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Magnetic-field uniformity in neutron electric-dipole-moment experiments
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Magnetic-field uniformity is of the utmost importance in experiments to measure the electric dipole moment of
the neutron. A general parametrization of the magnetic field in terms of harmonic polynomial modes is proposed,
going beyond the linear-gradients approximation. We review the main undesirable effects of nonuniformities:
depolarization of ultracold neutrons and Larmor frequency shifts of neutrons and mercury atoms. The theoretical
predictions for these effects were verified by dedicated measurements with the single-chamber neutron electric-
dipole-moment apparatus installed at the Paul Scherrer Institute.
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I. INTRODUCTION

Discovering a nonzero electric dipole moment (EDM) of
the neutron would have far-reaching implications. Indeed, the
existence of an EDM for a simple spin-1/2 particle implies the
violation of time-reversal invariance and therefore the viola-
tion of CP symmetry. So far, the observed T and CP violation
in nature is entirely accounted for by the Kobayashi-Maskawa
mechanism. This mechanism predicts an unmeasurably small
value for the EDMs of all subatomic particles. Therefore,
electric dipole moments are sensitive probes of new physics
beyond the standard model of particle physics. In fact, new CP
violating interactions are needed to explain the generation of
the matter-antimatter asymmetry in the early Universe. Thus,
the motivation to search for the neutron EDM (nEDM) lies
at the interface between particle physics and cosmology. The
subject is treated in the classic book [1]. The connections
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between fundamental neutron physics and cosmology are
treated in [2—4]. See also [5—12] for recent reviews on EDMs.

Since the first experiment by Smith, Purcell, and Ramsey
in 1951 [13], the precision on the neutron EDM has been
improved by six orders of magnitude, and yet the most recent
measurement [14] is still compatible with zero:

d, = (—0.21 £ 1.82) x 107° ecm. (1)

This result was obtained with an apparatus operated at the
Institut Laue Langevin (ILL) built by the Sussex/RAL/ILL
collaboration [15]. As with almost all other contemporary
or future nEDM projects, this experiment used ultracold
neutrons (UCNs) stored for several minutes in a material
bottle. The bottle, a cylindrical chamber of height 12cm
and diameter 47 cm, sits in a stable and uniform vertical
magnetic field with a magnitude of By = 1 uT. In addi-
tion, a strong (E ~ 10 kV/cm) electric field is applied,
either parallel or antiparallel to the magnetic field. One
precisely measures the Larmor precession frequency f, of
neutron spins in the chamber with Ramsey’s method of
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separated oscillatory fields. By comparing the neutron preces-
sion frequency in parallel and antiparallel fields, one extracts
dn = nh(ﬁl,ﬁw - ﬁl,??)/zE-

In these experiments, besides maximizing the number of
stored ultracold neutrons, the control of the magnetic field is
the most important experimental challenge. The time fluctua-
tions of the magnetic field must be minimized and monitored,
and the magnetic field should be sufficiently uniform. Even
if external perturbations of the magnetic field are attenuated
by several layers of shielding, residual time variations of
the By field still need to be monitored in real time. To this
aim, the experiment [14,15] uses a comagnetometer: Spin-
polarized '”Hg atoms fill the chamber, colocated with the
stored ultracold neutrons [16,17]. The time-averaged preces-
sion frequency of the mercury spins fyg over each measure-
ment cycle is used to correct for the drifts of the magnetic
field through the relation fr, = yng /(27 )Bo, where yyg is the
gyromagnetic ratio.

Not only must the field be stable, with its time variations
precisely monitored, it also needs to be extremely uniform
over a large volume. As will be explained later, a field uni-
formity at a level better than 1 nT must be achieved inside
the chamber. For the purpose of tuning and characterizing the
field uniformity, the comagnetometer alone is not sufficient.
One must therefore rely upon offline mapping of the magnetic
field in the inner part of the apparatus, and/or upon an array
of magnetometers around the chamber measuring the field in
real time.

In this paper, we discuss the effects of magnetic-field
nonuniformities in experiments measuring the neutron EDM
with stored ultracold neutrons. Specific concerns associated
with the use of an atomic comagnetometer are also dealt with
in detail. In particular, the formalism described in the paper
is adequate to discuss the systematic effects in the experiment
that was in operation at the Paul Scherrer Institute (PSI) during
the period 2009-2017. The apparatus was an upgraded version
of the one previously installed at the ILL that produced the
current lowest experimental limit. However, we aim at a
general treatment of the subject—whenever possible—so that
the results are of interest for other past experiments such

s [18] as well as for the future experiments currently in
development at the U.S. Spallation Neutron Source (SNS)
[19], FRMII/ILL [20], TRIUMF [21], PNPI [22], LANL, and
PSI [23].

In the first part we present a general parametrization of the
field in terms of a polynomial expansion. It goes beyond the
usual description in terms of linear gradients, a refinement
that becomes necessary to quantify the systematic effects
at the current level of sensitivity. In the second and third
parts, we discuss the effects of field nonuniformities on the
statistical and systematic precision, respectively. Dedicated
measurements were performed to corroborate the theoretical
predictions for these effects.

This paper has two companion papers and should be read
as the first part of a trilogy. The second part will describe the
array of atomic cesium magnetometers developed for the PSI
nEDM experiment and the methods to optimize in sifu the
field uniformity. The third part will present the offline char-
acterization of the magnetic-field uniformity in the apparatus
with an automated field-mapping device.

II. HARMONIC POLYNOMIAL EXPANSION
OF THE MAGNETIC FIELD

In modern nEDM experiments a weak magnetic field By ~
1 uT is applied in a volume of about a cubic meter or more.
In the context of this paper the field can be considered to be
purely static. The field B(x, y, z) &~ Bye, is very uniform, but
the remaining nonuniformities have paramount consequences.
An adequate description of the nonuniformities is needed to
discuss these consequences.

We construct a polynomial expansion (in terms of the
Cartesian coordinates x, y, z) of the magnetic-field compo-
nents, in the form

- Hx,l,m(j’:)
BG) =Y Gim| Myrm() )
l,m Hz.l.mG)

where the functions (or modes) Iilg,m are harmonic poly-
nomials in x,y,z of degree [ and G, are the expansion
coefficients.

The polynomials, however, cannot be chosen arbitrarily,
s1nce the magnetic ﬁeld must satisfy Maxwell’s equations:
V.-B=0and V x B = 0, in a region with neither currents
nor magnetization. This requirement is equivalent to enforcing
that the field is the gradient of a magnetic potential, B(F) =
V X(7), with the potential satisfying Laplace’s equation AT =
0. Solutions of Laplace’s equation are called harmonic func-
tions. Therefore, all possible polynomial field components of
degree [ — 1 are exactly obtained by taking the gradient of
all possible harmonic polynomials of degree /. The so-called
solid harmonics, expressed in spherical coordinates as

2+ 1(—m)!
(I + m)!

form a basis of complex homogeneous polynomials, with [
the degree of the polynomial and m an integer in the range
—I < m < [. In this formula Y, ,, are the standard spherical
harmonics and P/" are the associated Legendre polynomials
(listed in Table I).

To construct our basis, we need to take the real and imag-
inary parts of the complex polynomials. In addition, we use
a different and convenient normalization of the polynomials
and define

Ym0, ¢) = r'P"(cos0)e™,  (3)

Stm = Crn(@)r'P" (cos 0), )
with
Crm(®) (= D2 cos(m¢) for >0
m - T m m =V,
g (I + m])!
_ _n\lm|
Cim(@) = m sin(jm|¢) for m <O. (5)

(I + |m|)!
Finally, the modes are obtained by calculating the gradient of
the magnetic potential:

I—[x,l,m - 8}62l+1,m5 1_[y,l,m - ayEl-H,m» 1—Iz,l,m - azzl-',-l,irl-
(6)
Note that / always refers to the degree of the polynomial, and

therefore T1 1.m 15 obtained from the magnetic potential X, ,,
with [ differing by one unit.
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TABLE I. Associated Legendre polynomials up to / = 5.

[ m P/"(cos0)

1 0 cos 6

1 1 —sinf

2 0 1(Bcos? — 1)

2 1 —3cosfsind

2 2 3sin” 6

3 0 1 cosB(5cos? 6 —3)

3 1 —2(5c0s?6 — 1)sinf

3 2 15 cos 6 sin® @

3 3 —15sin’6

4 0 §(35cos* 6 — 30 cos? 6 + 3)
4 1 —2cosf(7cos? 0 — 3)sin6
4 2 2(7cos?0 — 1)sin’*6

4 3 —105cos @ sin® 0

4 4 105sin* @

5 0 £(63cos’ 6 — 70 cos® 6 + 15cos 6)
5 1 —2(2lcos* — 14cos? 6 + 1)sin
5 2 B3 cos* 6 — cos ) sin> 6
5 3 —1B9cos?0 — 1)sin’ 0
5 4 945 cos 0 sin* 6

5 5 —9455in° 0

An explicit calculation of the first-order modes in Cartesian
coordinates, up to [ = 3, is shown in Table II. For the expres-
sion of the modes in cylindrical coordinates, see Table IV in
Appendix A. A similar parametrization has been proposed in

the context of the SNS nEDM project [24,25]. See also [26]
for the application of the scalar magnetic potential method in
other precision experiments with polarized neutrons. In fact
the use of spherical harmonics to describe a near-uniform field
appeared first in the context of nuclear magnetic resonance
[27] and then in magnetic resonance imaging [28,29], where
field uniformity is also of great importance.

When dealing with a perfectly uniform magnetic field, that
field is described by the [ = 0 terms only and we simply have

Go._1 = B, )
Go,o = B, @®)
Go,1 = B,. 9

In the case of a field with uniform gradients, that field is
described by the / = 0 and 1 terms and we have

Gy, = 3,B, = 0,By, (10)
G, = ,B. = 0.B,, (11)
Gy = 9.B, = —9,B, — 0,B,, (12)
Gi.1 = 0,B. = 3.B,, (13)
G2 = 5(3:B, — 3,By). (14)

TABLE II. The basis of harmonic polynomials sorted by degree.

[ m IT, I1, I1,

0 -1 0 1 0

0 0 0 0 1

0 1 1 0 0

1 -2 y X 0

1 -1 0 Z y

1 0 - %x - %y b4

1 1 b4 0 X

1 2 X -y 0

2 -3 2xy x2 —y? 0

2 -2 2yz 2xz 2xy

2 -1 —%xy —%()c2 +3y? — 47%) 2yz

2 0 —xz —yz 2= 12+ y7)
2 1 —%(sz + y2 —47%) —%xy 2xz

2 2 2xz —2yz x2 —y?

2 3 x2 —y? —2xy 0

3 —4 3x%y —y? x> — 3xy? 0

3 -3 6xyz 3(x?z — y*2) 3x%y — y3

3 -2 —3Gxy 4+ y* — 6yz?) — 3 4 3xy* — 6x27) 6xyz

3 -1 —3xyz —1(3x%z+ 9z —42) 3yz2 — 2(x%y +)%)
3 0 2 +xy? — 4x2?) 2Py +y° —4y2?) 2= 2z +y?)
3 1 —19x%z 4 3y?z — 42%) —3xyz 3w = 36+ xy%)
3 2 —x3 + 3x72 —3yz2 +)? 3(x%z —y%2)

3 3 3(x’z — y’2) —6xyz X — 3xy?

3 4 x> — 3xy? —3x%y 4+ 3 0
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The harmonic polynomial expansion of the field nonuniformi-
ties given by Eq. (2) is a natural generalization of the descrip-
tion in terms of uniform gradients. The coefficients G; ,, are
the generalized gradients for the modes of degree /. Given the
degree of maturity of nEDM experiments, this generalization
is necessary to discuss the phenomena associated with field
nonuniformity at the appropriate level of accuracy.

III. FIELD UNIFORMITY AND STATISTICAL PRECISION:
NEUTRON DEPOLARIZATION

We now discuss the effects of a nonuniform magnetic field
on the statistical uncertainty, which is limited by the precision
of the determination of the neutron precession frequency f,.
The measurement of f,, uses Ramsey’s method of separated
oscillatory fields. In short, a chamber is first filled with polar-
ized ultracold neutrons, and then a 7 /2 pulse is applied to the
neutron spins using a transverse oscillating field. The neutron
spins then precess in the transverse plane for a precession time
T. Finally a second 7 /2 pulse is applied, and the chamber is
then opened to count the number of spin-up and spin-down
neutrons. The asymmetry in the counting depends on the
difference between the applied frequency (used to generate the
pulses) and the Larmor frequency f, (to be measured). With
this method the statistical uncertainty on the neutron EDM,
due to Poisson fluctuations of the neutron counts, is

h
od, = ————,
20ET /N

where E is the electric-field strength, NV is the total number of
neutrons measured during the measurement sequence, and « is
the visibility—or contrast—of the Ramsey resonance, which
refers to the polarization of the ultracold neutrons at the end
of the precession period multiplied by the analyzing power
of the spin analyzer system. In order to keep the visibility
o as high as possible, all the depolarization mechanisms
at play during the precession time must be understood and
minimized. Typically, in the current experiment at PSI with a
single chamber, we achieved o =~ (.75 after a precession time
of T =180 s.

In previous works [30-32], we have identified the main
mechanisms responsible for the decay of the neutron polar-
ization while they are stored in the chamber. The variation of
« with respect to the precession duration can be written as a
sum of three contributions:

15)

da o o
dT T2,wall T2,mag

+ dgrav, (16)

where T way 1S the transverse spin-relaxation time due to
wall collisions (see Sec. Il A), T5 14 is the transverse spin-
relaxation time due to intrinsic depolarization in a nonuniform
field (see Sec. III C), and &gryy is the contribution from grav-
itationally enhanced depolarization (see Sec. III B). Note that
Eq. (16) applies to spins that are precessing in the magnetic
field; this process is called transverse depolarization. The
corresponding situation for when spins are aligned along the
holding field is called longitudinal depolarization. In this case
the depolarization rate 1/7; also receives contributions from

wall collisions and field nonuniformities as
1 n 1
i Tiwan

, (17)
Tl,mag
and it is in general different from the transverse depolarization
rate. We will now review all of these mechanisms in more
detail.

A. Wall depolarization

When colliding with the wall of the precession chamber,
a neutron can have its spin affected by magnetic impurities
contained within the wall. Given that the interaction time with
the wall is much shorter than the Larmor precession period,
and that any orientation of the spin is equally affected on
average, we can anticipate that the transverse and longitudinal
relaxation rates will be identical:

1 1
= = Bv, (18)

Dowan  Tiwan

where § is the depolarization probability per wall collision
and v is the average frequency of wall collisions. Suitable ma-
terials have depolarization probabilities in the range 1076 <
B < 1073 (see [33] for a recent work on wall depolarization).
In practice the wall collision frequency is less than 50 s~!, and
T; is generally measured to be longer than 2000 s. Therefore,
although wall depolarization is not a negligible process, it
does not constitute a serious limitation for maintaining a high
polarization.

B. Gravitationally enhanced depolarization

Ultracold neutrons are neutrons of extremely low kinetic
energy, typically 200 neV or less. They are therefore signifi-
cantly affected by gravity: different energy groups of neutrons
have different mean heights in the chamber. In the presence
of a vertical field gradient, the spins of neutrons in different
energy groups precess at a slightly different rate, resulting
in a phenomenon referred to as gravitationally enhanced
depolarization. This mechanism concerns the transverse de-
polarization only.

For a quantitative description of the effect, we assume that
the field can be described by the polynomial expansion up to
order / = 1. We denote the probability for a neutron to belong
to the energy group € as n(e)de. After the precession time
T, spins belonging to the energy group € have accumulated
a phase difference, with respect to the average phase of all
neutrons, of

@€, T) = yuG10((€) — (2))T, (19)

where Z(¢€) is the mean height of neutrons in this group, (z)
is the mean height of the whole ensemble of neutrons, and y,
is the neutron gyromagnetic ratio. Assuming that each group
of neutrons is initially perfectly polarized, and neglecting the
depolarization within a group, the final polarization after the
precession time 7 is

o(T) = /cosw(e, T)n(e)de. (20)

For small values of the phase (which is generally the case
for small gradients) the cosine can be approximated using a
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second-order Taylor expansion:

aT)y=1-— %/go(e,T)zn(e)de. (1)

Finally, the depolarization rate dgr, is obtained from the
derivative of the previous expression over precession time:

—y,Gi o Var[z] T (22)

Qgray =

with Var[Z] the variance of the distribution of Z(¢):

Var[z] = / (z(e) — (2))’n(e)de. (23)

C. Intrinsic depolarization

The intrinsic depolarization refers to the decay of polariza-
tion within an energy group. It is due to the fact that different
neutrons in a group have different random trajectories in
a nonuniform field and therefore different histories of the
magnetic field B(¢). This process can be described by spin-
relaxation theory, which is a general approach to calculate
frequency shifts and relaxation rates on a quantum system
in terms of the correlation function of the disturbance, to
second order in the disturbance. In our case the disturbances
are the field components B;(t) with i € {x,y, z}, and their
correlation functions (B;(¢1)B(f;)) are the ensemble averages
of the quantities B;(t;)B;(f2) over the neutrons stored in the
chamber. Here we assume that the motion of the neutrons in
the chamber is stationary in the statistical sense and therefore
(Bi(t1)B;(t2)) = (Bi(0)B;(t, —t,)). Specifically, it is the devi-
ation from the mean value of the field components, B{(t) =
B;(t) — (B;), that induces the relaxation of the spin. In the
language of random processes, B{(t) is the centered variable
associated with B;(t), hence the notation with the exponent c.

Applying the spin-relaxation theory to our problem of spin-
1/2 particles in a bottle [34—36], one finds

1

Tl ,mag

_ / 00(3;(0)3;(:)+B;(0)B;(t))coswt dt (24)
0

for the longitudinal relaxation rate and

11
2Tl,malg

o0
= +y2 / (BSOBS())dt  (25)
2,mag 0
for the transverse relaxation rate. In these expressions, w =
yuBo is the angular Larmor precession frequency, and (X)
refers to the ensemble average of the quantity X over the
neutrons stored in the chamber.

In fact, the depolarizations induced by the field compo-
nents B, and B, transverse to the holding field By are very
small. In the regime where the precession frequency f, is
much higher than the wall collision frequency v, it has been
shown in [31] that the order of magnitude of the longitudinal
depolarization rate can be estimated by

1 v3AB2
80R3y2B4 ’

(26)

Tl,mag
where v is the neutron speed, R is the radius of the chamber
(assumed to be cylindrical, with the axis aligned along z), and
ABy is the typical value for the transverse field difference in
the chamber. Note that a uniform transverse field has no effect.

Using realistic numbers for the nEDM apparatus installed at
PSI2R=47cm, By =1 uT, v =3 m/s, and ABy =2 nT)
we find Tj jmag ~ 10'° 5. Therefore we will not give a precise
description of the transverse depolarization in the harmonic
polynomial expansion formalism.

To calculate the intrinsic depolarization rate, it is justified
to neglect transverse fields and keep only the effect of longi-
tudinal nonuniformities. Expressing the field in the basis of
harmonic polynomials, the correlation function becomes

Y GG, O, (). (27)

LU ,m,m

(BE(0)BL()) =

In the case of a cylindrical chamber, the terms with m # m’
cancel due to rotational symmetry around the cylinder axis.
The intrinsic depolarization rate can then be expressed as

=y Y GiuGr m/ (¢, (OIS, (). (28)

T2 -mag Ll'm

At this point we can recognize that the depolarization rate
is a quadratic function of the generalized gradients Gj ,,
and that it depends on how fast a correlation of the type
(T1;;.m(O)II, ;r.;m(t)) decays. In particular, slower neutrons de-
polarize more quickly. Also, for experiments using a mercury
comagnetometer, the mercury atoms depolarize in this fashion
with a much slower rate than the neutrons because the mercury
atoms are much faster.

Now, for a precise calculation of the depolarization rate of
ultracold neutrons in a given magnetic-field gradient a Monte
Carlo simulation of the trajectories of the neutrons can be
used. Such a study, in the case [ = 1, has been presented in
[31], together with an intuitive model of the depolarization in
linear gradients. The intuitive model predicts

18Ry,

2 2
Tome . Omv (GI_,+Gi))+

H3
: 6V" Glo. (29

where v is the speed of the neutrons, R is the radius of the
storage chamber, and H is the maximum height of the neu-
trons of speed v. The intuitive model reproduces the Monte
Carlo results quite well.

D. Experimental verification of the depolarization theory

We have conducted dedicated measurements on gradient-
induced neutron depolarization with the nEDM apparatus
installed at the PSI ultracold neutron source [37,38]. In a first
series of measurements, performed in May 2016, we varied
in a controlled way the vertical gradient G| ¢ and measured
the final neutron polarization after a storage time of 7 =
180 s. In a second series, performed in September 2017, we
measured the final polarization as a function of the horizontal
gradient Gy ;.

At each cycle the precession chamber is filled with polar-
ized neutrons. The neutrons are polarized by a 5-T supercon-
ducting magnet installed between the UCN source and the
nEDM apparatus. Only one spin component is transmitted
through the bore of the magnet, thereby polarizing the neu-
trons with an efficiency close to 100%. Three types of runs
were recorded to measure the final polarization, correspond-
ing to three types of storage conditions.

042112-5
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(1) Longitudinal polarization: Neutrons are stored with
their spin aligned with the holding magnetic field, and no spin-
flip pulse is applied. During storage the polarization decreases
at a rate given by Eq. (17).

(2) Ramsey: A 7 /2 pulse is applied at the beginning and at
the end of the precession period (with a duration of 2 s each),
so that the neutron spins precess in the holding field during the
storage period. This is the normal mode of operation during
nEDM runs because it allows a precise determination of
the precession frequency. During precession the polarization
decreases at the rate given by Eq. (16).

(3) Spin echo: In addition to the two 7 /2 pulses applied
at the beginning and at the end of the precession period, a &
pulse is applied exactly halfway through the precession time.
The effect of the 7 pulse is to cancel the dephasing of different
neutron energy groups [32], and therefore the depolarization
rate is given by da/dT = —a /T3 wan — /T3 mag. This mode
allows one to isolate the intrinsic transverse depolarization
from the gravitationally enhanced depolarization.

At the end of the storage period the ultracold neutrons are
released from the precession chamber by opening the UCN
shutter, allowing them to proceed to the spin analyzer [39].
This device simultaneously counts the neutrons in each of
the two spin states: it has two arms, each of which includes
(i) an adiabatic spin flipper, (ii) a magnetized iron foil that
transmits one spin component and reflects the other, and (iii) a
set of SLi-doped glass scintillators [40] to count the neutrons.
Finally, the asymmetry

A Ny — N,
_N¢ + N,

is calculated. The efficiency of the spin analyzer is not perfect
due to the finite efficiency (about 90%) of the magnetized
foils.

For measurements in the longitudinal and spin-echo
modes, the polarization is directly given by the asymmetry,
i.e.,, « = A. In the Ramsey mode, the polarization is given
by the asymmetry at the resonance, i.e., « = A(fif = f,). In
practice one measures the asymmetry as a function of the
applied frequency f;r of the 7 /2 pulses for several (typically
eight) cycles and then fits the Ramsey fringe by a cosine
function. The polarization « is given by the maximum—or
visibility—of the Ramsey curve A versus f;¢.

The gradients G;o or G, are applied by setting
well-defined currents in the set of correcting coils. The
gradients are measured in real time with an array of cesium
magnetometers.

Figure 1 shows the results of a measurement of the final
polarization as a function of an applied vertical gradient G o.
Within the range of applied gradients, |G| < 50 pT/cm,
the longitudinal polarization and the spin-echo polarization
are constant. This is consistent with the expectation from
Eq. (29) that the intrinsic magnetic depolarization is too small
to be measured. The fact that the spin-echo polarization is
smaller than the longitudinal polarization could be explained
by possible residual horizontal gradients of the type G ;.
We observe gravitationally enhanced depolarization in the
Ramsey mode, with the polarization decreasing under the
application of a finite gradient. We fit the model « (G, ) =
oy — %)/,IZG%OVar[Z]T2 to the data with o and Var[z] as free

(30)

UCN polarization after T = 180 s storage

0.901 ® longitudinal polarization
¢ spin echo
0.851 A Ramsey
] . . . ]
0.80
° i /_;_,\ ¢ °
S 0.751
/ N,
//, 0\\
/ AY
0.704 / |
III+ \\\
II \\ +
0.651 + Var[z] = 0.18(6) cm?
0.60 ; : ; : :
—60 -40 -20 0 20 40 60

G1,0 (pT/cm)

FIG. 1. Final polarization of ultracold neutrons after a storage
time of 180 s as a function of an applied vertical gradient G g.
Squares, longitudinal polarization; filled circles, polarization after
a spin-echo run; triangles, polarization after a normal Ramsey run.
The dashed line is a fit of the gravitationally enhanced depolarization
model based on Eq. (22) to the data (excluding the two points at large
gradients for which the small phase approximation is not valid).

parameters. We find Var[z] = 0.18 = 0.06 cm?, a plausible
value for stored ultracold neutrons.

Figure 2 shows the result of scanning the horizontal gradi-
ent Gy ;. The precession time was kept constant at 7 = 180 s.
In this case, as expected, the applied gradient affects the
polarization in the same manner as for the spin-echo and
Ramsey runs. We have plotted (dashed line) the expected

UCN polarization after T = 180 s storage
0.81 $

7N t
\

0.7 Jo N

spin echo
Ramsey

0.6 !

0.54

&

0.3 ! \
]

\
0.21 / "
\\

\

0.14

’ N\
/

' ,/ \\
-’ . . . i
—-200 -100 0 100 200 300
G1,1 (pT/cm)

0.0
—300

FIG. 2. Final polarization of ultracold neutrons after a storage
time of 180 s as a function of an applied horizontal gradient G ;.
Filled circles, polarization after a spin-echo run; triangles, polariza-
tion after a normal Ramsey run. The dashed line corresponds to the
model Eq. (31) with @y = 0.75 and v = 3 m/s.
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dependence

T
a(Gy,1) = agexp <— ) (31

T2,mag(Gl,1)

where 15 mag(G1,1) 18 given by the intuitive model Eq. (29) and
we have chosen the parameters ¢yp = 0.75 and v = 3 m/s.

Clearly, the data from the G, ¢ and G ; scans are in good
qualitative agreement with the expectations. There are two
different mechanisms at play. The horizontal gradient G ;
induces a truly irreversible depolarization process, since the
polarization cannot be recovered by the spin-echo method. On
the other hand, the vertical gradient G| ¢ mainly affects the
polarization through a loss of coherence of different energy
groups separated by gravity; this coherence can be recovered
through the spin-echo technique.

IV. FIELD UNIFORMITY AND SYSTEMATIC EFFECTS:
FREQUENCY SHIFTS

In the present section we will cover the case of Larmor
frequency shifts of particles—ultracold neutrons or atoms—
evolving in a nonuniform magnetic field in conjunction with
an electric field. We first review the linear-in-electric-field fre-
quency shift, which constitutes an important direct systematic
effect. In particular we calculate the false mercury EDM in
terms of the coefficients of the harmonic expansion, and we
discuss the effects of higher-order modes. We will then review
the electric-field-independent frequency shifts.

A. Motional false EDM

When a particle moves with a velocity v through a static
electric field E, it experiences a (relativistic) motional mag-
netic field B, = E x v/c?. For trapped particles the velocity
averages to zero, and therefore one is naively led to conclude
that the effect vanishes. This is indeed the case if the magnetic
field is perfectly uniform. However, when the particle spins
evolve in a nonuniform magnetic field the motional field B,
does induce a linear-in-electric-field frequency shift § f. This
effect has been extensively studied theoretically [36,41-49].
The associated false EDM can be calculated in the framework
of spin-relaxation theory:

hy?

dfalse —
2¢2

/ OO(BX(O)UX(I) + B, (0)v, (1)) cos wt dt. (32)
0

Now, the magnitude of this undesirable false EDM criti-
cally depends on whether the particles are moving quickly or
slowly, in a sense that we shall define. With a mean square
velocity vVims = 4/ (vf), it typically takes a time . = 2R/ Vs
for a particle to diffuse from one side of the chamber to the
other (2R is the typical transverse size of the chamber, for
example its diameter in the case of a cylindrical chamber).
After this time a correlation function of the type (B(0)v(z.))
will have decayed to a small value. The adiabaticity parameter
is defined as wrt.. For ultracold neutrons one usually has
w7, > 1, which means that the Larmor frequency is much
faster than the wall collision rate: This is the adiabatic regime
of slow particles in a high field. On the other hand, for mercury
atoms at room temperature ina By = 1 uT field wt, < 1: This
is the nonadiabatic regime of fast particles in a low field.
In the adiabatic regime, the linear-in-electric-field frequency

shift can be interpreted as originating from a geometric phase,
as first noticed in [50]. In fact the motional false EDM was
called the geometric phase effect in earlier publications.

The general expression for the motional false EDM given
in Eq. (32) takes simplified forms in the adiabatic and nonadi-
abatic approximations:

. hv2 0B
dfse — ——ms (272 (adiabatic), 33
2czB(2)< 9z > ( : 9

2

dfalse — _%(XBX +yBy>
where the brackets now refer to the volume average over
the precession chamber. It should be emphasized that these
expressions are valid for an arbitrary form of the magnetic
nonuniformity.

In the simple case of a uniform gradient, i.e., G o # 0 and
all other G;,, modes set to zero, in a cylindrical chamber of
diameter 2R = 47 cm, these expressions can be simplified for
the neutron (adiabatic case) and mercury (nonadiabatic case)
false EDM [59]:

(nonadiabatic), (34)

hv?
dfalse — _ ms_ 35
n 2¢?B} ho )
G
N~ 20146 x 107 Becm, (36)
1 pT/cm
; liyg
false __ Hg 2
dHagSC — 8C2 R GI,O (37)
G
~ 20 115 x 107 ecm, (33)
1 pT/cm

the neutron case being calculated with v, = 2 m/s and with
By = 1 uT. Because the mercury comagnetometer is used to
correct the neutron frequency for the drifts of the magnetic
field, the false EDM of the mercury atoms translates to a false
neutron EDM with a magnitude of

false __ | Yn | jfals
dnt%—[g - ‘ VHg d;gge (39)
G 27
AN ——— x4.42 x 107'ecm. (40)
1pT/cm

It should be noted that the mercury-induced false neutron
EDM is much larger than the directly induced neutron mo-
tional false EDM.

In fact, it can be shown that the false EDM of a trapped
particle is maximum at zero magnetic field, i.e., in the nonadi-
abatic limit. This explains why the mercury comagnetometer
running at By = 1 T is a source of large systematic effects.
It should be said that, despite the existence of such (by now
well understood) effects, the use of a comagnetometer for
these measurements is truly invaluable, and in its absence
the credibility of any results might well be brought into
question. Some compensation can be achieved through use of
a double chamber, with electric fields in opposite directions
and each chamber effectively acting as a magnetometer for
the other, but this still does not truly sample the colocated
field in a precise way. For a large-scale cryogenic experiment,
for example, an alternative that has been proposed to the
room-temperature mercury comagnetometer is the concept of
a helium-3 comagnetometer diluted in superfluid helium-4
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TABLE III. Radial components of the /, m = 0 modes.

[ Hp,l.m:()(pv Z)

0 0

1 —%,o

2 —pz

3 00 =302

4 %p3Z—2,OZ3

5 —%p5+%p3zz—%pz4

6 —Bpoz+ Bp3? —3p2

7 %p7—%p5z2+%p3z4—%pz°

bath, for which the false EDM can be set to zero by adjust-
ing the temperature of the bath [43]. At room temperature,
though, another alternative that has recently been proposed
by one of us is to operate the mercury comagnetometer at
a higher “magic” magnetic field to set the false EDM to
zero [51]. While this is an attractive possibility for a future
experiment, it brings with it significant difficulties in ensuring
the uniformity of the magnetic field to the level required to
avoid depolarization of the neutrons. In the remainder of the
present paper we will consider the nonadiabatic regime for the
mercury comagnetometer.

The mercury false EDM value given by Eq. (38) is in
practice times larger than the dp, experimental upper bound
from direct searches for the Hg atomic EDM, dyg < 7.4 x
10~3¢cm [52], where the presence of a 0.5-bar buffer gas
reduces the size of the motional false EDM to dify* <
10~3'e cm [52,53] in this experiment.

We will now give expressions for the mercury-induced
false EDM in the case of more general magnetic nonunifor-
mities described by the harmonic polynomial expansion (2).
From Egs. (34) and (39) we find

Al Yn Vi |

it =M S om0,
l,m

where p, z, ¢ are the cylindrical coordinates and
1_I,o,l,m = COos ¢ 1_[x,l,m + sin d) 1_Iy,l,m = a,0 2:l+1,m (42)

is the radial component of the mode /, m. In Table III we
give expressions for the radial components of the first m = 0
modes (see Appendix A for more information on the harmonic
polynomials in cylindrical coordinates).

Next, we specify the formula (41) in the case of a cylin-
drical chamber of radius R and height H. The origin of the
coordinate system is at the center of the cylinder. All m # 0
modes satisfy (oIl,;,,) = 0 due to the average over ¢. All
even [ modes satisfy (oI1,;0) = O due to the average over z.
Therefore, only the modes I, ; o with /[ odd contribute to the
mercury-induced false EDM:

alse hh/”y '|
A, = —=25 ) GiolpTl,i0) (43)
[ odd

hl)/nVHgl 2 R2 H2

= RS R Gl — G — — —

8¢2 R U T
+G SR SR*H? + U + (44)

>\ 16 12 16 '

The motional false EDM of mercury induced by the linear
gradient G, has been experimentally confirmed in [54],
by applying an artificially large gradient. More recently we
have also verified the effect induced by the cubic term Gs
with a dedicated measurement as reported in Sec. IV B. The
motional false EDM is a dominant systematic effect that must
be compensated for, and in order to determine the true EDM
from experimental values one must extrapolate the measured
EDM to zero gradient. An effective strategy for that extrapola-
tion, used in the previous measurement [14], takes advantage
of neutron frequency shifts which are also sensitive to the
gradients. We will review these frequency shifts in Sec. I[VC
and explain the correction strategy using the gravitational shift
in Sec. IVE.

B. Experimental verification of the false EDM induced
by the cubic mode

In order to verify the accuracy of the predicted false EDM
d™se 3 dedicated measurement was performed in the neu-
tron EDM experiment at PSI using different magnetic-field
gradients. In a previous work [54] we verified that a linear
gradient G o produces a motional false EDM on the mercury
as predicted by the theory. Here we extend this verification to
the false EDM produced by the cubic mode G .

In this measurement no neutrons were used, and the '*’Hg
precession frequency fy; was monitored while the applied
electric field was periodically reversed: £ = £120kV /12 cm.
The measurements were performed in a series of standard
cycles for which the sequence begins with the filling of the
precession chamber with spin-polarized Hg atoms. The Hg
spin is then flipped to a transverse direction (with respect to
By) using a 7 /2 magnetic resonance pulse of 2-s duration.
A weak circularly polarized light beam is used to monitor
the precessing transverse Hg spins by measuring the light
power transmitted though the Hg medium. Due to the spin-
dependent part of the absorption coefficient, the transmitted
power is modulated synchronously with the spin precession.
After recording the free-spin precession for 72 s, the cycle
ends with the emptying of the precession chamber. Cycles
were repeated every 100 s, and the E field was reversed in
a + — —+ pattern where every entry in the pattern consists of
ten cycles.

The change in Hg precession frequency A fy, correlated
with the change in electric field AE was analyzed by aver-
aging over many electric-field changes. The pattern + — —+
suppresses the effect of linear drifts in the Hg precession
frequency due to slow changes of the magnetic field in the
apparatus. Periods during which the magnetic field changed
rapidly (e.g., because of ramping superconducting magnets in
neighboring experiments) were cut from the data analysis.

We took data in a number of different magnetic-field
configurations. To change the cubic mode Gs ¢ we applied ap-
propriate currents in trim coils mounted around the precession
volume. For each magnetic-field configuration we calculate
the false EDM as

false mh

= 2E| (fug.1r — Sfugry)- (45)
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14 False mercury EDM
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FIG. 3. Experimental verification of motional false EDM of
mercury induced by a change of the cubic gradient Gs . The fre-
quency shift correlated with electric-field reversals was measured at
4120 kV. Red triangles pointing upwards (blue downwards) corre-
spond to runs for which the By field points upwards (downwards).
The dashed line corresponds to the theoretical expectation given by
Eq. (46).

We selected pairs of runs that only differ by the value of the
cubic mode. We report in Fig. 3 the difference Ad™!*® between
each pair as a function of the cubic mode difference AGs .
The value AGj g is inferred by analyzing field maps. We plan
to describe the field mapping device and the analysis of the
recorded maps in a later publication.

Figure 3 also shows the theoretical expectation

i, ,(R* H?
Adfalse — _?I;ER2<7 — T) AG3_O. (46)

The measurement is in good agreement with the theory. More
details about this measurement can be found in the Ph.D.
thesis of Komposch [55].

C. Electric-field-independent frequency shifts

We will now discuss the frequency shifts unrelated to the
electric field in situations where the Larmor frequencies of the
neutrons f, and mercury atoms fy, are measured in a weak
magnetic field By = 1 uT.

There are several known effects that could significantly
shift the ratio R = f,/fye from its unperturbed value
|¥n/Vhe|. For the purpose of the present discussion we write
the combination of these effects as

R_ Jo | Va
VHg

(1 + (SGraV + 8T + (Sother)- (47)

ng N

The term §gqy is called the gravitational shift and §7 is the
shift due to transverse magnetic fields. The last term, Soer,
accounts for shifts unrelated to the field uniformity. It includes
the effect of Earth rotation [56], Ramsey-Bloch-Siegert shifts
due to imperfect 7 /2 pulses, and light shifts induced by the
UV light probing the mercury precession. A discussion of

these effects, which in practice are subdominant, is beyond
the scope of this paper; they were briefly discussed in [57].
The first two terms Jg.y and 87 are of interest here because
they are induced by the magnetic-field nonuniformity.

The gravitational shift gy 1S the dominating shift in
Eq. (47). As we already have mentioned when discussing
gravitational depolarization, ultracold neutrons “sag” towards
the bottom of the chamber quite significantly due to gravity.
In contrast, the mercury atoms form a gas at room temperature
that fills the precession chamber uniformly. This results in
slightly different average magnetic fields for the neutrons and
the atoms in the presence of a vertical field gradient. In the
framework of the harmonic expansion of the field, the volume
average of the vertical component is

(B) = Grn(T1m). (48)
I,m

For a cylindrical chamber all the terms with m # 0 vanish.
Limiting the expansion to / = 3, we have

(Bz) = Go,0 + G1,0(z)
+Goo(—p*/2+2%) + Gsolz® — 20°2).  (49)

For both mercury atoms and neutrons we have

R?
(") == (50)
For the mercury atoms we have
(Z)ng =0, (D
H?
(g = TR (52)
(@) =0. (53)

Therefore, the averaged field, which we call the By field, is

H> R
By := (B;)ug = Goo + Gz,o(g - Z) (54)

Now, for neutrons, the main difference when compared to
atoms is that the center of mass (z),—which we denote simply
as (z)—is significantly nonzero and negative. To calculate the
ensemble average of higher powers of z, we approximate the
neutron density n(z) to be a linear function of z. We find

H2

2\~

(%) = TR (59)
3 3H?

() ~ 20 (z). (56)

In reality the neutron density is not precisely a linear function
of z. However, these expressions have been numerically veri-
fied to be accurate to better than a few percent for typical UCN
spectra in storage vessels similar to those used. Therefore, the
expression of the field averaged by the neutrons is

H?* R?
B.), = Goo +Gi0(2) + Gao| — — —
(B;) 0,0 + G1,0{z) + 2,0(12 1 >
LG 3H? 3R? - 57)
W\ T Ta )\
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From Eqgs. (54) and (57) we deduce the gravitational shift

B.), Gray
_ ( z) =4 gra <Z)’ (58)
<Bz> Hg |B0|
where the + sign refers to the direction of the magnetic field
and the term Gy, s given by the following combination:

SGrav

Ggaw =G0+ G SLAES 59
grav — Y10 3,0 20 4 .

The second shift in Eq. (47), 87, arises from residual
transverse field components Br. As mentioned above, the
neutrons fall into the adiabatic regime of slow particles in a
high field, and therefore the spins precess at a rate given by
the volume average of the modulus of the field:

(B7)
. 60
21B| (©0

The mercury atoms on the other hand fall into the nonadi-
abatic regime of fast particles in a low field, as a result of
which the spins precess at a rate given by the vectorial volume
average of the field:

|Vl |Vl
n = Bl), ~ — B.)n
g o (IBI) o |{Bz)nl +

YHe | 3 YHg

= —_— B =
ng o |< >Hg| o

Due to the fact that (B;), # By is already accounted for by
the gravitational shift, the expression for the transverse shift
is simply

|Bol- (61)

(B7)
S8 = 2—36. (62)
The expression for (B%) in terms of the coefficients Gy, is
given in Appendix B.

D. Experimental verification of the gravitational
and transverse shifts

In Fig. 4 we show a measurement of the ratio R = f,,/ fuq
as a function of an applied vertical field gradient G, . The
underlying data are the same as those used to produce Fig. 1.
We observe that the dependence of R versus the gradient is
not quite linear. Fitting only the linear part we find (z) =
—0.36(3) cm. The nonlinear behavior is primarily due to the
phenomenon of Ramsey wrapping [30,31]. Under the influ-
ence of gravity and in the presence of a vertical field gradient,
the distribution of spin phases evolves in an asymmetric
manner. Ramsey’s technique measures phase modulo 2, so
a dominant tail on one side of the distribution can “wrap
around” and effectively contribute to pulling the measured
phase in the opposite direction to that which one would
naively expect. (This effect is also very slightly enhanced by a
subtle interplay between depolarization and frequency shift:
the depolarization at large gradients acts differently upon
the different energy groups, depolarizing the lowest-energy
neutrons more quickly so that they contribute less to the
frequency shift, thus effectively modifying (z); but the latter is
a very minor addition.) These complications, which are only
relevant for large field gradients, have been neglected in the
previous discussion.

Neutron-to-mercury frequency ratio
3.84260

3.84255 2y =70.38(3) cm
3.84250 >~
R 3.84245 - AN

3.84240 1

3.84235

3.84230 T T T - -
—-60 —-40 —-20 0 20 40 60
Gi,0 (pT/cm)

FIG. 4. Experimental verification of the gravitational shift:
neutron-to-mercury frequency ratio R as a function of an applied
vertical gradient G o. A linear fit to the data is performed (excluding
the two points at large gradients) to extract (z).

Next we report on a dedicated experiment to verify the fre-
quency shift due to a transverse field. The measurements were
performed at PSI in October 2017. We varied the transverse
field component using a combination of trim coils optimized
to induce only the G » mode. Since the G, mode is purely
transverse, the scalar Cs magnetometers could not be used
to measure it; instead we used offline fluxgate maps of the
trim coils to determine the value of G, as a function of the
currents in the coils. Figure 5 shows the R ratio as a function
of Gy . We also carried out a similar test for the G| _, mode,

Neutron-to-mercury frequency ratio

\ 1

3.842700

1}
1
1
3.842675 A !
'l
/
3.842650 - \ !
\ /
\ 1
3.842625 A \ !
‘\ I’
,I
& 3.842600 1 \ /
3.8425754 \ /

3.842550 1

3.842525 AN /
'Y

3.842500 T T T -
—-750 -500 -250 0 250 500 750

G1,2 (pT/cm)

FIG. 5. Experimental verification of the transverse-gradient
shift: neutron-to-mercury frequency ratio R as a function of applied
transverse gradient G;,. The dashed line is a symmetric parabola
with the constant term fitted to the data and the quadratic term fixed
to the theoretical value.
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and that measurement is also in good agreement with the
expected shift.

E. Correction strategy using the gravitational shift

We now suggest a strategy to correct for the motional false
EDM through use of the gravitational shift. We extend the
method used in [14], which neglected possible [ > 1 terms
for the nonuniformity. Here we assume that the magnetic field
can be described by the harmonic expansion up to / = 4 and
we neglect for the time being all terms [ > 4.

For a given sequence of measurements with a fixed
magnetic-field configuration, the measured EDM is the sum
of the true EDM and the false EDM, which can be written as

sy R*  H?
qmeas — true & R2 Gorav G - - )
" ot TRe R P TH
(63)

On the other hand, the R ratio measured for that magnetic-
field configuration is given by

(1 + Ggrav ()
1By

where the +(—) sign refers to By pointing upwards
(downwards). We define the corrected quantities d,°" and

R to be
hlyavel o (R H?
Tse F\T g

Vn

Vl-lg

R =

+ ST + 80[her> 5 (64)

corr __ gmeas
dn - dn

and
R = R/(l + 87 + Sother )- (66)

To calculate these, the magnetic-field related quantities G3
and (B%) are required. They can be measured offline by
field mapping, if the reproducibility of the magnetic-field
configuration is sufficient.

Then, we have

4o — e + Mchgrav (67)
n n 8C2
and
n G rav
oo _ | 2 (1 4 e <z)>. (683)
VHg |BO|
Therefore,

Vn

VHg

2
4" = di*° + By i g (Rm -

8c2(z)

) . (69)

Now, we have a set of “points” (d;°", R®™), where each
point corresponds to a different field configuration. It is im-
portant to get a set of points for both polarities of By. The so-
called crossing-point analysis simply consists of fitting these
two series of points with two linear functions with opposite
slope. It gives direct access to d\"°, since at the crossing point
dy, = d™ and R = I%L This technique was extended in
[14] to include the nonlinbearity arising from Ramsey wrap-
ping, resulting in a far more satisfactory fit to the data.

Let us now make a few remarks.

(1) In principle, one could extract G,y from offline field
mapping or with real-time magnetometers around the preces-
sion chamber, and correct the false EDM on a point-by-point

basis without using the crossing-point analysis. However, this
requires an accuracy better than 1 pT/cm for Ggpy (corre-
sponding to an error of 4.4 x 1072’ e cm), which is beyond the
reach of the current experimental setup. The accuracy of the
determination of the gradients will be discussed quantitatively
in the two aforementioned forthcoming papers.

(2) An experiment with a vertical stack of two chambers,
rather than just one, could simply measure the gradient by tak-
ing the field difference between the top and bottom chambers.
This would be an alternative to the gradient extracted via the
gravitational shift.

(3) The crossing-point condition R" = |;’f| allows an

g
important cross-check of the analysis: R°" should agree

with |y};”“| calculated from independent measurements of y,

and yyg.

F. The special case of a localized magnetic dipole

The correction strategy presented in the previous paragraph
compensates for the false EDM produced by a nonuniform
field for all modes up to / = 4. However, it does not perfectly
compensate for the systematic effect generated by a localized
magnetic dipole situated close to the precession chamber, as
pointed out in [58]. Indeed, the residual false EDM, after the
correction procedure, is given by

hlynVHgl di di R? 8B(Zﬁp
dl‘CS N L ik i - 28 B 1p B'lp . g , 70
" e LR e b 0

where (B{®, BS®, B{P) is the magnetic field generated by the
magnetic dipole. The first term corresponds to the systematic
effect induced by the horizontal components of the dipole, and
the second term arises from the correction procedure.

When the dipole is situated on the axis below or above the
cylindrical chamber, an analytical expression for Eq. (70) can
be derived [45]. In general, however, for an arbitrary position
of the magnetic dipole, Eq. (70) has to be calculated numer-
ically. Most critical are dipoles located on the circumference
of the chamber.

We show in Fig. 6 a numerical calculation of the false
EDM generated by a dipole oriented along z, with a magnetic
moment m, = 10 nA m?. This dipole corresponds to a speck
of spherical iron dust with diameter 20 ©m magnetized to
saturation.

V. SUMMARY AND DISCUSSION

In this paper we have discussed how magnetic-field
nonuniformities affect the statistical and systematic errors in
the measurement of the neutron electric dipole moment.

Concerning the statistical precision, the field uniformity
must be sufficient to prevent the depolarization of ultracold
neutrons during the precession time, which is as long as
a few minutes. We have reviewed the main mechanisms
of magnetic—gravitational and intrinsic—depolarization. We
have reported upon dedicated measurements of these effects,
in particular using the UCN spin-echo technique to sepa-
rate the intrinsic and gravitationally enhanced depolarization
components.
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FIG. 6. Absolute residual false EDM created by a dipole located
in the vertical plane y = 0, with a magnetic moment aligned with z
and with m, = 10 nA m?, as a function of the position (x, z) of the
dipole. The white area corresponds to the volume of the chamber
(diameter 47 cm and height 12 cm).

As far as systematic effects are concerned, we have focused
the discussion on those related to the mercury comagnetome-
ter. In the previous literature, discussion about the false EDM
effect in mercury was limited to linear gradients, although
the case of localized dipoles was treated in [44,45,58]. In
this paper we have extended the discussion to higher-order
gradients. The theory for the motional false EDM is given
in terms of a harmonic expansion. We have performed a
dedicated measurement to verify the effect of the cubic mode
in this expansion.

We have in preparation two companion papers on the
subject of magnetic-field uniformity in the PSI nEDM ex-
periment. The second part of this trilogy will present the
procedure to produce a uniform field in situ with the help of
an array of cesium magnetometers. The third part will present
the offline characterization of the field uniformity through use
of an automated mapping device.
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APPENDIX A: HARMONIC POLYNOMIALS
IN CYLINDRICAL COORDINATES

It is useful to derive the expressions of the harmonic modes
in cylindrical coordinates (p, ¢, z) with x = pcos¢ and y =
psin¢. The radial, azimuthal, and vertical components, re-
spectively, of the mode [/, m are given by

My m =cos¢ I, +sing Iy, (A1)

= apEH-l,ma (AZ)

Mg m=—sing [, +cosg Iy, (A3)
1

= ;3¢El+1,m, (A4)

1-[Z,l,m = azzlJrl,m~ (AS)

Itis possible to write a simplified expression for the vertical
component. Starting from Eq. (4), we have

1 = Cri1m(@) &[T P (0)]
= Crrtm(@)r' [+ DePlL(e) + (1 — )P (0)]
(A6)

where ¢ = cos 6. Using the following known property of the
associated Legendre polynomials,

(= 1)3P () = (L + DeP (e) — L+ 1+ m)P"(c),
(AT)

we arrive at

1 = Critm(@)( +m+ D' P"(cos 0). (A8)

It is also possible to write a simplified expression for the
radial component, but only for the m = 0 modes. In that case,

1
M0 = TF1 3 [r P (0)]

7l

= sin@[( + DPY,,(c) — cd.P (0)]. (A9)

We use the following property of the Legendre polynomials,
(I + P, (c) — 0Py (c) = —0:P (), (A10)
to find

!

— "4 poieosh)
T I+1do"! '

An explicit calculation of the modes in cylindrical coordinates
up to / = 3 is shown in Table IV.

yi0 (A11)
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TABLE IV. The basis of harmonic polynomials sorted by degree in cylindrical coordinates.

! m m, m, I,
0 -1 sin ¢ cos ¢ 0

0 0 0 0 1

0 1 cos ¢ —sin¢ 0

1 -2 p sin 2¢ p cos2¢ 0

1 -1 zsin¢ ZCoS ¢ psing

1 0 —ip 0 z

1 1 ZCOoS ¢ —zsin¢ 0 COS P

1 2 0 Ccos2¢ —psin2¢ 0

2 -3 p?sin 3¢ p? cos 3¢ 0

2 -2 2pzsin2¢ 207c082¢ 0% sin2¢

2 -1 1(422 = 3p?)sing 1422 — p?)cos ¢ 2pzsin ¢

2 0 —pz 0 —1p*+ 72

2 1 1422 —3p%)cos ¢ 1(p? —4z%)sing 20z c0s ¢

2 2 2pzc082¢ —2pzsin2¢ p?cos2¢p

2 3 0% cos 3¢ —p?sin3¢ 0

3 —4 03 sind¢ 03 cos4¢p 0

3 -3 3p2%zsin 3¢ 3p%zcos 3¢ 03 sin 3¢

3 -2 0(3z% — p?)sin 2¢ 1p(62* — p?)cos2¢ 3p%zsin2¢

3 -1 12422 = 9p?)sin ¢ 12(422 = 3p?)cos ¢ p(3z* — 3p?)sing
3 0 2p(p? —42%) 0 12222 = 3p%)

3 1 12(42> — 9p*) cos p 12(3p? — 4z%)sing p(322 — 2p*)cos ¢
3 2 0322 — p?)cos2¢ 1p(p? — 62%)sin2¢ 302z cos2¢

3 3 3p%zcos 3¢ —3p?zsin 3¢ P> cos 3¢

3 4 03 cos 4 —p3sin4¢ 0

APPENDIX B: TRANSVERSE FIELD COMPONENTS

In this Appendix we give the expression for the mean
squared transverse field,

(BT) = ((Bx — (B.))* + (By — (B,))’), (B1)
in terms of the generalized gradients Gy, up to order / = 3 for
a cylindrical precession chamber of radius R and height H.

It can be expressed as a sum of four contributions:
2 2 2 2 2
(BT) = <BT>LO + (BT>20 + (BT>30 + <BT)311' (B2)

The linear-order contribution is
2

R 1
(B%">LO = o (G%,z + G%,z + ZG%,O)

+ B (G L1 +Gh). (B3)

The quadratic-order contribution is

(B0 = 503+ 63
TI20 — 3 2,-3 2,3

+R2H2 2G5 _, + 2G5 +1G
12 -2 2209
R* H*
— )(G3 G2 .). B4
+<24+180>( 21+ Gh) (B4

The cubic- order contribution is

4172
Bo = S(@ i+ G+ (@ + 62y
+ <5R6 R4H2 ﬁ) (G52 +G3,)
160 27,
N <5R4H2 3R2H4 N H° )(G L+
64 160 ' 448 - »
+ <9R6 R4H2 —+ 9R2H4>G (BS)
256 640

Finally, there is the interference term between the linear and
cubic modes:

R* R*H?
(Bz>311 = <_7+ 4 )

1
X (G1,2G3,2 + G12G3 o + ZG1’0G3'0>

R’H?> H*
— — (G 1G53 — G11G31).
+< 3 +40>( 1,-1G3. -1 + G1.1G31)

(B6)

Note that the quadratic modes do not interfere with the linear
and cubic modes.
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