34) to express
Eq. (32), which we will use as an starting point

dA

dt
= ad−iA

ead−iA − 1
H =

∞∑
m=0

Bm

m!
(−i)m(adA)mH, (36)

where {Bm} are the set of Bernouilli numbers [45]. Equation
(36) is a differential equation for the generator A(t ) of U (t )
and will thus prove useful to analyze how different transfor-
mations become accessible at short times.

We will consider dimensionless units by introducing H =

h and t = s



. We then introduce a Taylor expansion of the

Hamiltonian and the generator in the time variable

A(s) =
∑
n=1

A(n)sn, (37)

h(s) =
∑
n=0

h(n)sn. (38)
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With this, we can express Eq. (36) as

∑
n

nA(n)sn−1 =
∑

m

(−1)m Bm

m!

∑
k

(∑
n

snadA(n)

)m

h(k)sk.

(39)

By collecting powers of s, we get the following set of
equations up to O(s2):

A(1) = h(0), (40)

2A(2) = h(1) − i
B1

1!
adA(1) h(0), (41)

3A(3) = h(2) − i
B1

1!

(
adA(1) h(1) + adA(2) h(0)

) − B2

2!
ad2

A(1) h(0).

(42)

These equations can be solved iteratively and give

A(1) = h(0), (43)

A(2) = 1

2
h(1), (44)

A(3) = 1

3
h(2) + i

12
[h(0), h(1)]. (45)

In Appendix B, we extend this analysis up to O(s4). Note
that Eq. (45) involves the commutator of different terms in the
Hamiltonian, which will determine the appearance of depth-1
elements of the dynamical Lie algebra in the evolution of A(t ),
but only in terms proportional to s3 or higher.

In order to analyze how restricting the available terms in
the Hamiltonian are reflected in these equations, we introduce
a set {χμ}, μ = 1, . . . , d2 − 1 such that {−iχμ} is an orthog-
onal basis of su(d ), normalized such that tr(χμχν ) = δμν . We
can then expand

A(n)(s) =
d2−1∑
μ=1

a(n)
μ (s)χμ, (46)

h(n)(s) =
M∑

μ=1

ε (n)
μ (s)χμ, (47)

Here, the key point is that the number of elements in the
expansion of h(s), M, is typically much smaller than d2 − 1.
From now on, we will specialize in the simplest nontrivial
case, where we have M = 2 orthogonal terms, to develop
bounds and estimates on the MCT. Generalizations to higher
number of terms can be pursued with the same formalism.
Thus, we can write

h = εA(s)χA + εB(s)χB (48)

and also define

χC = −i

fABC
[χA, χB], (49)

where fABC is the corresponding structure constant of the
group. Note that χC is the only depth-1 element in the algebra
(to avoid confusion we are using capital letters A, B, . . . for the
values of the Greek-letter indices μ, ν) and that {χA, χB, χC}

form an orthogonal set. We can then write the explicit form of
the short-time solution from Eqs. (43)–(45):

aA(s) = ε
(0)
A s + 1

2ε
(1)
A s2 + 1

3ε
(2)
A s3, (50)

aC (s) = − fABC

12

(
ε

(0)
A ε

(1)
B − ε

(1)
A ε

(0)
B

)
s3, (51)

which are valid up to O(s3) (the solution for aB is identycal to
the one for aA). From these, it is easy to derive bounds for the
evolution time. Let us first assume the case of phase control,
where εA(s) = E cos α(s) and εB(s) = E sin α(s). Then, from
Eq. (50) it follows that the time sA needed to achieve aA(sA) =
β obeys

sA � β

E
. (52)

Similarly, the time sC for which aC (sC ) = β follows the
inequality

sC �
√

12β

fABCE2
. (53)

Finally, in Appendix B we derive an analogous inequality
associated to a depth-2 element of the algebra χD,

sD �
(

18β

fABC fACDE3

) 1
3

. (54)

These inequalities are the main analytical results of this
paper. They are valid for short times (i.e., s � 1) and they
apply to any Hamiltonian of the form (48) with controls
bounded by E . Note that the proposed bounds depend on the
structure constants of the group, which give information about
how quickly χC can be generated by alternating in time χA and
χB. To get clearer sense of the information these bounds give
on the minimum control time, we will apply them to the two
model systems introduced in Sec. II. For SU(2), we identify
A = x and C = z to obtain

Tx � φ



≡ τx(φ), (55)

Tz �
√

12φ



≡ τz(φ). (56)

These two bounds are a refinement of the geometrical QSL
bound of Eq. (21). Note that τx = τQSL, as expected from the
previous discussion, and that τz > τQSL. In this way, the new
bounds are more restrictive than the QSL and thus are more
meaningful to bound the MCT. This is achieved thanks to the
fact that we have used information about the available controls
in the Hamiltonian. It is important also to remark that we
have not solved any optimization to get to these results: The
expressions obtained are completely independent of the actual
shape of the control field α(s).

For the SU(3) model, we will proceed to compare these
bounds directly with the numerical results for the MCT in the
next section.

C. Numerical results for the MCT

In this section, we compare the analytical bounds of
Eqs. (52)–(54) with numerical results of the MCT for both
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FIG. 3. Numerical calculation of the MCT. We show the opti-
mized functional value as a function of the total evolution time T
given to the optimal control algorithm. The MCT is estimated here
as the minimum value of T for which the infidelity JT reaches 10−5.
Results are shown for a specific example, given by the SU(2) model
with the target parameter φ = π

2 . The number of time steps is set to
Nts = 30, and the results do not change significantly upon increasing
this value.

models discussed throughout this paper. First, we briefly
describe the methodology to estimate (or rather, upper bound)
the MCT, which has been applied to a wide variety of systems
in several works over the past decade. Examples include
Landau-Zener models [27,29], one-dimensional chains of in-
teracting spin- 1

2 particles [46], entangling transformations in
superconducting qubits [47], and neutral atoms [48].

The procedure is as follows. Given the Hamiltonian
H[ε(t )] and a target unitary transformation V , we fix the total
evolution time T and define an optimization functional

JT = 1 − 1

d2
|tr(V †U (T ))|2, (57)

which is the infidelity between the target and U (T ), the
unitary evolution operator generated by H (t ) at t = T . For
each T and starting from a random initial control field ε (0)(t ),
we use the GRAPE algorithm [39,49] to find the optimum
field ε∗(t ) that minimizes JT . In practice, the time variable
is divided into Nts steps, such that the optimization is carried
over the Nts variables that parametrize the piecewise-constant
control field. Starting from a suitably large value of T , once
the optimum is found, that solution is fed as an initial seed
for the next step, where T is now reduced. This procedure
is repeated for several random initial fields and, in each
case, the best attained infidelity is recorded. A typical set of
results arising from this procedure is shown in Fig. 3. We
then calculate Tmin as the minimum value of T such that the
functional achieves a certain threshold, which is set to 10−5

throughout this paper. Notice that the optimized JT follows a
sharp transition at T = Tmin, and so the the results are quite
insensitive to the choice of threshold.

Using the procedure outlined in the above paragraph, we
have numerically calculated the MCT for several cases of

FIG. 4. Minimum control time (MCT) for the SU(2) model.
Results are shown for the targets Vx (φ) and Vz(φ) and compared
with the different bounds studied in this paper. Black dotted lines
shows the geometric QSL time, while the red dashed line shows the
short-time bound Tz derived in Sec. III. A full red line shows the
analytical result for the MCT for this particular model, derived in
Ref. [50].

interest. In Fig. 4, we show results corresponding to SU(2)
for the family of targets in Eq. (19), specifically Vx(φ) (which
are identical to those of Vy) and Vz(φ). There, we can see that
minimum time to achieve z rotations is considerably bigger
than the minimum time required to perform x rotations, as
expected. The dependence with the angle of rotation φ, which
determines how far away the target transformation is from the
identity, is also different for both cases.

Together with the numerical results, in Fig. 4 we have plot-
ted the geometric QSL bound of Eq. (21), and the short-time
bounds Tz in Eq. (56) and Tx (which coincides with τQSL here).
We can verify here that the MCT for Vx saturates the QSL
bound. The MCT for Vz, on the other hand, is considerably
bigger than the QSL time, but it matches the short-time bound
we have proposed. Note that the MCT in this case actually
surpasses Tz for targets that further away from identity. This
is reasonable since the inequality (55) is strictly valid for

t � 1. However, Tz estimates the actual MCT much more
accurately than the QSL. This property is useful, since it
allows us to provide a higher level estimation to the MCT
before solving any intricate time-optimization problem. Note
that for this particular model, an actual analytical calculation
for the MCT was proposed and solved in Ref. [50]. The result,
which roughly coincides with the numerical estimates, is also
shown in the plot.

We now turn our attention to the SU(3) model. Results
for the MCT are shown in Fig. 5(a). Here we have analyzed
targets corresponding to depths 0 (VA), 1 (VC), and 2 (VD) in
the dynamical Lie algebra of the Hamiltonian (22). Compared
to the SU(2) example, the situation is now considerably more
complicated. Interestingly, we note that the depth does not
imply an hierarchy in the MCT; i.e., for large enough φ, the
target VD(φ) is achievable in a shorter time than VC (φ), albeit
the former being associated with a higher depth. Nevertheless,
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FIG. 5. Minimum control time (MCT) for the SU(3) model.
Results are shown for the targets VA(φ), VC (φ), and VD(φ) and
compared with the different bounds studied in this paper. (a) Black
dotted line shows the geometric QSL time, while the red dashed
and blue dash-dotted lines show the short-time bounds TC and TD

derived in Sec. III. (b) Same data as in panel (a) displayed in a log-log
plot. Thin full lines indicate a power law fit of the form y = bxa for
each case. The inverse powers obtained are displayed in the legend,
together with the correlation coefficient R2.

when analyzing targets close to identity, i.e., when φ � 1, we
do observe such a hierarchy, which is well predicted by our
analysis in the beginning of this section.

Figure 5(a) also shows the relevant bounds computed for
this problem. Note that, apart from τQSL = TA (which is the
simplest case), the other bounds are not saturated. This is
expected in the general case, since the aim of this analysis is
to bound or estimate the MCT, and obtaining its precise value
implies solving an optimization. Nonetheless, the short-time
bounds TC and TD do give valuable information: First, they are
much better bounds than the QSL time. From Fig. 5(b), which
shows the same data as Fig. 5(a) but in a log-log plot, we can
see that both of them predict very well the order of magnitude
of the MCT. Note that this is very relevant, since the geometric
QSL time can be almost two orders of magnitude below the
MCT, as in the case of VD. The short-time bounds also predict
nicely the power law behavior of the MCT for small φ, the
exponent being the inverse of the associated depth of the target

plus one. This behavior, which holds in the perturbative limit,
can also be inferred by looking at the Magnus expansion for
A(s) and noting that terms with depth k commutators involve
k + 1 time integrals.

IV. SUMMARY AND OUTLOOK

In this paper, we have explored the relation between the
geometric quantum speed limit and the minimum control time
for unitary transformations in finite-dimensional quantum sys-
tems. In order to do this, we have first taken the QSL formal-
ism for pure-state evolution and constructed inequalities that
bound the evolution time of U (t ), the unitary evolution opera-
tor. While these inequalities are universally valid, we point out
that, in the context of quantum control problems, more strin-
gent limitations arise due to limited control over the system.
Following this key observation, we systematically analyzed
the short-time behavior of the time-dependent Schrödinger
equation, which allowed us to derive a new family of bounds
that explicitly show the role of the so-called dynamical Lie
algebra on the minimum control time. We have applied our
results to SU(2) and SU(3) models and show how, even in
low-dimensional systems, the proposed bounds can give much
more information on the MCT than the geometric QSL.

We point out that the bounds proposed in Sec. III are gen-
eral, although its explicit calculation for higher dimensional
systems and higher order depths will become intricate. Never-
theless, we expect that they would give much better estimates
for the MCT than the QSL in any case. These estimates on the
MCT are important since they give a baseline over which we
can use quantum optimal control to refine results.

Finally, we wish to point out some interesting potential
generalizations of this work. First, it is important to asses the
role of drift terms in the Hamiltonian, i.e., terms over which
we have no control and are typically constant in time. These
is the usual case for two-qubit systems in most quantum com-
puting platforms, where the two-body (entangling) interaction
is usually fixed by the specifications of the device. It would
be interesting to address this in connection to the Zermelo
navigation problem [51,52]. Second, the short-time bounds
presented here are derived from a perturbative analysis, but
it would be interesting to study if we can develop a theoretical
description that goes beyond the QSL and connects with the
time-optimal control problem using the tools of differential
geometry. In particular, in Refs. [26,53], the time-optimal con-
trol problem is casted as the problem of finding the geodesic
between identity and the target unitary in an appropriate
metric. Solving the geodesic equation is in general hard, but
following a perturbative approach might lead to results similar
to those presented in this paper, albeit in a geometrical picture,
thus providing a more formal connection between the notions
of QSL and MCT.
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APPENDIX A: CONTROLLABILITY OF THE SU(3) MODEL

Here we explicitly show that the SU(3) model of Eq. (22) is fully controllable. As discussed in Sec. III, to prove this we
have to show that its dynamical Lie algebra L equals su(3). Following the procedure outlined in Ref. [18], we start from the
depth-0 elements of L, namely λA = λ1, λB = (λ2 + λ4)/

√
2 (already introduced in the main text), calculate all the possible

nested commutators, and check that we can form a set of d2 − 1 = 8 linearly independent elements.
The only depth-1 element will be related to the commutator of these two operators,

[λA, λB] ∝ λC =
√

4

5

(
λ3 + 1

2
λ7

)
. (A1)

Depth-2 elements are given by

[λA, [λA, λB]] ∝ λD = 4√
17

(
λ2 + 1

4
λ4

)
, [λB, [λA, λB]] ∝ λE = − 5

√
2

2
√

17

(
λ1 + 3

5
λ5

)
. (A2)

Finally, the depth-3 elements are

[λA, [λA, [λA, λB]]] ∝ λF = 4
√

4√
65

(
λ3 + 1

8
λ7

)
, [λA, [λB, [λA, λB]]] ∝ λG = λ6,

[λB, [λA, [λA, λB]]] ∝ λG = λ6, [λB, [λB, [λA, λB]]] ∝ λH = 1√
65

(
13

2
λ3 + 4λ7 + 3

√
3

2
λ8

)
. (A3)

It can be readily verified that the set of eight operators {λX } ∈ L with X = A, B, . . . , H are linearly independent. Since all of
these are elements of su(3), then it follows that L = su(3), meaning that the system is fully controllable.

APPENDIX B: PERTURBATIVE SOLUTION TO SCHRÖDINGER EQUATION

Continuing to collect powers of s in Eq. (39) up to s4, we obtain the following solutions:

A(4) = 1

4
h(3) + i

12
[h(0), h(2)],

A(5) = 1

5
h(4) + i

20

(
3

2
[h(0), h(3)] + 1

3
[h(0), h(2)]

)
+ 1

120

(
1

2
[h(1), [h(0), h(1)]] − 1

3
[h(0), [h(0), h(2)]]

)

+ i

720
[h(0), [h(0), [h(0), h(1)]]]. (B1)

For the particular case discussed in the main text, where the Hamiltonian has M = 2 terms coupling to the operators χA and
χB, we can define χD = −i

fACD
[χA, χC]. If tr(χ2

D) = 1 and assuming that now the set {χA, χB, χC, χD} is orthonormal, we get an
equation for aD(s)

aD(s) = fABC fACD

120
F (ε)s3 + O(s4), (B2)

where

F (ε) = ε
(0)
A

(
1
2ε

(1)
A sε (1)

B s − 1
3ε

(0)
A ε

(2)
B s2

) − ε
(0)
B

(
1
2ε

(1)
A sε (1)

A s − 1
3ε

(0)
A ε

(2)
A s2

)
. (B3)

Following the phase control models discussed in this work, we take εA(s) = E cos α(s) and εB(s) = E sin α(s). Then, it can
be shown that

|F (ε)| � 20

3
E3. (B4)

Combining Eqs. (B2) and (B4), we can see that the time sD for which aD(sD) = β follows the inequality

sD �
(

18β

fABC fACDE3

) 1
3

, (B5)

which is Eq. (54) in the main text.
Finally, note that if the two generators appearing in the Hamiltonian are orthogonal, then we can always associate the depth-0

and depth-1 elements of L to elements of an orthogonal basis. However, this is not generally true for depths higher than one. That
is actually the case in the SU(3) model, where λD is not orthogonal to λB. Nevertheless, we can always generate an orthogonal
basis by using the Gram-Schmidt process. If χD is the orthonormalized element corresponding to λD ∝ χ̃D, then an estimate on
the minimum time such that ãD(sD) = β is obtained by replacing fACD with ηD fACD, where ηD = tr(χDχ̃D).
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