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Effective potentials from semiclassical truncations

Bekir Baytaş,* Martin Bojowald,† and Sean Crowe‡

Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

(Received 4 November 2018; published 18 April 2019)

Canonical variables for the Poisson algebra of quantum moments are introduced here, expressing semiclassical
quantum mechanics as a canonical dynamical system that extends the classical phase space. New realizations
for up to fourth order in moments for a single classical degree of freedom and to second order for a pair of
classical degrees of freedom are derived and applied to several model systems. It is shown that these new
canonical variables facilitate the derivation of quantum-statistical quantities and effective potentials. Moreover,
by formulating quantum dynamics in classical language, these methods result in new heuristic pictures, for
instance, of tunneling, that can guide further investigations.
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I. INTRODUCTION

Semiclassical physics can often be described by classi-
cal equations of motion amended by correction terms and
possible new degrees of freedom. For instance, Ehrenfest’s
theorem shows that the expectation values of position and
momentum in an evolving quantum state obey equations of
motion which are identical with the classical equations to
zeroth order in h̄ but, in general, have a modified quantum
force given by −〈∇V (x̂)〉 not equal to the classical force
−∇V (〈x̂〉) evaluated at 〈x̂〉. The difference depends on 〈x̂〉,
but also on the variance (�x)2 and higher moments, which
constitute new, nonclassical degrees of freedom.

A moment expansion can be used to derive quantum
corrections systematically. In this way, one can formulate
quantum dynamics as classical-type dynamics on an ex-
tended phase space, given by expectation values and mo-
ments equipped with a Poisson bracket that follows from the
commutator of operators [1,2]. Moments, however, do not
directly form canonical variables on this Poisson manifold,
which complicates some of the usual procedures of canonical
mechanics. Darboux’s theorem guarantees the existence of
local canonical coordinates, but it is not always easy to find
them. Using a procedure we developed in Ref. [3], as well
as other methods, we present here detailed derivations of
canonical variables for moments of up to fourth order for a
single degree of freedom, as well as to second order for a pair
of degrees of freedom. The resulting expressions can be used
to make interesting observations about the behavior of states,
and they are crucial for the derivation of effective potentials.
We present several applications, including tunneling. This
application is discussed in more detail in Ref. [4], where we
demonstrate the usefulness of our present methods in atomic
physics, related to an ongoing debate of evaluations of recent
experiments [5–17].
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II. CANONICAL EFFECTIVE METHODS

We use a quantum system of N degrees of freedom with
basic operators q̂ j and π̂k , 1 � j, k � N that are canonically
conjugate,

[q̂ j, π̂k] = ih̄δ jk . (1)

In a semiclassical truncation [1,2], the state space is described
by a finite-dimensional phase space with coordinates given
by the basic expectation values q j = 〈q̂ j〉 and πk = 〈π̂k〉 and,
for positive integers ki and li such that

∑N
i=1(ki + li ) � 2, the

moments

�
(
qk1

1 · · · qkN
N π

l1
1 · · · π lN

N

) = 〈(q̂1 − q1)k1 · · · (q̂N − qN )kN

× (π̂1−π1)l1 · · · (π̂N−πN )lN 〉Weyl,

(2)

where the product of operators is Weyl (totally symmetrically)
ordered. (For low orders, these central moments agree with
the cumulants of a probability distribution.) The phase-space
structure is defined by the Poisson bracket

{〈Â〉, 〈B̂〉} = 1

ih̄
〈[Â, B̂]〉, (3)

extended to all moments by using linearity and the Leibniz
rule. The phase space has boundaries according to Heisen-
berg’s uncertainty relation

�
(
q2

j

)
�

(
π2

k

) − �(q jπk )2 � h̄2

4
δ jk (4)

and higher-order analogs.
Any given state (which may be pure or mixed) is therefore

represented by a point in phase space defined by the corre-
sponding basic expectation values and moments. A state is
considered semiclassical if its moments obey the hierarchy

�
(
qk1

1 · · · qkN
N π

l1
1 · · · π lN

N

) = O(h̄
1
2

∑
n(ln+kn ) ), (5)

which is satisfied, for instance, by a Gaussian, but includes
also a more general class of states. A semiclassical truncation
of order s of the quantum system is defined as the submanifold
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spanned by the basic expectation values and moments such
that

∑
n(ln + kn) � s, which implies variables up to order 1

2 s
in h̄ according to the semiclassical hierarchy. The Poisson
bracket that results from (3) can consistently be restricted
to any semiclassical truncation by ignoring in {�1,�2} all
terms of order higher than s in moments. In this restriction,
the product of a moment of order s1 and a moment of order s2

is considered of semiclassical order s1 + s2, while the product
of a moment of order s1 with h̄s2 is of order s1 + 2s2 [18]. For
given s, the Poisson tensor on the semiclassical truncation of
order s is, in general, not invertible. Therefore, semiclassical
truncations and the resulting effective potentials cannot be
formulated within symplectic geometry.

We note that the semiclassical truncations used here im-
pose stronger conditions than usually used in studies of the
semiclassical limit, using, for instance, WKB-type or Maslov
methods [19] or the Wigner function [20]. In particular,
while both methods assume that a certain dimensionless com-
bination of parameters proportional to h̄ is small or even
approaches zero, our semiclassicality condition also restricts

the class of states. Our definition here ensures that quantum
corrections, for instance, in the total energy, are well defined
at least in the sense of a formal power series in h̄. From
other methods, such as Wigner functions [20], it is known
that the semiclassical limit, applied to unrestricted states,
generically gives rise to terms that are nonanalytic in h̄; see,
for instance, Ref. [21]. Our condition avoids this behavior,
while still maintaining access to interesting problems, as our
examples will demonstrate.

The Hamilton operator Ĥ determines a Hamilton function
〈Ĥ〉 on state space, which can be restricted to any semiclassi-
cal truncation of order s to define an effective Hamilton func-
tion of semiclassical order s. We assume that each contribution
to the Hamilton operator is Weyl ordered in basic operators.
Any Hamilton operator that does not obey this condition can
be brought to Weyl ordered form by using the canonical
commutation relations, which results in terms that explicitly
depend on h̄. In order to compute an effective Hamilto-
nian of order s for a given Hamilton operator H (q̂ j, π̂k ),
we use

Heff,s = 〈H (q j + (q̂ j − q j ), πk + (π̂k − πk ))〉

= H (q j, πk ) +
s∑

∑
n( jn+kn )=2

∂nH (q, π )

∂q j1
1 · · · ∂q jN

N ∂π
k1
1 · · · ∂π

kN
N

�
(
q j1

1 · · · q jN
N π

k1
1 · · · π kN

)
j1! · · · jN !k1! · · · kN !

. (6)

This expansion is reduced to a finite sum if Ĥ is polynomial
in basic operators, in which case the expansion serves the pur-
pose of expressing the expectation value of products of basic
operators in terms of central moments. For a nonpolynomial
Hamilton operator, the expansion is a formal power series in h̄.
The definition of our Poisson bracket ensures that Hamilton’s
equations

ḟ (〈·〉,�) = { f (〈·〉,�), Heff,s} (7)

on any semiclassical truncation are consistent with Heisen-
berg’s equations of motion evaluated in a state.

Equations of motion such as (7) require initial values for
particular solutions. In our case, this means that we should
select suitable expectation values and moments of an initial
state. However, moments of a state are not arbitrary because
a state, interpreted as a map from the algebra of quantum
operators to complex-valued expectation values, must fulfill a
positivity condition: 〈Â†Â〉 � 0 for all operators Â. Positivity
implies an infinite set of inequalities for the moments, the
best-known example being Heisenberg’s uncertainty relation.
The remaining inequalities are correspondingly called “gener-
alized uncertainty relations” [22,23]. They provide necessary
conditions for a set of moments to belong to a positive state.
While it remains unknown whether these conditions are also
sufficient, it is clear that any initial set of moments must obey
all the generalized uncertainty relations. In practice, it is often
more convenient to select initial moments by calculating them
for a given initial wave function or density matrix (defining
a positive state). The evolved moments, using (7), are then

guaranteed to belong to a positive state to within the order of
approximation used.

A. Examples

For a single pair of classical degrees of freedom, N = 1,
the phase space of the semiclassical truncation of order two
is five dimensional (and therefore cannot be symplectic). In
addition to the basic expectation values q and π , there are two
fluctuation variables, �(q2) and �(π2), and the covariance
�(qπ ). The nonzero Poisson brackets of these variables are
given by

{q, π} = 1, (8)

{�(q2),�(qπ )} = 2�(q2), (9)

{�(qπ ),�(π2)} = 2�(π2), (10)

{�(q2),�(π2)} = 4�(qπ ), (11)

which are linear and equivalent to the Lie algebra sp(2,R).
More generally, the second-order semiclassical truncation

for N pairs of classical degrees of freedom is equivalent
to sp(2N,R) [3]. Third-order semiclassical truncations also
have linear Poisson brackets which are no longer semisimple:
Within a higher-order semiclassical truncation, the Poisson
bracket of two third-order moments is a sum of fourth-order
moments and products of second-order moments, all of which
are of order four and set to zero in a third-order truncation.
Moreover, the Poisson bracket of a second-order moment and
a third-order moment is proportional to a third-order moment,

042114-2



EFFECTIVE POTENTIALS FROM SEMICLASSICAL … PHYSICAL REVIEW A 99, 042114 (2019)

for instance,

{�(q2),�(q2π )} = 2�(q3),

{�(q2),�(qπ2)} = 4�(q2π ),

{�(q2),�(π3)} = 6�(qπ2),

for N = 1. The third-order moments in a semiclassical trun-
cation of order three therefore form an Abelian ideal, and the
corresponding Lie algebra is not semisimple. [For N = 1, the
Lie algebra is the semidirect product sp(2,R) � R4 where
sp(2,R) acts according to its spin-3/2 representation [3].]

For orders higher than three, the Poisson brackets are
nonlinear and therefore do not define Lie algebras. A general
expression is given by [1,24]

{�(qb pa),�(qd pc)}
= a d �(qb pa−1)�(qd−1 pc) − bc�(qb−1 pa)�(qd pc−1)

+
M∑

odd n=1

(
ih̄

2

)n−1

Kn
abcd �(qb+d−n pa+c−n), (12)

where M = min(a + c, b + d, a + b, c + d ) and

Kn
abcd =

n∑
m=0

(−1)mm!(n − m)!

(
a
m

)(
b

n − m

)(
c

n − m

)(
d
m

)
.

(13)

The inclusion of only odd n in the sum ensures that all
coefficients are real. Terms containing �(q) or �(p) are
considered zero: They correspond to expectation values of the
form 〈â − a〉 = 0 which are identically zero.

B. Purity

The collection of all moments determines a state, provided
it obeys conditions that follow from (generalized) uncertainty
relations. Since moments are defined using expectation val-
ues, which can be computed from a pure or mixed state, they
may describe a pure or mixed state. In general, it is not easy to
determine the purity of a state described by moments without
first reconstructing a density matrix from them. As we will
see, however, canonical variables for moments can provide
indications as to possible impurity parameters. In preparation
of this application, we discuss here the ingredients for possible
reconstructions of states from a given set of moments.

If the state is pure, it is sufficient to consider only the
moments �(qn) and �(qn−1π ) to reconstruct a wave function
[1]. For instance, we can use Hermite polynomials Hn(q) and
their coefficients hn,l defined such that Hn(q) = ∑

l hn,l ql .
The expectation values an = 〈q̂n〉 can then be used to compute

cn =
∑

l

hn,l al =
∫

dq|ψ (q)|2Hn(q), (14)

from which we obtain the probability density

|ψ (q)|2 = e−q2
∑

n

cn

2nπn!
Hn(q) (15)

using the orthonormality relation of Hermite polynomials.

Using bn = 〈q̂nπ̂〉, the phase α(q) of the wave function
ψ (q) = exp[iα(q)]|ψ (q)| then follows from

Re bn = Re
∫

dqψ∗qn h̄

i

dψ

dq

= Re
∫

dqe−iα|ψ |qn h̄

i

(
i
dα

dq
eiα|ψ | + eiα d|ψ |

dq

)
= h̄

∫
dq|ψ |2qn dα

dq
. (16)

If we define

dn =
∑

l

hn,l Re bn = h̄
∫

dq|ψ |2 dα

dq
Hn(q), (17)

we reconstruct

dα

dq
= e−q2

h̄|ψ |2
∑

n

dn

2nπn!
Hn(q). (18)

Integration gives α(q) up to an arbitrary constant phase.
In order toreconstruct a density matrix, we need all mo-

ments. First, position moments are given by

�(qa) = tr[(q̂ − 〈q̂〉)aρ̂] =
∫

(q − 〈q̂〉)aρ(q, q)dq, (19)

from which we can reconstruct the diagonal part ρ(q, q)
using orthogonal polynomials. Using momentum-dependent
moments, we can compute the values of

tr[(q̂ − 〈q̂〉)aπ̂bρ̂] =
(

h̄

i

)b ∫
(q − 〈q̂〉)a ∂bρ(y, q)

∂yb

∣∣∣∣
y=q

dq,

(20)

and use them in∑
b

1

b!

(
id

h̄

)b

tr[(q̂ − 〈q̂〉)aπ̂bρ̂]

=
∫

(q − 〈q̂〉)a
∑

b

db

b!

∂bρ(y, q)

∂yb

∣∣∣∣
y=q

dq

=
∫

(q − 〈q̂〉)aρ(q + d, q)dq (21)

to reconstruct ρ(q + d, q) for arbitrary q and d .
In a semiclassical truncation we have incomplete informa-

tion about the moments and it may be impossible to tell with
certainty whether truncated moments correspond to a pure or
mixed state. However, if there are parameters that appear only
in moments of the form �(qaπb) with b > 1, they may be
considered candidates for impurity parameters. We will see
several examples in our derivation of canonical variables for
moments.

C. Casimir-Darboux coordinates

Since the brackets (12) are noncanonical, it is not possible
to interpret the moments directly in terms of configuration
variables and momenta. However, the Darboux theorem and
its generalization to Poisson manifolds guarantee that one
can always choose coordinates that are canonical, together
with a set of Casimir coordinates that have vanishing Poisson
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BAYTAŞ, BOJOWALD, AND CROWE PHYSICAL REVIEW A 99, 042114 (2019)

brackets with all other variables. The required transformation
from moments to Casimir-Darboux variables of this form is, in
general, nonlinear. In Ref. [3], we have developed a systematic
method to derive such transformations, based on a proof of
Darboux’s theorem given in Ref. [25]. We have applied this
method to semiclassical truncations in Ref. [3]. Here, we
review the simplest case of a single pair of classical degrees
of freedom at the second order in

√
h̄. In this case, Casimir-

Darboux variables had already been found independently in
Refs. [26,27]. Derivations for the more complicated cases
are relegated to Appendixes A and B with further details on
the relevant integrations. These results will be applied in the
following section.

The relevant Poisson brackets of second-order moments
are given in (9)–(11). The procedure starts by choosing a
function that plays the role of the first canonical coordinate.
It is convenient to have a quantum fluctuation as one of the
configuration variables, and therefore we choose s =

√
�(q2).

This function, viewed formally as a Hamiltonian, is the gen-
erator of a Hamiltonian flow on phase space defined by

df (�(q2),�(qπ ),�(π2))
dε

= { f (�(q2),�(qπ ),�(π2)), s}.
(22)

If we already knew canonical coordinates, it would be obvious
that the Poisson bracket on the right-hand side of this equation
changes only the variable ps canonically conjugate to s, and
therefore the derivative should be equal to the (negative)
partial derivative of f by ps. Since we do not yet know ps,
we revert this argument and implicitly define ps such that the
derivatives in (22) equal the negative partial derivative by ps

for any function f . In particular, for the three second-order
moments we obtain

∂�(q2)

∂ ps
= −{�(q2),

√
�(q2)} = 0, (23)

∂�(qπ )

∂ ps
= −{�(qπ ),

√
�(q2)} =

√
�(q2) = s, (24)

∂�(π2)

∂ ps
= −{�(π2),

√
�(q2)} = 2

�(qπ )√
�(q2)

= 2
�(qπ )

s
.

(25)

By construction, these are partial differential equations in
which s is held constant. We can easily solve (24) by

�(qπ ) = sps + f1(s) (26)

with a free function f1 depending only on s. Inserting this
solution in (25), we have

�(π2) = p2
s + 2

f1(s)

s
ps + f2(s) (27)

with another free function f2 depending only on s.
Computing {�(qπ ),�(π2)} using the canonical nature of

the variables s and ps, and requiring that it equal 2�(π2)
implies two equations,

df1

ds
= f1

s
,

df2

ds
= 2

f1

s2

df1

ds
− 2

f2

s
. (28)

They are solved by

f1(s) = U2s, f2(s) = U1

s2
+ U 2

2 , (29)

with constants U1 and U2. We can eliminate U2 by a canonical
transformation replacing ps with ps + U2. The constant U1 is
the Casimir coordinate which has vanishing Poisson brackets
with all other functions. The resulting moments in terms of
Casimir-Darboux variables are

�(q2) = s2, �(qπ ) = sps, �(π2) = p2
s + U1

s2
, (30)

as in Refs. [26,27].
In general, it may be difficult to recognize a variable

such as U1 as a Casimir coordinate. In such a case, the flow
generated by s or s2 = �(q2) is again useful,

d�(qπ )

dε
= −2�(q2),

d�(π2)

dε
= −4�(qπ ). (31)

The solutions are similar to what we already used,
�(qπ )[ε] = −2�(q2)ε + d for the first equation and
�(π2)[ε] = 4�(q2)ε2 − 4dε + e for the second equation,
with constants d and e. But now we use these equations to
eliminate ε instead of solving for ps. Inserting ε = 1

2 {d −
�(qπ )[ε]}/s2 in �(π2)[ε] implies

�(π2)[ε] = �(qπ )[ε]2

�(q2)
− 3

d2

�(q2)
+ e. (32)

The combination U1 = �(q2)�(π2)[ε] − �(qπ )[ε]2 =
−3d2 + es2 is therefore independent of ε. Since
dU1/dε = {U1,�(q2)} = 0, U1 is a coordinate Poisson
orthogonal to s. It is also Poisson orthogonal to ps by
construction, and therefore represents the Casimir variable of
this system.

III. APPLICATIONS

As shown in the preceding section, the inclusion of mo-
ments in semiclassical truncations leads to several new de-
grees of freedom. In this section, we highlight some of the
physical effects implied by them. At the same time, we show
that the form in which canonical variables appear in various
realizations of the moment algebras suggests truncations to
smaller canonical subsystems which are easier to analyze
by analytic means and often show physical effects more
intuitively.

A. Partition and two-point function of a free massive scalar field

Our first example is an application of the second-order
mapping (30), rederived here from Refs. [26,27], to a free field
theory. We start with the Hamiltonian,

H =
∫

dx

(
1

2
π2 + 1

2
(∂xφ)2 + 1

2
m2φ2

)
(33)

of a one-dimensional real scalar field with mass m. We trans-
form to momentum space by writing

φk = 1√
2π

∫
dx φ(x)e−ikx, πk = 1√

2π

∫
dx π (x)e−ikx,

(34)
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with a real wave number k. Reality of φ(x) and π (x) implies
that φ∗

k = φ−k and π∗
k = π−k .

If we assume that the spatial manifold with coordinate x is
compact and of length 2π , thus describing a scalar field on a
unit circle, k takes integer values and we have finite Poisson
brackets

{φk, πk′ } = δkk′ (35)

replacing the field-theory Poisson brackets {φ(x), π (y)} =
δ(x − y) in the position representation. Each mode with fixed
k is then described by an independent canonical pair (φk, πk ),
which can easily be quantized to a pair (φ̂k, π̂k ) of operators.

The classical reality condition implies the adjointness rela-
tions

φ̂
†
k = φ̂−k, π̂

†
k = π̂−k . (36)

The Hamilton operator can therefore be expressed as

Ĥ = 1

2

∞∑
k=−∞

(
π̂kπ̂

†
k + ω2

k φ̂kφ̂
†
k

)
, (37)

with ωk = √
m2 + k2. A further transformation,

φ̂k = 1
2

(
φ̂R

k − iφ̂L
k

)
, π̂k = 1

2

(
π̂R

k + iπ̂L
k

)
, (38)

explicitly decouples left- and right-moving modes, φ̂L
k and φ̂R

k ,
respectively. The Hamilton operator then reads

Ĥ = 1

2

∞∑
k=−∞

[(
π̂R

k

)2 + (
π̂L

k

)2 + 1

4
ω2

k

(
φ̂R

k

)2 + 1

4
ω2

k

(
φ̂L

k

)2
]
.

(39)

1. Partition function

Since all the modes decouple and have harmonic Hamil-
tonians, the mapping for a single degree of freedom at the
second order provides an exact effective description in any
state in which cross correlations between different modes
vanish. In the absence of interaction terms in the Hamiltonian,
the latter condition is satisfied in the ground state. More
generally, we can also consider ensemble averages in finite-
temperature states. Since cross correlations do not contribute
the the energy of our noninteracting system, they will not
be affected by turning on a finite temperature. Moreover,
correlations in harmonic systems have oscillatory solutions
around zero and therefore vanish in an ensemble average.

Mode fluctuations parametrized by the canonical variable
sk with momentum pk and Casimir Uk , by contrast, are
bounded from below by the uncertainty relation and do not
average to zero. For every fixed mode and at finite temperature
T , we can compute the partition function

Z (β, ωk, λ) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

Umin

dsk d pk dUk

× exp

[
−β

(
1

2
p2

k + λ
Uk

2s2
k

+ 1

8
ω2

k s2
k

)]
, (40)

where β = 1/kBT and Umin = h̄2/4 and we have restricted sk

to positive values. We have inserted the auxiliary parameter λ

in anticipation of an application below in which a λ derivative
of Z will give us the ensemble average of the quantum

uncertainty Uk . For all other purposes, we use the physical
value λ = 1. If we perform the Uk integral before the sk

integral, the partition function

Z (β, ωk, λ) = 4π
2 + βωk

√
Uminλ

λω3
kβ

3
exp

(
−1

2
βωk

√
Uminλ

)
(41)

can be obtained in closed form.
A derivative by ωk (at λ = 1) results in the ensemble

averages〈(
sR

k

)2〉
E = 〈(

sL
k

)2〉
E = 12

ω2
kβ

+ Uminβ

1 + 1
2

√
Uminωkβ

(42)

of dispersions in a thermal state. Moreover, the average energy
per mode is

〈Ek〉E = −∂ logZ
∂β

= 12 + βωk (6
√

Umin + Uminωkβ )

2β(2 + β
√

Uminωk )
.

(43)

In the limit T → 0, the value

〈Ek〉E = √
Umin

ωk

2
(44)

agrees with the ground-state energy if we use Umin = h̄2/4,
noting that a single mode used here appears with frequency
ωk/2 in (39). (The combination of φR

k and φL
k has the standard

harmonic-oscillator energy 1
2 h̄ωk on average.) Finally, the

ensemble average of the quantum uncertainty in a thermal
state can be determined as

〈Uk〉E = 8

β2ωk

1

Z
∂2Z

∂ωk∂λ

∣∣∣∣
λ=1

= Umin + 24

β2ω2
k

+ 4Umin

2 + √
Uminβωk

, (45)

which approaches Umin as T → 0. For T 
= 0, 〈Uk〉E > Umin

in a mixed, finite-temperature state. The difference U − Umin

is therefore an impurity parameter in this situation, which is in
agreement with our discussion in Sec. II B and the fact that the
Casimir U only appears in the second-order moment �(π2).

We see that canonical variables for semiclassical trunca-
tions can give easy access to thermodynamical quantities by
rewriting a quantum statistical system in the form of a clas-
sical system. The canonical nature of variables parametrizing
quantum moments makes it possible to determine the correct
phase-space volume for the partition function.

2. Two-point function

We extend the definition of moments to our field theory
by applying the quantum-mechanics definition to each mode
φk . Introducing δ̂φk = φ̂k − 〈φ̂k〉Q, we then have �(φkφk′ ) =
〈δ̂φk δ̂φk′ 〉Q, from which we can obtain correlations in the
position representation by Fourier transformation. In these
definitions, we have explicitly indicated that expectation val-
ues 〈·〉Q refer to a quantum state as opposed to the ensemble
average used in (42).
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The two-point function

〈�(φ(x)φ(y))〉E =
∑
kk′

〈〈δ̂φk δ̂φk′ 〉Q〉Eeikxeik′y

= 1

4

∑
kk′

〈〈(
δ̂φR

k − iδ̂φL
k

)(
δ̂φR

k′ − iδ̂φL
k′
)〉

Q

〉
E

× eikxeik′y

combines both types of averages. We can simplify the dou-
ble summation using δ̂φL

−k = −δ̂φL
k , which follows from the

adjointness relation for φ̂k . Using zero cross covariances
between the modes as well as the fact that the fluctuations only
depend on the wave number k but not on whether the mode is
left or right moving, the double summation is then reduced to

〈�(φ(x)φ(y))〉E = 1

2

∑
k

〈〈
δ̂φR

k δ̂φR
k

〉
Q

〉
E cos [k(x − y)].

(46)

Inserting (42), we obtain

〈�(φ(x)φ(y))〉E = 1

2

∑
k

(
12

ω2
kβ

+ Uminβ

1 + 1
2

√
Uminωkβ

)
× cos [k(x − y)]. (47)

In the limit of large k � 1, or of wavelengths much smaller
than the circumference of our circle, we can replace

∑
k by

(2π )−1
∫

dk, such that

〈�(φ(x)φ(y))〉E = 1

2

∫
dk

2π

(
12

ω2
kβ

+ Uminβ

1 + 1
2

√
Uminωkβ

)
× cos [k(x − y)]. (48)

It is instructive to consider the low-temperature limit β → ∞.
The result,

lim
β→∞

〈�(φ(x)φ(y))〉E = h̄
∫

dk

4πωk
cos [k(x − y)]

= h̄

2π
K0(m|x − y|), (49)

with a Bessel function K0, agrees exactly with the equal-time
two-point function obtained using path-integral methods.

We can also consider the case where the temperature is
nonzero but still small enough for the semiclassical approx-
imation to be valid. Taylor expanding the integrand about
β = ∞, the first-order temperature correction to the two-point
function is 8/(ω2

kβ ),

〈�(φ(x)φ(y))〉E = h̄

2π
K0(m|x − y|) + 9kT

4m
exp (−m|x − y|)

+ O(T 2). (50)

The asymptotic behavior K0(z) ∼
√

1
2π/z e−z for large z

shows that the term linear in the temperature decreases more
slowly with the distance than the temperature-independent
term. For large-distance correlations, this correction from a
nonzero temperature may therefore be relevant.

B. Closure conditions

Our third- and fourth-order mappings from Appendix A
suggest new closure conditions (in the sense of Ref. [28]) that
can be used to describe moments by a small number of pa-
rameters. In particular, we may assume that the second-order
fluctuation parameter s contributes to higher-order moments
such that �(qn) = sn, at least for even n. For the third-order
moments �(q3) in the fourth-order truncation, Eq. (A49), the
cubic dependence on si is multiplied by a free parameter, given
by the Casimir variable C, unlike in even-order moments
�(q2) and �(q4), Eq. (A50). Since odd-order moments are
often subdominant, for instance, in the family of Gaussian
states, we can set C = 0 and assume that this behavior extends
to higher orders. These considerations suggest the closure
conditions

�(qn) =
{

sn for even n,

0 for odd n,
(51)

for all moments, replacing a truncation to finite order. In an
effective Hamiltonian, we then obtain the all-orders effective
potential

Vall-orders(q, s) = V (q) + U

2ms2
+

∑
n

1

(2n)!

d2nV (q)

dq2n
s2n

= U

2ms2
+ 1

2
[V (q + s) + V (q − s)] (52)

for a classical potential V (q). The Casimir variable U may
be set equal to the minimum value h̄2/4 allowed by the
uncertainty relation.

It is interesting to note that a similar potential has ap-
peared before, based on an analysis of the Wigner function
in Ref. [21]; see, in particular, Eq. (4.19b) there. However,
in this derivation, the argument q of the classical potential is
shifted by terms which in general are not real and depend
on more than just a single parameter. For some choices of
these parameters, our all-orders effective potential can be
reproduced with a very different derivation. This relationship
lends additional support to our constructions. To the best of
our knowledge, the effective potential derived in Ref. [21] has
yet to be applied in concrete examples such as those to which
we now turn.

1. Nondifferentiable potentials

Semiclassical physics is usually based on an expansion
which requires a smooth potential. Our all-orders effective
potential, by contrast, explicitly sums up a perturbative series
and expresses quantum effects via finite shifts of the classical
potential. It can therefore be applied to potentials that are not
smooth or not even differentiable.

As an example, consider the potential V (q) = |q|. In partic-
ular, we can check the ground-state energy. In the static case
of zero momentum (and using atomic units in which h̄ = 1
and m = 1), we have

Vall-orders(q, s) = 1

8s2
+ 1

2
(|q + s| + |q − s|). (53)

This function has a minimum at q = 0 and s = 2−2/3, and the
minimum value is Eground = 0.94. We can calculate the exact
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value of the ground-state energy using a truncated oscillator
basis. The result is E exact

ground = 0.81.
It is possible to obtain this nondifferentiable potential as

a limit of a differentiable one. To this end, consider the
Hamiltonian

H =
√

1 + π2 + 1
2 q2, (54)

which can be interpreted as describing a relativistic particle
with position-dependent mass

√
H2 − π2 =

√
1 + 1

2 q2 . Af-
ter a simple canonical transformation (q, π ) → (−π, q) the
Hamiltonian

H = π2

2
+

√
1 + q2 (55)

appears in standard form for a nonrelativistic system. Now the
all-orders effective potential with U = 1/4 (setting h̄ = 1 for
the purpose of numerical comparisons) is given by

Vall-orders(q, s) = 1

8s2
+ 1

2
[
√

1 + (q + s)2 +
√

1 + (q − s)2]

(56)

and minimized in q when q = 0. Minimizing

Vall-orders(0, s) = 1

8s2
+

√
1 + s2 (57)

with respect to s, we find the minimum value

Eground = 1.47. (58)

The exact ground-state energy is

E exact
ground = 1.44. (59)

The agreement here is better than in the preceding example,
which can be interpreted as a limit of a potential in which√

1 + q2 is replaced by limd→0

√
d + q2 .

2. Canonical tunneling time in polynomial potentials

The regimes of validity of the all-orders potential can
be tested in the case of tunneling escape. For this purpose,
we consider a fourth-order polynomial potential in order to
describe tunneling escape from a metastable state,

Vpoly(q) = 27

4
Vtopγ q2(q − 1)

(
q − 1

γ

)
, (60)

where Vtop is a parameter that controls the height of the barrier
and γ controls the location of the global minimum of this
potential. When γ is small, this potential has the following
approximate critical points with the corresponding potential
values: The top of the barrier is characterized by

qtop ≈ 2

3
, Vpoly(qtop) = Vtop, (61)

and the global minimum is characterized by

qmin ≈ 3

4γ
, Vpoly(qmin) ≈ −729Vtop

1024γ 3
. (62)

In addition to the global minimum, there is a local minimum
at q = 0 with Vpoly(0) = 0.

Classically, if the particle starts close to the local minimum
at q = 0 with an energy less than Vtop, the particle will remain

confined. However, if quantum degrees of freedom are taken
into account, we know that the particle can tunnel through
the barrier and into the lower basin. We can account for
this modified dynamics using second-order variables if the
barrier is sufficiently small. If the barrier is large, higher-order
corrections need to be taken into account in order to see
tunneling. The all-orders effective potential, given by

Vall-orders(q, s) = U

2ms2
+ 1

2
[Vpoly(q + s) + Vpoly(q − s)]

(63)

includes some of the terms that result from higher-order
moments.

For escape from a metastable state, the particle is initially
at the local minimum at q = 0, around which

Vpoly(q) ≈ 27

4
Vtopq2. (64)

For this quadratic approximation, the effective potential is

Veff (q, s) ≈ 27

4
Vtop(q2 + s2) + U

2s2
. (65)

This potential has a minimum at

q = 0, s =
(

2U

27Vtop

)1/4

, (66)

which give the approximate ground-state energy

V0 ≈ 3

8

√
3U

Vtop
(Vtop + 2). (67)

Given the initial conditions (66) we can track the particle
dynamics numerically; see Fig. 1. If the parameter Vtop be-
comes large, the particles no longer tunnel if one only con-
siders the second-order canonical mapping. Second-order dy-
namics can provide good approximations in certain regimes,
but for “deep” tunneling, in which case the expectation value
spends a long time within the barrier and the moments have
time to change considerably, we need an extension to higher
orders. The all-orders effective potential is then useful for
understanding the escape from a local minimum in deep
tunneling situations.

Using the all-orders potential, we estimate the tunneling
time as a function of the tunnel exit position of the particle,
which corresponds to the particle position around the critical
point qtop ≈ 2/3. Figures 2 and 3 show a numerical compari-
son of the canonical tunneling time and the exit momentum of
the particle, using the all-orders potential and exact solutions,
respectively.

In Ref. [4] we used the all-orders effective potential for
atomic systems, based on the all-orders closure condition. In
a further approximation, it was possible to eliminate some
of the basic variables such that s ≈ q inside the barrier. For
the polynomial potential we can test the same behavior by
computing the evolution of the expectation value q and its
fluctuation s. As shown Fig. 4, the approximate relationship
between q and s during tunneling is maintained also here.

Finally, it is interesting to note that the tunneling time can
be sensitive to the parameter γ which specifies the location
of the global minimum of the classical potential (60). We
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FIG. 1. Dynamics in the all-orders effective potential (63): The
potential is represented by its ground-state equipotential curve Veff =
V0 (solid line), together with a tunneling trajectory starting from the
local minimum (dashed line). For this plot we chose the parameters
Vtop = 1, γ = 0.1, U = 1/4. The “extra dimension” given by the
fluctuation parameter s provides the particle with an escape route
around the classical barrier, without violating energy conservation.
(All figures are shown in atomic units.)

estimate the tunneling time in terms of γ , starting with γ =
0.1, as shown in Fig. 5.

C. Effective potentials

Casimir-Darboux coordinates for moments, in combina-
tion with the effective Hamiltonian (6), allow us to identify
the dynamics of a semiclassical truncation with a dynamical
canonical system. The classical momentum π (derived from
the momentum expectation value) is then accompanied by

FIG. 2. Tunneling times as a function of the starting position,
for an exact calculation and the all-orders potential, respectively.
There is good agreement, with larger discrepancies close to the origin
where we have deep tunneling.

FIG. 3. The exit momentum of the particle as a function of the
initial position.

one or more new momenta that parametrize fluctuations,
correlations, and higher moments.

For a single classical pair of degrees of freedom to second
semiclassical order, the moments are quadratic in the new
momentum ps with constant coefficients. A dynamical system
with standard kinetic term is therefore obtained [27],

〈Ĥ〉 = 〈π̂2〉
2m

+ V (q̂)

= π2 + �(π2)

2m
+ V (q) + 1

2
V ′′(q)�(q2) + · · ·

= π2

2m
+ p2

s

2m
+ U

2ms2
+ V (q) + 1

2
V ′′(q)s2 + · · · , (68)

with effective potential

Veff (q, s) = U

2ms2
+ V (q) + 1

2
V ′′(q)s2. (69)

Our third-order moments provide an extension to the next
order, now with three nonclassical momenta. The first version,
(A24), is quadratic in momenta but with coefficients depend-
ing on the configuration variables si. The second version,
(A34), results in a simplified system with constant coefficients
in the extended kinetic term.

FIG. 4. Trajectories of the tunneling coordinate q and its fluctu-
ation s for the all-orders effective potential (63).
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FIG. 5. The tunneling time as a function of γ in the potential (60).

However, for two pairs of degrees of freedom, it is not
possible to have momentum fluctuations which are quadratic
in Darboux momenta with constant coefficients [3]. The
resulting effective theories are therefore more involved in
such cases. Nevertheless, it is possible to extract an effective
potential. Using the Taylor expansion (6) of the effective
Hamiltonian 〈Ĥ〉 and setting all canonical momenta equal to
zero, we obtain an expression depending only on the canonical
coordinates. We do not require that the momenta vanish for all
solutions of interest, which would then be adiabatic, but rather
extract a term from the effective Hamiltonian that serves as an
effective potential. For this purpose, canonical variables are
required in order to know which functions of the moments
should be considered momenta.

For two classical degrees of freedom to second semiclassi-
cal order, this procedure leads to a more complicated effective
potential. We derive this potential for a classical Hamiltonian
of the form

H = 1
2π2

1 + 1
2π2

2 + V (q1, q2), (70)

as it appears in quantum-mechanics models of field theories
used in particle physics. (The masses of the two degrees of
freedom then appear in quadratic contributions 1

2 m2
1q2

1 and
1
2 m2

2q2
2 to the potential.) The second-order moment expansion

of the expectation value 〈Ĥ〉 then leads to nonclassical contri-
butions 1

2�(π2
1 ) and 1

2�(π2
2 ) from the kinetic terms, as well

as

1
2V11(q1, q2)�

(
q2

1

) + V12(q1, q2)�(q1q2)

+ 1
2V22(q1, q2)�

(
q2

2

)
,

where we have used the notation Vi j = ∂2V/∂qi∂q j .
According to Appendix B, it is possible to choose canon-

ical variables s1, s2, and β in Casimir-Darboux coordinates
such that �(q2

1 ) = s2
1, �(q2

2 ) = s2
2, and �(q1q2) = s1s2 cos β;

see Eq. (B65). The moments �(π2
1 ) and �(π2

2 ) take more
complicated forms in canonical variables, which are shown
in Eqs. (B58)–(B61). These moments depend on a fourth
canonical variable α, in addition to s1, s2, and β. Moreover,
there are two Casimir variables, U1 and U2. When all the
momenta are set equal to zero, the effective potential derived

from these moments is given by

V (1)
eff (q1, q2, s1, s2, α, β,U1,U2)

= V (q1, q2) + 1

4 sin2(β )

×
(

U1 − √
U2 sin(α + β )

s2
1

+ U1 − √
U2 sin(α − β )

s2
2

)
+ 1

2
V11(q1, q2)s2

1 + V12(q1, q2)s1s2 cos (β )

+ 1

2
V22(q1, q2)s2

2. (71)

The two Casimir coordinates U1 and U2 are constants of mo-
tion for any classical dynamics and can be considered (state-
dependent) parameters of the effective potential, while the
remainder in the effective Hamiltonian for nonzero momenta
(not used here) is a nonstandard kinetic term.

We define the low-energy effective potential Vlow(q1, q2) as
the effective potential Veff restricted to values of the moments
(that is, s1, s2, α, β, U1, and U2) obtained in the ground state of
the interacting system. We therefore determine the moments
by minimizing the effective potential with respect to s1, s2, α,
β and the two Casimir coordinates while keeping the classical-
type variables q1 and q2 free.

In this process, we have to respect the boundaries imposed
by uncertainty relations. Since W is linear in U1 and

√
U2,

minimization sends these two values to the boundary. [From
(B44), we know that U2 > 0 for p4 = 0 to be possible.]
The relevant boundary components, at zero momenta, can
be obtained from Heisenberg’s uncertainty relation applied
to each canonical pair: As shown in Appendix B, there are
functions � and � such that

h̄2

4
� �

(
q2

1

)
�

(
π2

1

) − �(q1π1)2 = �(β, pβ, α, pα ), (72)

h̄2

4
� �

(
q2

2

)
�

(
π2

2

) − �(q2π2)2 = �(β, pβ, α, pα ); (73)

see Eqs. (B58)–(B61). For zero momenta pα and pβ , the
expressions simplify to

�(β, 0, α, 0) = 1

2 sin (β )2 [U1 − √
U2 sin (α + β )] � h̄2

4
,

(74)

�(β, 0, α, 0) = 1

2 sin (β )2 [U1 − √
U2 sin (α − β )] � h̄2

4
.

(75)

For fixed U1 and U2, these two relations must be true for all α

and β. Moreover, for any choice of U1 and U2 there must be
solutions of α and β such that both relations are saturated: If
the coupling between the two degrees of freedom is turned
off adiabatically, we expect saturation in the ground state.
Since U1 and U2 are constants of motion for any Hamiltonian,
their values do not change during this adiabatic decoupling.
Therefore, any choice of U1 and U2 must allow some solutions
of α and β such that the uncertainty relations are saturated.
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At saturation, we can subtract (74) and (75) and obtain

−1

2

√
U2

cos(α)

sin(β )
= 0, (76)

and thus U2 = 0 or cos(α) = 0. In the latter case, the U2-
dependent term in the effective potential,

VU2 = −
√

U2 cos(β )

4 sin2(β )

(
1

s2
1

+ 1

s2
2

)
, (77)

is, for any classical potential, unbounded from below in
√

U2

for any β such that cos(β ) > 0. This solution of (76) is
therefore ruled out by the condition that a stable ground state
must exist for a large class of classical potentials. We conclude
that U2 = 0.

Given this solution, the smallest value of U1 for which (74)
can be fulfilled is U1 = h̄2/2. Therefore,

�|p3=p4=U2=0,U1=h̄2/2 = h̄2

4 sin β2
= �p3=p4=U2=0,U1=h̄2/2.

(78)

The effective potential then reads

V (2)
eff (q1, q2, s1, s2, β )

= V (q1, q2) + h̄2

8 sin (β )2s2
1

+ h̄2

8 sin (β )2s2
2

+ 1

2
V11s2

1 + V12s1s2 cos (β ) + 1

2
V22s2

2. (79)

Although we have not minimized the potential in the direction
of α, the α dependence has disappeared. There should, how-
ever, be a unique pure state that corresponds to the ground
state where the effective potential has its minimum. Since
minimization does not determine α, it must be the pure-state
condition that fixes its value. This conclusion is in agreement
with our earlier discussion of impurity parameters: In the
mapping (B58)–(B65), α appears only in moments of the form
�(πiπ j ) which are not required to reconstruct a pure state in
the position representation.

Minimization by s1, s2, and β gives us three equations,

0 = ∂V (2)
eff

∂s1
= − h̄2

4s3
1 sin2 β

+ V11s1 + V12s2 cos β, (80)

0 = ∂V (2)
eff

∂s2
= − h̄2

4s3
2 sin2 β

+ V22s2 + V12s1 cos β, (81)

0 = ∂V (2)
eff

∂β
= − h̄2

(
s2

1 + s2
2

)
cos β

4s2
1s2

2 sin2 β
− V12s1s2 sin β. (82)

Subtracting s2 times (81) from s1 times (80), we obtain

sin2 β = h̄2

4s2
1s2

2

s2
2 − s2

1

V11s2
1 − V22s2

2

. (83)

Using the sum of s2 times (81) and s1 times (80), we derive
4V 2

12s2
1s2

2 cos2 β

=
(

h̄2
(
s2

1 + s2
2

)
4s2

1s2
2 sin2 β

− (
V11s2

1 + V22s2
2

))2

=
(

s2
1 + s2

2

s2
1 − s2

2

(
V11s2

1 − V22s2
2

) + (
V11s2

1 + V22s2
2

))2

= 4

(
V11s4

1 − V22s4
2

)2(
s2

1 − s2
2

)2 . (84)

Alternatively, we can derive 4V 2
12s2

1s2
2 cos2 β as follows:

The sum of s1 sin2 β times (80) and cos β sin β times (82)
implies

0 = − h̄2
(
s2

1 + s2
2

)
4s2

1s2
2 sin2 β

+ h̄2

4s2
2

+ V11s2
1 sin2 β

= s2
1 + s2

2

s2
1 − s2

2

(
V11s2

1 − V22s2
2

) + h̄2

4

V11 − V22

V11s2
1 − V22s2

2

(85)

using (83). This equation, together with (83), also gives us

4V 2
12s2

1s2
2 cos2 β = 4V 2

12s2
1s2

2

(
1 − 2h̄2

s2
1s2

2

s2
2 − s2

1

V11s2
1 − V22s2

2

)
= 4V 2

12

(
s2

1s2
2 + (

s2
1 + s2

2

)V11s2
1 − V22s2

2

V11 − V22

)
= 4V 2

12
V11s4

1 − V22s4
2

V22 − V11
. (86)

Equating (84) and (86), we have

V11s4
1 − V22s4

2 = V 2
12

V22 − V11

(
s2

1 − s2
2

)2
, (87)

which can be interpreted as a quadratic equation for s2
1/s2

2 with
the solution

s2
1

s2
2

=
(V22 − V11)

√
V11V22 − V 2

12 − V 2
12

V11(V22 − V11) − V 2
12

. (88)

(There is a unique sign choice implied by s2
1/s2

2 > 0.)
This solution implies

s2
1 + s2

2

s2
1 − s2

2

=
(V22 − V11)

(√
V11V22 − V 2

12 + V11
) − 2V 2

12

(V22 − V11)
(√

V11V22 − V 2
12 − V11

) ,

(89)

V11
s2

1

s2
2

−V22 = (V22−V11)
√

V11V22−V 2
12

V11−
√

V11V22−V 2
12

V11(V22 − V11) − V 2
12

,

(90)

which can be used in (85) to obtain

s4
2 = h̄2

4

V11V22 − V 2
12 − V 2

11

V11V22 − V 2
12

V11 +
√

V11V22 − V 2
12

(V22 − V11)
√

V11V22 − V 2
12 + V11V22 − V 2

11 − 2V 2
12

. (91)
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We also have

s4
1 = s4

2(V11 ↔ V22) (92)

= h̄2

4

V11V22 − V 2
12 − V 2

22

V11V22 − V 2
12

V22 +
√

V11V22 − V 2
12

(V11 − V22)
√

V11V22 − V 2
12 + V11V22 − V 2

22 − 2V 2
12

, (93)

and the angle β can be obtained by (83).
If we insert these solutions in the effective potential, the results can be seen to equal the low-energy effective potential [29]

Vlow(q1, q2) = V (q1, q2) + h̄

2

√
1

2

[
V11 + V22 +

√
(V11 − V22)2 + 4V 2

12

] + h̄

2

√
1

2

[
V11 + V22 −

√
(V11 − V22)2 + 4V 2

12

]
, (94)

although it initially appears in a rather different algebraic
form. Our derivation automatically provides results for the
ground-state variances and covariance at the minimum of the
effective potential. For instance, while the actual expression
for β is quite complicated and not given here, for small V12

we can use a Taylor expansion and obtain

β = π

2
+ V12

(V11V22)1/4(
√

V11 + √
V22)

+ O
(
V 2

12

)
. (95)

In the limit of weak coupling, the moment �(q1q2) therefore
goes to zero.

As a simple example, consider the Hamiltonian

H = 1

2
π2

1 + 1

2
π2

2 + ω2

2
q2

1 + ω2

2
q2

2 + γω2q1q2. (96)

Its quantization has the exact ground-state energy

E = 1
2 h̄ω(

√
1 + γ +

√
1 − γ ), (97)

agreeing with what we get from (94).

IV. DISCUSSION

Our extensions of canonical variables for moments from
second order for a single degree of freedom demonstrate sev-
eral new features of semiclassical states and their dynamics.
In particular, we have identified various parameters related to
the impurity of a state, a result which also plays a role in the
determination of semiclassical potentials. Canonical moment
variables are therefore useful tools to understand features of
the quantum state space.

Our other applications illustrate the fact that canonical
mappings of the form derived here can be relevant in a large
set of different physical fields. For instance, they allow one to
rewrite quantum statistics in classical terms and thereby pro-
vide convenient access to new types of variables (Sec. III A).
Interestingly, there is a well-defined partition function for
second-order moments even though these variables are subject
to a noninvertible Poisson structure. For a derivation of the
correct phase-space volume element it is therefore crucial to
identify Casimir-Darboux variables. Casimir variables do not
have momenta and therefore do not contribute the usual 2π h̄
volume to a partition function. Nevertheless, in our example
we saw that we have to integrate over them in order to
obtain the correct thermodynamical results for fluctuations. In
tunneling situations, canonical moment variables demonstrate
a new heuristic picture in which an external field literally

opens up a tunnel through a higher-dimensional extension of
the classical potential (Fig. 1). During tunneling, higher than
second-order moments are crucial, which we have captured by
the new all-orders effective potential (52) defined here for any
classical potential.

The present paper has given mainly illustrative applications
in simplified models. Our presentation here sets the basis for
a detailed analysis [4] to tunneling ionization in atoms with
a successful comparison with recent discussions [8–17] of
experimental results [5–7]. In particular, the closure condi-
tions discussed here provide the foundation for our analysis
of tunneling in three-dimensional atomic systems subject to a
time-dependent external force.
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APPENDIX A: SINGLE PAIR OF DEGREES OF
FREEDOM AT HIGHER ORDERS

In this Appendix, we present derivations of canonical
moment variables for a single degree of freedom at third
and fourth order. Different approaches are compared, which
allows us to highlight interesting features of moment systems.

1. Single pair of degrees of freedom at third order

Here, we present an extension of the Casimir-Darboux
coordinates from Sec. II C to third order. There are now seven
moments, and the rank of the Poisson tensor shows that there
is a single Casimir variable. We must therefore derive two ad-
ditional pairs of canonical degrees of freedom. Since Darboux
coordinates are defined only up to canonical transformations,
the form in which they appear in the moments is not unique
and subject to choices. For now, we make a choice motivated
by the canonical form we just derived at second order: We
assume that �(q2) depends only on one of the new canonical
pairs,

�(q2) = s2
1, (A1)

from which it quickly follows, by a calculation similar to our
second-order example, that

�(qπ ) = s1 p1 (A2)
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is a consistent (but not unique) choice of introducing the first
momentum.

The remaining canonical pairs must be such that they have
zero Poisson brackets with s1 and p1, or with �(q2) and
�(qπ ) according to our first choices. The same procedure that
we used to derive U1 as a coordinate Poisson orthogonal to
both s and ps at second order can also be used here, but now
we have five additional moments which should be expressed
in terms of functions Poisson orthogonal to s and ps. By sys-
tematically computing the flows of all the remaining moments
generated by s1 and p1 and eliminating flow parameters, it
follows that the following functions of moments are Poisson
orthogonal to s1 and p1:

f1 = �(q2)�(π2) − �(qπ )2, (A3)

f2 = �(q2)
�(q2π )

�(q3)
− �(qπ ), (A4)

f3 = �(q2)2

�(q3)2
[�(q2π )2 − �(qπ2)�(q3)], (A5)

f4 = 2�(qπ ) + �(q2)
�(q3)�(π3) − �(qπ2)�(q2π )

�(q2π )2 − �(qπ2)�(q3)
.

(A6)

One additional variable can be derived independently from the
Casimir function of the Lie algebra that corresponds to third-
order moments,

f5 := U 4
1 = [�(q2π )�(qπ2) − �(q3)�(π3)]2

− 4[�(qπ2)2 − �(q2π )�(π3)][�(q2π )2

− �(q3)�(qπ2)]. (A7)

(The fourth power of U1 is chosen such that U1 is of third
order just like the moment order considered here.) While
f5 Poisson commutes with all other fi, ( f1, f2, f3, f4) have
nonlinear brackets,

{ f1, f2} = 2 f1 + 2 f 2
2 + 4 f3, (A8)

{ f1, f3} = 12 f2 f3 + 2 f3 f4, (A9)

{ f1, f4} = −4 f1 − f 2
4 + 4 f3 − (2 f2 + f4)2, (A10)

{ f2, f3} = −4 f3, (A11)

{ f2, f4} = −4 f2 − 2 f4, (A12)

{ f3, f4} = −8 f3, (A13)

with one another.
We are now ready to choose our second configuration

variable. We define

s2 = f3, (A14)

such that
∂ f1

∂ p2
= −12s2 f2 − 2s2 f4,

∂ f2

∂ p2
= 4s2,

∂ f4

∂ p2
= −8s2

(A15)

can be used to determine the second momentum variable.
Integrating the last two equations and inserting the results in
the first one gives

f1 = −16s2
2 p2

2 − s2(12g2 + 2g4)p2 + g1, (A16)

f2 = 4s2 p2 + g2, (A17)

f4 = −8s2 p2 + g4, (A18)

with three functions g1, g2, and g4 independent of p2. (They
can therefore depend on s2 and the remaining canonical pair,
s3 and p3, as well as the Casimir variable U1.) Since we are
interested in deriving p2, we can choose the free functions
such that it is easy to invert (A16), (A17), or (A18) for p2. A
wrong choice at this point could result in a degenerate system
that does not allow us to derive all canonical pairs. Since
we know how many canonical pairs we obtain, a little bit of
trial and error quickly shows when a choice is suitable. If we
choose g4 = −6g2, we obtain

p2 = 6 f2 + f4

16s2
(A19)

from a combination of (A17) and (A18), as well as

g1 = f1 + (6 f2 + f4)2

16
, g2 = −1

2
f2 − 1

4
f4. (A20)

By construction, g1 and g2 do not depend on p2, but we
have not made sure yet that they do not depend on s2 either.
Since s2 is defined as s3, the Poisson brackets (A8)–(A13)
can be used to show that g1 and g2 do, in fact, depend on
s2. The same Poisson brackets determine the canonical flow
generated by p2 in (A19) on g1 and g2. By eliminating the
flow parameter as in some of the previous steps, we find that
the combinations

p3 = g2√
s2

, (A21)

s3 = 2g1 − 7s2 + 10p2
3s2

6
√

s2
(
4p2

3 − 1
) , (A22)

are independent of s2 and are therefore Poisson orthogonal to
all previously constructed canonical pairs. They determine our
final pair (s3, p3).

In order to express moments in terms of canonical pairs
and the Casimir variable, we insert the functions

f1 = 3
√

s2
( − 1 + 4p2

3

)
s3 + 1

2

(
7s2 − 10s2 p2

3

) − 16s2
2 p2

2,

f2 = √
s2 p3 + 4s2 p2,

f3 = s2,

f4 = −4
√

s2 p3 − 8s2 p2,

f5 = U 4
1 ,
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in (A3) and (A7) and invert the resulting relations for

�(q2) = s2
1, �(qπ ) = s1 p1, (A23)

�(π2) = p2
1 + f1

s2
1

= p2
1 + 3

√
s2

(
4p2

3 − 1
)
s3 + 1

2 s2
(
7 − 10p2

3

) − 16s2
2 p2

2

s2
1

, (A24)

�(π3) = U1

s3
1

√
2s3/2

2

√
1 − 4p2

3

�(si, pi ), (A25)

�(qπ2) = U1

s1

√
2s3/2

2

√
1 − 4p2

3

[p1s1 + (p3 − 1)
√

s2 + 4s2 p2] (A26)

× [p1s1 + (1 + p3)
√

s2 + 4s2 p2], (A27)

�(q2π ) = U1√
2s3/2

2

√
1 − 4p2

3

[
p1s2

1 + s1(p3
√

s2 + 4s2 p2)
]
, (A28)

�(q3) = U1s3
1√

2s3/2
2

√
1 − 4p2

3

, (A29)

where

�(si, pi ) = p3
1s3

1 + 3p2
1 p3s2

1
√

s2 + 3p1s1s2
(−1 + p2

3 + 4p1s1 p2
) + 64p3

2s3
2 + p3s3/2

2

(−7 + p2
3 + 24p1 p2s1

)
+ 48p3 p2

2s5/2
2 + 12p2s2

2

(−1 + p2
3 + 4p1s1 p2

)
. (A30)

More compactly, some of the momentum-dependent moments
can be written as

�(π3) = U1
(
P3 − 3P − 4p3s3/2

2

)
s3

1

√
2s3/2

2

√
1 − 4p2

3

, (A31)

�(qπ2) = U1(P2 − s2)

s1

√
2s3/2

2

√
1 − 4p2

3

, (A32)

�(q2π ) = U1s1P√
2s3/2

2

√
1 − 4p2

3

, (A33)

if we introduce P = p1s1 + p3
√

s2 + 4s2 p2. Note that s3 does
not appear in any �(qaπb) with b � 1, and may therefore be
a candidate for the impurity of a state.

2. Third order by ansatz

As we have seen, several choices have to be made in
the process of deriving Casimir-Darboux coordinates. Some
choices may lead to degenerate systems in which a smaller
number of canonical pairs results, and which should therefore
be discarded. However, even within the class of nondegenerate
systems, there cannot be a unique set of Casimir-Darboux
coordinates because one can always apply canonical trans-
formations of Darboux variables. Depending on the applica-
tion, some choices may lead to more useful realizations of
canonical variables than others. Staying with the third-order

system for a single pair of canonical degrees of freedom,
we now apply an alternative method which works by ansatz
and therefore is somewhat less systematic than the previous
procedure. However, it makes it easier to implement certain
properties such as a simplified version of �(π2) in (A24) with
si-independent coefficients. As we will see, such a version
greatly simplifies the effective dynamics, but it does not
always exist, in particular if we have more than one pair of
classical degrees of freedom.

We make the ansatz

�(π2) =
3∑

i=1

p2
i + F (s1, s2, s3), �(qπ ) =

3∑
i=1

si pi,

(A34)

�(q2) =
3∑

i=1

s2
i , �(q3) =

3∑
i=1

s3
i , (A35)

introducing three canonical pairs, as required. The function
F (s1, s2, s3), which is assumed to be independent of the mo-
menta, is subject to consistency conditions that follow from
the required Poisson brackets of moments. Once we have a
consistent F , we can generate all the remaining moments by
taking successive Poisson brackets with �(π2),

�(qm−1πn+1) = − 1

2m
{�(π2),�(qmπn)}, (A36)
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starting with m = 3, n = 0, in which case we have defined
�(q3) in (A35) and can derive

�(q2π ) =
∑

i

pis
2
i ,

�(qπ2) =
∑

i

p2
i si − 1

4

∑
i

s2
i

∂F

∂si
, (A37)

�(π3) =
∑

i

p3
i − 1

4

∑
i

pi

⎛⎝4si
∂F

∂si
+

∑
j

s2
j

∂2F

∂si∂s j

⎞⎠.

Since we have explicitly used all three canonical pairs ex-
pected for a third-order truncation, F depends on one further
parameter, U , which will be the Casimir coordinate. Since
F and therefore U appear only in moments which have at
least two momentum factors, U is a candidate for an impurity
parameter in this mapping.

Equation (A36) also applies to second-order moments,
m + n = 2. Since we have defined all three second-order
moments in (A34), we obtain consistency conditions on F .
We first compute

{�(π2),�(q2)} = −4
∑

i

si pi, (A38)

and from this

{�π2, {�(π2),�(q2)}} = 8
∑

i

p2
i − 4

∑
i

si
∂F

∂si
. (A39)

The condition

{�π2, {�(π2),�(q2)}} = 8�(π2) (A40)

then implies ∑
i

si
∂F

∂si
= −2F, (A41)

and therefore F is homogeneous of degree −2 if all si are
rescaled by the same constant.

Applying further Poisson brackets with �(π2) does not
give new conditions. For instance,

0 = {�(π2), {�(π2), {�(π2),�(q2)}}} (A42)

is equivalent to

0 = 8

⎛⎝3
∑

i

pi
∂F

∂si
+

∑
i, j

pis j
∂2F

∂si∂s j

⎞⎠. (A43)

Since the si and pi can be varied independently, the condition
implies that all three ∂F/∂si are homogeneous of degree −3
if all si are rescaled by the same constant, which follows from
F being of degree −2.

Another consistency condition can be derived by looking
at the third-order moments:

0 = {�(π2), {�(π2), {�(π2), {�(π2),�(q3)}}}} (A44)

is equivalent to

0 = 6
∑

i

p2
i

∂F

∂si
+ 4

∑
i j

pisi p j
∂2F

∂si∂s j

+ 1

2

∑
i jk

s2
i p j pk

∂3F

∂si∂s j∂sk

− 3

2

∑
i

si

(
∂F

∂si

)2

− 1

4

∑
i j

s2
i

∂F

∂s j

∂2F

∂si∂s j
. (A45)

This condition is generally independent from (A41). For
example, the solution F = ∑

i U/s2
i of (A41) is not a solution

of (A45).
One further condition has to be imposed, which is the

invertibility of the mapping from moments to (si, psj ). (Oth-
erwise one could choose the trivial solution F = 0.) For any
given F , this condition can be checked by computing the
Jacobian of the transformation, and it is fulfilled, for instance,
by the solutions

F (s1, s2, s3) =
∑
i< j

U

(si − s j )2
(A46)

of (A41) and (A45), where U is the Casimir variable. There-
fore, there is a faithful mapping from moments to canonical
coordinates at the third order, such that moments are quadratic
in the new momenta with s-independent coefficients. The
ansatz used here provides a simplified procedure to compute
Casimir-Darboux coordinates, but only if moments quadratic
in momenta exist. The choice (A46) is not unique, but it is
interesting because for U > 0 it implies repulsive potentials
between the si in an effective potential.

At this point, we have obtained two different canonical
systems for the third-order semiclassical truncation of a single
classical degree of freedom, with Casimir variables U1 and
U , respectively. However, a direct comparison of these two
versions of the Casimir variable is difficult because the two
Poisson algebras we have canonically realized, in fact, differ
from each other in a subtle way: For the mapping derived with
the ansatz we have Poisson brackets of third-order moments
of the form {�3

i ,�
3
j} = O(h̄2). The right-hand side is con-

sidered zero in a third-order semiclassical truncation, which
corresponds to an h̄ order of 3/2. For the mapping derived
systematically, however, we were able to exactly impose
{�3

i ,�
3
j} = 0. Therefore, the two Casimir variables are likely

to differ from each other by terms of the order h̄2.
Nevertheless, it is instructive to compute the Poisson

bracket of the moments derived with the ansatz with the
Casimir U1 that was derived systematically. Assuming that
s and p are of the order O(

√
h̄) in a semiclassical state,

computer algebra shows that the Taylor expansion of the
Poisson brackets {�ansatz,U1(�ansatz )} = O(h̄5/2) in

√
h̄ is

zero within the third-order truncation. Therefore, the Casimir
variable derived systematically is a Casimir variable also for
the realization derived using an ansatz, up to a truncation error.

3. Fourth order

The solution at the third order can be extended in a rather
direct manner to the fourth order. Inspection of the rank
of the Poisson tensor at this order shows that we expect
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five canonical pairs of quantum degrees of freedom and two
Casimir variables. We then try the ansatz

�(π2) =
5∑

i=1

p2
i +

∑
i> j

U

(si − s j )2
, (A47)

�(q2) =
∑

i

s2
i , (A48)

�(q3) = C
∑

i

s3
i . (A49)

In addition to an extension of the third-order ansatz to five
pairs of canonical degrees of freedom, we have inserted a new
parameter C which will play the role of the second Casimir
variable.

The moment �(q4) can be generated from the Poisson
bracket {�(πq2),�(q3)} = 3�(q2)2 − 3�(q4),

�(q4) = C2
∑

i

s4
i +

∑
i, j

s2
i s2

j . (A50)

We also need to check that the Poisson bracket is consistent at
this order. For instance, while an expansion of the right-hand
side of

0 = {�(π2), {�(π2), {�(π2), {�(π2),

{�(π2),�(q4)}}}}} (A51)

would be too complex to be shown here, computer algebra
confirms that (A51) is indeed satisfied for our ansatz. This
result supports the physical principle that (when U > 0) the
quantum coordinates feel a repulsive potential between one
another that goes as one over the square of the distance
between them.

APPENDIX B: SECOND-ORDER TRUNCATION FOR TWO
PAIRS OF CLASSICAL DEGREES OF FREEDOM

For two pairs of classical degrees of freedom, we have a
ten-dimensional submanifold of second-order moments. The
Poisson tensor has rank eight, so that we have to construct
four canonical pairs and two Casimir variables.

1. First step

The system contains two subalgebras that correspond to a
single degree of freedom, given by 〈�(q2

1 ),�(q1π1),�(π2
1 )〉

and 〈�(q2
2 ),�(q2π2),�(π2

2 )〉. We can therefore make use of
some of our previous derivations if we choose the first two
configuration variables as s1 =

√
�(q2

1 ) and s2 =
√

�(q2
2 ).

We obtain solutions similar to (26) and (27) with (29), but
now the free functions fq1π1 , fπ2

1
, fq2π2 , and fπ2

2
in

�(q1π1) = s1 p1 + fq1π1 , (B1)

�(π2
1 ) = p2

1 + 2
p1

s1
fq1π1 + f 2

q1π1
+ fπ2

1

s2
1

, (B2)

and

�(q2π2) = s2 p2 + fq2π2 , (B3)

�
(
π2

2

) = p2
2 + 2

p2

s2
fq2π2 + f 2

q2π2
+ fπ2

2

s2
2

, (B4)

may still depend on the remaining two canonical pairs, as well
as the two Casimirs.

Since fq1π1 , fπ2
1
, fq2π2 , and fπ2

2
do not depend on s1, p1, s2,

and p2 by construction, they parametrize coordinate Poisson
orthogonal to the first two canonical pairs. However, it is
convenient to choose fq1π1 = 0 = fq2π2 because the condition
of being Poisson orthogonal to s1, p1, s2, and p2 is then
equivalent to having vanishing Poisson brackets with the ba-
sic moments �(q2

1 ) = s2
1, �(q1π1) = s1 p1, �(q2

2 ) = s2
2, and

�(q2π2) = s2 p2. This leaves two functions,

fπ2
1

= s2
1�

(
π2

1

) − s2
1 p2

1 = �
(
q2

1

)
�(π2

1 ) − �(q1π1)2 =: f1

(B5)

and

fπ2
2

= s2
2�

(
π2

2

) − s2
2 p2

2 = �
(
q2

2

)
�

(
π2

2

) − �(q2π2)2 =: f2,

(B6)

out of the original free functions in (B1) and (B3), which we
can easily write in terms of moments.

In addition to f1 and f2, we need four further functions
that Poisson commute with the first two canonical pairs, or
with �(q2

1 ), �(q1π1), �(q2
2 ), and �(q2π2). As before, we find

such variables by considering the flows generated by �(q2
1 ),

�(q1π1), �(q2
2 ), and �(q2π2). For instance, for �(q1π1), the

flows d/dε = {·,�(q1π1)} on the remaining moments are

d�(q1q2)

dε
= �(q1q2),

d�(q1π2)

dε
= �(q1π2),

d�(q2π1)

dε
= −�(q2π1),

d�(π1π2)

dε
= −�(π1π2),

d�(q2
1 )

dε
= 2�(q2

1 ). (B7)

These linear differential equations can easily be solved by

�(q1q2) = c1eε, �(q1π2) = c2eε,

�(q2π1) = c3e−ε, �(π1π2) = c4e−ε, (B8)

�(q2
1 ) = c5e2ε .

By eliminating ε, we find that �(q1q2)�(q2π1),
�(q1q2)�(π1π2), �(q1π2)�(q2π1), �(q1π2)�(π1π2),
and �(q2

1 )�(π1π2)�(q2π1) Poisson commute with �(q1π1).
However, these combinations are not necessarily invariant
under the flows generated by �(q2

1 ), �(q2
2 ), and �(q2π2).

After computing variables invariant with respect to any one
of these four flows, we find that the combinations

f3 = �(q1π2)�(q2π1) − �(q1q2)�(π1π2), (B9)

f4 = �
(
q2

1

)�(q2π1)

�(q1q2)
− �(q1π1), (B10)

f5 = �
(
q2

2

)�(q1π2)

�(q1q2)
− �(q2π2), (B11)

f6 = �
(
q2

1

)
�

(
q2

2

)
�(q1q2)2

, (B12)
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in addition to f1 and f2, are Poisson orthogonal to s1, p1, s2,
and p2. Moreover, their mutual Poisson brackets are closed,

{ f1, f2} = 0 = { f1, f3} = { f2, f3}, (B13)

{ f1, f4} = 2
(

f1 + f 2
4

)
, { f1, f5} = 2 f3 f6, { f1, f6} = 4 f4 f6,

(B14)

{ f2, f4} = 2 f3 f6, { f2, f5} = 2
(

f2 + f 2
5

)
, { f2, f6} = 4 f5 f6,

(B15)

{ f3, f4} = f1 + f3 f6 + f 2
4 , { f3, f5} = f2 + f3 f6 + f 2

5 ,

{ f3, f6} = 2( f4 + f5) f6, (B16)

{ f4, f5} = ( f5 − f4) f6, { f4, f6} = −2 f6(1 − f6) = { f5, f6},
(B17)

and therefore form a Poisson manifold on which we can iterate
our procedure, expressing the f1 in terms of further Casimir-
Darboux variables.

2. Second step

We now define s3 = f6, equal to the inverse of the cor-
relation between the two positions. It generates a flow to
be identified with the negative partial derivative with respect
to p3,

∂ f1

∂ p3
= −{ f1, f6} = −4s3 f4, (B18)

∂ f2

∂ p3
= −4s3 f5,

∂ f3

∂ p3
= −2s3( f4 + f5), (B19)

∂ f4

∂ p3
= 2s3(1 − s3),

∂ f5

∂ p3
= 2s3(1 − s3). (B20)

The last two equations are solved by

f4 = 2s3 p3(1 − s3) + g4 and f5 = 2s3 p3(1 − s3) + g5,

(B21)

after which the remaining equations can be solved by

f1 = −4s2
3(1 − s3)p2

3 − 4s3 p3g4 + g1, (B22)

f2 = −4s2
3(1 − s3)p2

3 − 4s3 p3g5 + g2, (B23)

f3 = −4s2
3(1 − s3)p2

3 − 2s3 p3(g4 + g5) + g3. (B24)

The functions gi are independent of p3.
As before, a choice is required to proceed because we have

five free functions gi but only one more canonical pair and
two Casimir variables. The choice g5 = −g4 simplifies f3 and
eliminates these functions from f4 + f5 according to (B21)
and we obtain our third momentum

p3 = f4 + f5

4s3(1 − s3)
. (B25)

We are left with four functions g1, . . . , g4 which, by con-
struction, are independent of p3. But they may depend on s3

and are therefore not Poisson orthogonal to the third canonical

pair. In order to find combinations which Poisson commute
with p3, we consider the flow generated by f4 + f5 = 4s3(1 −
s3)p3. From

g1 = f1 + ( f4 + f5)2

4(1 − f6)
+ 1

2

( f4 + f5)( f4 − f5)

1 − f6
, (B26)

g2 = f2 + ( f4 + f5)2

4(1 − f6)
− 1

2

( f4 + f5)( f4 − f5)

1 − f6
, (B27)

g3 = f3 + ( f4 + f5)2

4(1 − f6)
, (B28)

g4 = 1

2
( f4 − f5), (B29)

we obtain the brackets

{g1, f4 + f5} = 2
(
g1 + s3g3 + g2

4

)
, (B30)

{g2, f4 + f5} = 2
(
g2 + s3g3 + g2

4

)
, (B31)

{g3, f4 + f5} = g1 + g2 + 2s3g3 + 2g2
4, (B32)

{g4, f4 + f5} = −2s3g4. (B33)

We see that {g1 + g2 − 2g3, f4 + f5} = 0, and if we trace back
all the dependencies on moments, we find that

g1 + g2 − 2g3 = U1 (B34)

is, in fact, the quadratic Casimir. The remaining independent
variables can conveniently be chosen as g1 + g2, g1 − g2 and
g4, with mutual Poisson brackets

{g1 + g2, g4} = g1 − g2,

{g1 − g2, g4} = g1 + g2 − 2s3g3 + 2
1 + s3

1 − s3
g2

4,

{g1 + g2, g1 − g2} = 4
g4

1 − s3

(
g1 + g2 + 2s3g3 + 2g2

4

)
.

(B35)

3. Final step

We now consider the flow ∂/∂s3 = {·, p3}, using (B25),

∂g4

∂s3
= g4

2(s3 − 1)
,

∂ (g1 − g2)

∂s3
= g1 − g2

2s3(1 − s3)
,

∂ (g1 + g2)

∂s3
= g1 + g2 + 2s3g3 + 2g2

4

2s3(1 − s3)

= (g1 + g2)(1 + s3) − s3U1 + 2g2
4

2s3(1 − s3)
. (B36)

Solving these equations, we find that

h1 = g4√
s3 − 1

, (B37)

h2 = (g1 − g2)

√
s3 − 1

s3
, (B38)

h3 = (1 − s3)(g1 + g2) + s3U1 + 2(1 + s3)(1 − s3)−1g2
4√

s3
,

(B39)
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in addition to U1, are Poisson orthogonal to s3 as well as p3.
They have closed brackets,

{h1, h2} = h3, {h1, h3} = −h2, {h2, h3} = 8h1U1 − 32h3
1.

(B40)

As our final canonical momentum, we choose p4 = h1. Its
flow equations

∂h2

∂s4
= −h3,

∂h3

∂s4
= h2, (B41)

have trigonometric solutions with a phase that can be set to
zero by shifting s4. Therefore,

h2 = A(p4) cos(s4), h3 = A(p4) sin(s4). (B42)

The required Poisson brackets provide a condition on the
function A(p4),

A(p4)
dA(p4)

d p4
= −8p4U1 + 32p3

4, (B43)

solved by

A(p4) =
√

U2 − 8p2
4U1 + 16p4

4. (B44)

The new free parameter U2 is a constant and is our second
Casimir variable.

4. Casimir-Darboux variables

Inverting all intermediate relations, we obtain the moments
in terms of Casimir-Darboux variables,

�(q2
1 ) = s2

1, �(q1π1) = s1 p1, (B45)

�(π2
1 ) = p2

1 + �(s3, p3, s4, p4)

s2
1

, (B46)

with

�(s3, p3, s4, p4) = − s3 + 1

s3 − 1
p2

4 − 4s3

√
s3 − 1p3 p4 + 4s2

3(s3 − 1)p2
3 + 1

2

s3

s3 − 1
U1

−1

2

√
s3

s3 − 1

√
U2 − 8p2

4U1 + 16p4
4[

√
s3 − 1 cos (s4) + sin (s4)], (B47)

for moments of the second classical pair of degrees of freedom,

�(q2
2 ) = s2

2, �(q2π2) = s2 p2, (B48)

�(π2
2 ) = p2

2 + �(s3, p3, s4, p4)

s2
2

, (B49)

with

�(s3, p3, s4, p4) = − s3 + 1

s3 − 1
p2

4 + 4s3

√
s3 − 1p3 p4 + 4s2

3(s3 − 1)p2
3 + 1

2

s3

s3 − 1
U1

− 1

2

√
s3

s3 − 1

√
U2 − 8p2

4U1 + 16p4
4[−

√
s3 − 1 cos (s4) + sin (s4)], (B50)

and

�(π1π2) = p1 p2√
s3

+
√

s3 − 1

s3

(
p2

s1
− p1

s2

)
p4 − 2

√
s3(s3 − 1)

(
p1

s2
+ p2

s1

)
p3 + (3s3 − 1)

s1s2
√

s3(s3 − 1)
p2

4

− 4
(s3 − 1)s3/2

3

s1s2
p2

3 −
√

s3

2s1s2(s3 − 1)
U1 + s3

2s1s2(s3 − 1)
sin (s4)

√
U2 − 8p2

4U1 + 16p4
4, (B51)

�(π1q2) = p1s2√
s3

+
√

s3 − 1

s3

s2

s1
p4 − 2(s3 − 1)

√
s3

s2

s1
p3, (B52)

�(π2q1) = p2s1√
s3

−
√

s3 − 1

s3

s1

s2
p4 − 2(s3 − 1)

√
s3

s1

s2
p3, (B53)

�(q1q2) = s1s2√
s3

(B54)

for the cross covariances.
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5. Canonical transformation

We can change our Darboux coordinates by canonical
transformations. An interesting example is suggested by the
trigonometric form in which s4 appears in the equations
derived so far, which can be extended to s3 by using the
canonical pair

β = arctan
√

s3 − 1, pβ = 2s3

√
s3 − 1p3. (B55)

Computing s3 = 1 + tan2 β = 1/ cos2 β, we see that the new
variable β interprets the cross correlation

�(q1q2)√
�(q2

1 )�
(
q2

2

) = 1√
s3

= cos β (B56)

as an angle. Uncorrelated canonical pairs are therefore orthog-
onal to each other in the sense that cos β = 0.

Because s4 already appears in trigonometric functions in
our realization, we rename it by defining

α = s4, pα = p4. (B57)

The canonical mapping then takes the form

�
(
q2

1

) = s2
1, �(q1π1) = s1 p1, �

(
π2

1

) = p2
1 + �

s2
1

,

(B58)

�
(
q2

2

) = s2
2, �(q2π2) = s2 p2, �

(
π2

2

) = p2
2 + �

s2
2

,

(B59)

where

�(β, pβ, α, pα ) = (pα − pβ )2 + 1

2 sin(β )2

[
U1 − 4p2

α −
√

U2 − U 2
1 + (

U1 − 4p2
α

)2
sin(α + β )

]
, (B60)

�(β, pβ, α, pα ) = (pα + pβ )2 + 1

2 sin(β )2

[
U1 − 4p2

α −
√

U2 − U 2
1 + (

U1 − 4p2
α

)2
sin(α − β )

]
, (B61)

as well as

�(π1π2) = p2 p2 cos(β ) − cos(β )

s1s2
p2

β + cos(β ) + 2 cot(β ) csc(β )

s1s2
p2

α − sin(β )pβ

(
p2

s1
+ p1

s1

)
+ pα sin(β )

(
p2

s1
− p1

s2

)
−cot(β ) csc(β )

s1s2
U1 + csc(β )2 sin(α)

2s1s2

√
16p2

α − 8p2
αU1 + U2, (B62)

�(π1q2) = p1s2 cos(β ) + sin(β )
s2

s1
(pα − pβ ), (B63)

�(π2q1) = p2s1 cos(β ) + sin(β )
s1

s2
(pβ + pα ), (B64)

�(q1q2) = s1s2 cos(β ). (B65)
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[4] B. Baytaş, M. Bojowald, and S. Crowe, Phys. Rev. A 98,

063417 (2018).
[5] P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G.

Muller, M. Büttiker, and U. Keller, Science 322, 1525 (2008).
[6] N. Camus, E. Yakaboylu, L. Fechner, M. Klaiber, M. Laux,

Y. Mi, K. Z. Hatsagortsyan, T. Pfeifer, C. H. Keitel, and R.
Moshammer, Phys. Rev. Lett. 119, 023201 (2017).

[7] U. S. Sainadh et al., Nature 568, 75 (2019).
[8] T. Zimmermann, S. Mishra, B. R. Doran, D. F. Gordon,

and A. S. Landsman, Phys. Rev. Lett. 116, 233603
(2016).

[9] A. S. Landsman, M. Weger, J. Maurer, R. Boge, A. Ludwig, S.
Heuser, C. Cirelli, L. Gallmann, and U. Keller, Optica 1, 343
(2014).

[10] L. Torlina et al., Nat. Phys. 11, 503 (2015).

[11] A. N. Pfeiffer, C. Cirelli, M. Smolarski, D. Dimitrovski, M.
Abu-Samha, L. B. Madsen, and U. Keller, Nat. Phys. 8, 76
(2012).

[12] N. Eicke and M. Lein, Phys. Rev. A 97, 031402(R)
(2018).

[13] N. Teeny, E. Yakaboylu, H. Bauke, and C. H. Keitel, Phys. Rev.
Lett. 116, 063003 (2016).

[14] H. Ni, U. Saalmann, and J.-M. Rost, Phys. Rev. Lett. 117,
023002 (2016).

[15] H. Ni, U. Saalmann, and J.-M. Rost, Phys. Rev. A 97, 013426
(2018).

[16] H. Ni, N. Eicke, C. Ruiz, J. Cai, F. Oppermann, N. I. Shvetsov-
Shilovski, and L.-W. Pi, Phys. Rev. A 98, 013411 (2018).

[17] N. Douguet and K. Bartschat, Phys. Rev. A 97, 013402 (2018).
[18] A. Tsobanjan, J. Math. Phys. 56, 033501 (2015).
[19] A. Voros, Ann. Inst. Henri Poincaré 24, 31 (1976).
[20] E. P. Wigner, Phys. Rev. 40, 749 (1932).
[21] E. J. Heller, J. Chem. Phys. 65, 1289 (1976).
[22] F. J. Narcowich and R. F. O’Connell, Phys. Rev. A 34, 1 (1986).
[23] R. Simon and N. Mukunda, arXiv:quant-ph/9708037.

042114-18

https://doi.org/10.1142/S0129055X06002772
https://doi.org/10.1142/S0129055X06002772
https://doi.org/10.1142/S0129055X06002772
https://doi.org/10.1142/S0129055X06002772
https://doi.org/10.1142/S0219887807001941
https://doi.org/10.1142/S0219887807001941
https://doi.org/10.1142/S0219887807001941
https://doi.org/10.1142/S0219887807001941
http://arxiv.org/abs/arXiv:1810.12127
https://doi.org/10.1103/PhysRevA.98.063417
https://doi.org/10.1103/PhysRevA.98.063417
https://doi.org/10.1103/PhysRevA.98.063417
https://doi.org/10.1103/PhysRevA.98.063417
https://doi.org/10.1126/science.1163439
https://doi.org/10.1126/science.1163439
https://doi.org/10.1126/science.1163439
https://doi.org/10.1126/science.1163439
https://doi.org/10.1103/PhysRevLett.119.023201
https://doi.org/10.1103/PhysRevLett.119.023201
https://doi.org/10.1103/PhysRevLett.119.023201
https://doi.org/10.1103/PhysRevLett.119.023201
https://doi.org/10.1038/s41586-019-1028-3
https://doi.org/10.1038/s41586-019-1028-3
https://doi.org/10.1038/s41586-019-1028-3
https://doi.org/10.1038/s41586-019-1028-3
https://doi.org/10.1103/PhysRevLett.116.233603
https://doi.org/10.1103/PhysRevLett.116.233603
https://doi.org/10.1103/PhysRevLett.116.233603
https://doi.org/10.1103/PhysRevLett.116.233603
https://doi.org/10.1364/OPTICA.1.000343
https://doi.org/10.1364/OPTICA.1.000343
https://doi.org/10.1364/OPTICA.1.000343
https://doi.org/10.1364/OPTICA.1.000343
https://doi.org/10.1038/nphys3340
https://doi.org/10.1038/nphys3340
https://doi.org/10.1038/nphys3340
https://doi.org/10.1038/nphys3340
https://doi.org/10.1038/nphys2125
https://doi.org/10.1038/nphys2125
https://doi.org/10.1038/nphys2125
https://doi.org/10.1038/nphys2125
https://doi.org/10.1103/PhysRevA.97.031402
https://doi.org/10.1103/PhysRevA.97.031402
https://doi.org/10.1103/PhysRevA.97.031402
https://doi.org/10.1103/PhysRevA.97.031402
https://doi.org/10.1103/PhysRevLett.116.063003
https://doi.org/10.1103/PhysRevLett.116.063003
https://doi.org/10.1103/PhysRevLett.116.063003
https://doi.org/10.1103/PhysRevLett.116.063003
https://doi.org/10.1103/PhysRevLett.117.023002
https://doi.org/10.1103/PhysRevLett.117.023002
https://doi.org/10.1103/PhysRevLett.117.023002
https://doi.org/10.1103/PhysRevLett.117.023002
https://doi.org/10.1103/PhysRevA.97.013426
https://doi.org/10.1103/PhysRevA.97.013426
https://doi.org/10.1103/PhysRevA.97.013426
https://doi.org/10.1103/PhysRevA.97.013426
https://doi.org/10.1103/PhysRevA.98.013411
https://doi.org/10.1103/PhysRevA.98.013411
https://doi.org/10.1103/PhysRevA.98.013411
https://doi.org/10.1103/PhysRevA.98.013411
https://doi.org/10.1103/PhysRevA.97.013402
https://doi.org/10.1103/PhysRevA.97.013402
https://doi.org/10.1103/PhysRevA.97.013402
https://doi.org/10.1103/PhysRevA.97.013402
https://doi.org/10.1063/1.4914010
https://doi.org/10.1063/1.4914010
https://doi.org/10.1063/1.4914010
https://doi.org/10.1063/1.4914010
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1063/1.433238
https://doi.org/10.1063/1.433238
https://doi.org/10.1063/1.433238
https://doi.org/10.1063/1.433238
https://doi.org/10.1103/PhysRevA.34.1
https://doi.org/10.1103/PhysRevA.34.1
https://doi.org/10.1103/PhysRevA.34.1
https://doi.org/10.1103/PhysRevA.34.1
http://arxiv.org/abs/arXiv:quant-ph/9708037


EFFECTIVE POTENTIALS FROM SEMICLASSICAL … PHYSICAL REVIEW A 99, 042114 (2019)

[24] M. Bojowald, D. Brizuela, H. H. Hernández, M. J. Koop, and
H. A. Morales-Técotl, Phys. Rev. D 84, 043514 (2011).

[25] V. I. Arnold, Mathematical Methods of Classical Mechanics
(Springer, New York, 1997).

[26] F. Arickx, J. Broeckhove, W. Coene, and P. van Leuven, Int. J.
Quantum Chem. 30, 471 (1986).

[27] O. Prezhdo, Theor. Chem. Acc. 116, 206 (2006).

[28] C. Kühn, in Control of Self-Organizing Nonlinear Systems
(Springer, New York, 2016), pp. 253–271.

[29] F. Cametti, G. Jona-Lasinio, C. Presilla, and F. Toninelli, in New
Directions in Quantum Chaos, Proceedings of the International
School of Physics “Enrico Fermi,” Course CXLIII, Varenna,
1999, edited by G. Casati, I. Guarneri, and U. Smilansk (IOS
Press, Amsterdam, 2000), pp. 431–448.

042114-19

https://doi.org/10.1103/PhysRevD.84.043514
https://doi.org/10.1103/PhysRevD.84.043514
https://doi.org/10.1103/PhysRevD.84.043514
https://doi.org/10.1103/PhysRevD.84.043514
https://doi.org/10.1002/qua.560300741
https://doi.org/10.1002/qua.560300741
https://doi.org/10.1002/qua.560300741
https://doi.org/10.1002/qua.560300741
https://doi.org/10.1007/s00214-005-0032-x
https://doi.org/10.1007/s00214-005-0032-x
https://doi.org/10.1007/s00214-005-0032-x
https://doi.org/10.1007/s00214-005-0032-x

