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Exceptional-point-induced lasing dynamics in a non-Hermitian Su-Schrieffer-Heeger model
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Non-Hermitian systems exhibit many peculiar dynamic behaviors that never showed up in Hermitian systems.
The existence of spectral singularity for a non-Hermitian scattering center provides a “lasing mechanism” in the
context of quantum mechanics. In this paper, we investigate the dynamics of the non-Hermitian Su-Schrieffer-
Heeger model around an exceptional point, based on an analysis of parity-time and chiral-time symmetries of the
Hamiltonian. We show exactly that a finite system near its exceptional point can support EP-related amplification
of cyclic states. It becomes a stationary laser solution with linear-power amplification under certain conditions
in an infinite limit. In contrast to the SS lasing mechanism for a scattering system, such an SSH chain acts as an
active laser medium at threshold, within which a stationary particle emission can be fired anywhere, rather than
a specific location at the non-Hermitian scattering center only. In addition, some relevant peculiar phenomena
arising from interference between wave packets are revealed based on the analytical solutions.
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I. INTRODUCTION

Recent developments in non-Hermitian quantum mechan-
ics [1–14] have opened up new research directions in several
branches of physics [15–29]. The remarkable features of a
non-Hermitian system are the violation of conservation law of
the Dirac probability, and the exceptional point (EP) [30–33]
or spectral singularity (SS) [34–40]. Based on the former,
the complex potential is employed to describe open systems
phenomenologically [41]. Furthermore, unconventional prop-
agation of light associated with the gain or loss has been
demonstrated by engineering effective non-Hermitian Hamil-
tonians in optical systems [20,42,43]. On the other hand,
many unique optical phenomena have been observed around
the EP, ranging from loss-induced transparency [20], power
oscillations violating left-right symmetry, low-power optical
diodes [25], to single-mode laser [27,28]. A fascinating phe-
nomenon of non-Hermitian optical systems in the application
aspect is the gain-induced detection, such as enhanced spon-
taneous emission [44], enhanced nanoparticle sensing [45],
as well as the amplified transmission in the optomechanical
system [46,47]. Both theoretical and experimental works not
only give insight into the dynamical property of the non-
Hermitian Hamiltonian, but they also provide a platform to
implement the optical phenomenon.

In this paper, we investigate the lasing mechanism arising
from a non-Hermitian system. Based on the novel feature of
a non-Hermitian scattering center [36], it is pointed out that
an SS can represent lasing with zero linewidth [48]. It has
been shown that a Gaussian wave packet can stimulate sta-
tionary laser states when it meets the non-Hermitian scattering
center [49,50]. By using Fano resonance in a PT -symmetric
system with a pair of side-coupled balanced gain and loss
resonators, spectral singularity induces unidirectional lasing
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[51], where spectral singularities exhibit nonreciprocity. In
this work, we present another lasing mechanism beyond the
scattering problem. We focus on a non-Hermitian system with
bulk translational symmetry. For an arbitrary state

∑
n Cn|φn〉

that consists of a set of eigenstates |φn〉 with superposition
coefficients Cn and real energy En, the time evolution of this
state has the form

∑
n Cne−iEnt |φn〉. The Dirac probability of∑

n Cne−iEnt |φn〉 is not conservative but periodic. On the other
hand, a coalescing state |φc〉 at the EP evolves in a special way.
Its Dirac probability increases in t2 [52–54]. It is presumable
that when several |φn〉 approach |φc〉, a proper superposition
of them may exhibit some interesting behavior, e.g., the Dirac
probability increases linearly in time in a period of time. It
corresponds to a stationary power amplification laser state.

To demonstrate this lasing scheme, we consider a
one-dimensional (1D) PT -symmetry non-Hermitian Su-
Schrieffer-Heeger (SSH) model [55]. By using the exact solu-
tions, we introduce a mechanism for self-sustained emission
in finite non-Hermitian systems at the EP. We show that,
without the existence of SS in a scattering system, one is
able to obtain a class of stationary EP-related amplification
of cyclic states. For such solutions, a lasing mode is fired
at any location of the system, which acts as an active lasing
medium, rather than the non-Hermitian scattering center only
in the context of the SS regime. In addition, it is found that
the superposition of these states exhibits some counterintu-
itive dynamical behaviors. Although the system is noninter-
acting, a delicate design of the interference process results
in the phenomenon of wave-packet–pair annihilation and
creation.

The remainder of this paper is organized as follows. In
Sec. II, we present a non-Hermitian SSH chain model and
the formulation of approximate diagonalization. Section III
presents the laser solution and reveals the lasing dynamics
for specific initial localized states. In Sec. IV, we consider
the physical realization by investigating the evolution of a
Gaussian-type initial state. Section V demonstrates some

2469-9926/2019/99(4)/042111(11) 042111-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.042111&domain=pdf&date_stamp=2019-04-10
https://doi.org/10.1103/PhysRevA.99.042111


K. L. ZHANG, P. WANG, AND Z. SONG PHYSICAL REVIEW A 99, 042111 (2019)

peculiar dynamical behaviors in the present system. Finally,
we give a summary and discussion in Sec. VI.

II. MODEL AND SOLUTION

To begin, we briefly summarize the known properties of
the 1D non-Hermitian SSH model with staggered balanced
gain and loss. It has been studied systematically in previous
work [55,56]. The simplest tight-binding model with these
features is

H = (1 + δ)
N∑

j=1

a†
j b j + (1 − δ)

N−1 or N∑
j=1

b†
ja j+1 + H.c.

+ iγ
N∑

j=1

(a†
j a j − b†

jb j ), (1)

where δ and iγ are the distortion factor with a unit tunneling
constant and the alternating imaginary potential magnitude,
respectively. Here a†

l and b†
l are the creation operator of the

particle at the lth site in A and B sublattices. The particle can
be a fermion or a boson, depending on their own commutation
relations. In the second term, two kinds of summation can be
taken, corresponding to open and periodic boundary condi-
tions. For nonzero γ , it is still a PT -symmetry system. Here,
the time-reversal operation T is such that T iT = −i, while
the effect of parity is such that PalP = bN+1−l and PblP =
aN+1−l . Applying operators P and T on the Hamiltonian (1),
one has [T , H] �= 0 and [P, H] �= 0, but

[PT , H] = 0. (2)

In parallel, H also has chiral-time symmetry

{CT , H} = 0, (3)

where operator C is defined as

CajC−1 = a j, Cb jC−1 = −b j . (4)

The situation here is a little different from the case associated
with PT symmetry. In quantum mechanics, we say that a
Hamiltonian H has symmetry represented by an operator L if
[H,L] = 0. The word “symmetry” is also used in a different
sense in condensed-matter physics. We say that a system
with Hamiltonian H has chiral symmetry if {H, C} = 0. The
physics of C depends on the model discussed [57–62]. A non-
Hermitian system with CT symmetry has been systematically
studied in Ref. [63].

According to the non-Hermitian quantum theory, such a
Hamiltonian may have a fully real spectrum within a certain
parameter region. The boundary of the region is the critical
point of a quantum phase transition associated with PT -
symmetry breaking. For the system with a periodic boundary
condition, the critical point occurs at γ = γc = 2δ, which
is also referred as to the EP [55]. The exact solution is
obtained in the strong dimerization limit, which shows that
the equal-level-spacing high-frequency standing-wave modes
(EHSM) [56] can be achieved in a chain system when the
corresponding ring system is tuned at the EP, as depicted
schematically in Fig. 1. According to Ref. [56], in the
strong dimerization limit 1 + δ � 1 − δ, the Hamiltonian
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FIG. 1. (a) Schematic for the 1D non-Hermitian SSH model. It
consists of two sublattice, A (golden) and B (blue). Black thick and
gray thin lines indicate the hopping between two nearest-neighbor
sites with amplitudes (1 + δ) and (1 − δ), respectively. Two sublat-
tices have opposite site imaginary potentials ±iγ , representing the
physical gain and loss. It has PT symmetry and it can have a full
real spectrum in the case of 1 > δ > 0 and γ < γc (see the text).
(b) The spectra of the non-Hermitian SSH model at γ = γc with
periodic and open boundary (by breaking one of the weak hopping
term) conditions, respectively. In both cases, energy levels near zero
are equally spaced. For a ring system, zero-level coalescence is split
into two levels when the open boundary condition is imposed.

with an open boundary condition can be diagonalized approx-
imately, and the single-particle eigenvectors for γ = γc can be
expressed as

|ψ±
n 〉 =

√
±(−1)N

N + 1

N∑
j=1

(−1) j sin(k j)

×(e±iϕk/2a†
j ± e∓iϕk/2b†

j )|0〉, (5)

where k is defined as

k = nπ

N + 1
, n ∈ [1, N]. (6)

The corresponding eigenenergy is

εk =
√

[(1 + δ) − (1 − δ) cos k]2 − γ 2
c (7)

and

tan ϕk = γc

εk
. (8)
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We note that γc is no longer the EP for the open chain, and we
find that the energy levels can be expressed as

E±
n = ±nω, ω =

√
2δ(1 − δ)π

N + 1
, (9)

approximately for small n, which satisfy n < nc =
(N/π )

√|0.48δ/(3 − 5δ)| (see the Appendix). |ψ±
n 〉 is

normalized in the framework of the Dirac inner product,
i.e., 〈ψ±

m |ψ±
n 〉 = δmn. It indicates that the spectrum εk consists

of two branches separated by an energy gap 
 = 2ω,
which ensures the existence of the equal-level-spacing
standing-wave modes (ESM) around zero energy. In this
model, the value of γc is necessary for achieving a set of
eigenstates as ESM, which is crucial for the construction of
our target state. In addition, the deliberate expression of the
set of eigenvectors {|ψ±

n 〉} satisfies

PT |ψ±
n 〉 = (−1)n|ψ±

n 〉 (10)

and

CT |ψ±
n 〉 = −i|ψ∓

n 〉, (11)

which will be used to analyze the dynamics of the system in
the following sections.

III. LASING DYNAMICS

In this section, we will investigate the dynamics for a class
of a specific state. We focus on the initial state satisfying three
conditions: (i) The Dirac probability distribution is localized
in the coordinate space, (ii) the superposition coefficient of the
wave function is nonvanishing only for small n, and (iii) it has
CT symmetry. It is expected that such kinds of initial state
may possess lasing dynamics due to the following reasons:
Although the non-Hermitian SSH chain does not have an EP
at γc, its corresponding ring system has an EP at zero energy.
However, a local wave packet does not know whether the
boundary condition is open or periodic unless its final state
touches the boundary. Then the wave packet should partially
exhibit the EP dynamics, which obeys the time evolution in
a Jordan block [53,54,64] when the initial state |ψ (0)〉 has a
component of the coalescing eigenstates of the SSH ring at
the EP. On the other hand, the above condition (ii) ensures
that |ψ (0)〉 probably contains such a coalescing component.
From the analysis of the last section, conditions of (ii) and (iii)
constrain the evolved state to possess symmetric probability
distribution and time-reflection symmetry, which make the
dynamics more convenient to describe.

Before focusing on specific initial states, we study some
features of time evolution for an initial state satisfying the
above condition (ii). For small n, we have

|ψ (mτ )〉 =
∑

n=1,σ=±
cσ

n exp(−i2nmσπ )
∣∣ψσ

n

〉 = |ψ (0)〉, (12)

where

τ = 2π

ω
= 2(N + 1)√

2δ(1 − δ)
, (13)

and m is an integer. This indicates that the initial state |ψ (mτ )〉
reappears periodically with period τ . This property is not a

FIG. 2. Profiles of initial states from the plot of Eq. (17) with
κ0 = π/8, π/4, . . . , 7π/8, respectively. This shows that the initial
states are all localized with the identical shape in coordinate space,
and the central position is the linear function of κ0. The parameters
are 2N = 2000, δ = 0.9, γ = 1.8, and q = 0.02.

direct result of the symmetry of the system. In addition, for
the present model, we have∣∣∣∣ψ

[(
m + 1

2

)
τ

]〉
=

∑
n=1,σ=±

cσ
n exp(−inσπ )

∣∣ψσ
n

〉

=
∑

n=1,σ=±
cσ

n PT
∣∣ψσ

n

〉
, (14)

based on Eq. (10). Specifically, for a class of initial states with
a set of real (or total imaginary) {cσ

n }, we have∣∣∣∣ψ
[(

m + 1

2

)
τ

]〉
= PT |ψ (0)〉, (15)

i.e., such states reappear periodically at the symmetric posi-
tion with period τ/2 [40]. On the other hand, the dynamics
of a Jordan block should exhibit increasing probability with
a power law [53,54,64]. The combination of the two results
gives us the following statement. In general, the probability
should experience both increasing and decreasing processes
within the time scale τ/2. This agrees with the prediction of
dynamics with time-reflection symmetry.

Now we construct a class of initial states that meet the
above three conditions. We will show that such states exhibit
lasing dynamics during the time evolution. The initial state
has the form

cσ
n = σ� sin(nκ0)

exp(−qn)

n
, (16)

where � is a normalization constant, q � 0, and κ0 ∈ (0, π )
are related to the shape and position of the initial state,
respectively. Obviously, cσ

n is real and vanishing for large n.
We note that the initial state

|ψ (0)〉 = �

N∑
n=1,σ=±

σ sin(nκ0)
exp(−qn)

n

∣∣ψσ
n

〉
(17)

has both PT and CT symmetries for the case with κ0 = π/2.
To demonstrate the localization of |ψ (0)〉 in the coordinate
space, we plot the profile of |ψ (0)〉 with several typical κ0 in
Fig. 2. This indicates that |ψ (0)〉 is a local wave packet with
the center position 2N (κ0/π ). The time evolution of such a
local initial state is independent of the initial position within
a certain time scale. Then we can focus on the state |ψ (0)〉
with κ0 = π/2. The evolved state always has a symmetric
profile in real space. Such symmetric dynamics is convenient
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for analytical analysis, and the obtained result can be applied
to the case with κ0 �= π/2 by a simple translation due to the
locality of the evolved state.

To estimate the profile of the evolved state, we derive the
evolved wave vector in the following compact form:

|ψ (t )〉 ≈ �N

N∑
j=1

∑
ρ,υ,η=±1

arctan

(
sin θ

eq − cos θ

)

× (−1) jρυηeiηπ/4

∣∣∣∣2 j − 1

2
(1 − η)

〉
, (18)

where �N = �
2

√
(−1)N/(N + 1) and

θ = ρκ0 + υπ j

N + 1
+ ωt − η

4δ
. (19)

In Fig. 3, the profiles of |〈l|ψ (t )〉|2 are plotted, which are
obtained by numerical simulations and approximate analytical
expression in Eq. (18). It shows that the evolved state is a
flat-top wave packet with uniformly increasing width. After
bouncing from the two ends of the chain, it turns back to the
initial state and starts the next cycling. This observation can
be explained by the following analysis for a special case.

FIG. 3. Profiles of evolved wave packets for initial states expressed in Eq. (17) with κ0 = π/2 and several typical q values. q = 0 for
(a1,a2,a3,a4), q = 0.02 for (b1,b2,b3,b4), and q = 0.05 for (c1,c2,c3,c4). (a1,b1,c1) Three-dimensional plots of evolved states for initial states
plotted in (a2,b2,c2) obtained by numerical simulations. (a2,b2,c2) Plots of initial states from Eq. (17). (a3,b3,c3) Profiles of evolved states
at several instants obtained by numerical simulations. (a4,b4,c4) The same as (a3,b3,c3) but obtained by analytical expression in Eq. (18).
(a5,b5,c5) Plots of the Dirac norm P(t ) obtained by numerical simulations (dash line) and analytical expression (solid line) for different q,
(a5) for q = 0, (b5) for q = 0.02, and (c5) for q = 0.05. The parameters for the SSH chain are 2N = 500, δ = 0.9, and γ = 1.8. The time
is in units of 10J−1, where J is the scale of the Hamiltonian and we take J = 1. The analytical expressions agree well with the numerical
results, especially for nonzero q. This shows that the evolved states are flat-top (rectangular shape for zero q) with uniformly increasing width,
exhibiting stationary lasing dynamics before touching the boundary.
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FIG. 4. Plots of P(t ) obtained by numerical simulations (empty circle) and analytical expression (solid line) in Eq. (22). The parameters
for the SSH chain are 2N = 500, γ = 2δ, and (a) δ = 0.8, (b) δ = 0.9, and (c) δ = 0.98, respectively. The initial states are taken in the form in
Eq. (17) with κ0 = π/2 and q = 0.05. It shows that P(t ) is a triangle wave with period τ = 2(N + 1)/

√
2δ(1 − δ). The analytical expressions

agree well with the numerical results, especially for the cases with strong dimerization.

When q = 0, the expression of the evolved state reduces to

|ψ (t )〉 ≈ �N

2

N∑
j=1

∑
ρ,υ,η=±1

(−1) jρυηeiηπ/4r(θ )

×
∣∣∣∣2 j − 1

2
(1 − η)

〉
, (20)

where r(θ ) is a periodic triangular function defined as

r(θ ) = (π − θ )/2 + nπ, θ ∈ [0, 2π ) + 2πn, (21)

with n ∈ Z .
For κ0 = π/2, the Dirac norm of the evolved state is

P(t ) = 〈ψ (t )|ψ (t )〉

≈ − �2e−2q

2
Re

[
e−i2ωt�

(
e−4(q+iωt ), 2,

1

2

)]

+�2
∑
σ=±

σLi2(σe−2q), (22)

0 50 100 150 200 250
t (units of J−1)

0

1

2

3

4

P
(t

)

×104

γ > γc

γ = γc

γ < γc

FIG. 5. Plots of P(t ) obtained by numerical simulations for three
typical values of γ . The parameters for the SSH chain are 2N =
500, δ = 0.9, and γc = 1.8. The initial states are taken in the form
in Eq. (17) with κ0 = π/2 and q = 0.02. We can see that P(t ) is
exponential for γ > γc, linear for γ = γc, and oscillates for γ < γc,
respectively. It indicates that γ = γc serves as the threshold of the
active laser medium.

where �(z, s, α) = ∑∞
n=0 zn/(n + α)s is the Lerch transcen-

dental function and Lin(z) = ∑∞
k=1 zk/kn is the polylogarithm

function. In particular, taking q = 0, the Dirac norm P(t )
becomes a triangular wave

P(t ) ≈ 2�2π2

τ

{
t − nτ/2, t ∈ [0, τ/4) + nτ/2,

−t + (n +1)τ/2, t ∈ [τ/4, τ/2) + nτ/2,

(23)

with n ∈ Z . As expected, it is the direct results of the uniform
expanding flat-top wave packet. We also plot the function P(t )
from Eq. (22) and numerical simulation for several typical
values of δ in Fig. 4, which indicates that our analytical result
agrees well with the numerical result, especially for strong
dimerization.

Obviously, such a stationary solution is related to the
condition γ = γc. It is natural to ask what happens when γ

deviates from γc. To answer this question, numerical simu-
lations are performed by exact diagonalization. We plot the
total probability as a function of time for three cases in Fig. 5.
It shows that the plot is exponential, linear, and oscillates for
γ > γc, γ = γc, and γ < γc, respectively. It indicates that γc

is the threshold for the lasing medium.
It is presumable that the lasing dynamics is independent of

the position of the initial state if the chain is large enough.
It differs from the lasing mechanics based on the SS in a
non-Hermitian scattering center, in which only the scattering
center acts as the active lasing medium. The underlying mech-
anism is the translational symmetry and the existence of EP in
the bulk region of the chain.

IV. INITIAL GAUSSIAN WAVE PACKET

What we have done so far is to show analytically the
existence of the stable laser mode. However, it does not
mean that one has to stimulate a laser by such a specific
initial state. In principle, any initial state |�(0)〉 satisfy-
ing 〈�(0)|ψ (0)〉 �= 0 and the remaining component of state
|�(0)〉 − 〈ψ (0)|�(0)〉|ψ (0)〉 is not amplified so much, and
|�(0)〉 should have a similar effect to the deliberately de-
signed |ψ (0)〉 in Eq. (17).

In practice, a Gaussian wave packet is a good candidate as
an initial state. It is a local state, but it can represent a plane
wave when its width becomes large enough. Another reason
we choose the Gaussian wave packet is that the profile of the
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FIG. 6. Plots of profiles of the evolved states for initial state
Eq. (24) at several typical instants obtained by numerical sim-
ulations (a) for kc = −π/2, α = 0.1, Nc = 450 and (b) for kc =
π/2, α = 0.1, Nc = 250. The parameters for the SSH chain are
2N = 500, δ = 0.5, and γ = 1. The time is in units of 10J−1.
It indicates that the predesigned initial state can be replaced by a
Gaussian wave packet to trigger a stationary laser state.

predesigned initial state plotted in Fig. 2 is very close to a
Gaussian wave packet. In other words, a wave packet probably
contains the component of the state |ψ (0)〉 in Eq. (17). An
initial Gaussian wave packet reads

|�( j, 0)〉 = �−1/2e−α2( j−Nc )2/2eikc j | j〉, (24)

where Nc is the Gaussian wave center, kc is the central vector,
and � = √

π/α is the normalization factor. Factor � ensures
that the Dirac probability of the initial state is unity. In the
previous works [49,50], such an initial state is employed to
stimulate the laser emission from the non-Hermitian scat-
tering center. In the present model, it is easy to check that
〈�( j, 0)|ψ (0)〉 �= 0 for kc = π/2 and 〈�( j, 0)|ψ (0)〉 = 0 for
kc = −π/2. The numerical simulation results are presented in
Fig. 6.

To demonstrate the similar dynamical behavior of two
lasing mechanics, we consider a system that couples two
semi-infinite chains: one is the non-Hermitian SSH chain,
and the other is a Hermitian uniform chain. The Hamiltonian
reads

HCP =
∞∑
j=0

[1 + (−1) jδ]a†
j a j+1 + (1 − δ)

−∞∑
j=0

a†
j a j−1 + H.c.

− iγ
∞∑
j=0

(−1) ja†
j a j, (25)

where γ = γc = 2δ. A detailed investigation of this model
is not the aim of the present paper. Here we only present
the numerical simulation results (Fig. 7) for the dynamics
of an initial Gaussian wave packet Eq. (24). It indicates that

0   

0.05 t = 0

0   

0.05 10

0   

0.05 20

0 

10 30

0 

10 40

-500 -250 0   250 500 
j

0 

10
|Ψ

(j
,t

)|2

50

(b)

(a)

FIG. 7. (a) Schematic for the system in Eq. (25). It couples two
semi-infinite chains: one is a Hermitian uniform chain, while the
other is the non-Hermitian SSH chain. (b) Plots of profiles of the
evolved state for initial state Eq. (24) in Hamiltonian Eq. (25) at
several typical instants obtained by numerical simulations. We take
kc = −π/2, α = 0.1, Nc = −250, δ = 0.5, and γ = 1. The time is
in units of 10J−1. It indicates that a stationary laser state can be
triggered in a non-Hermitian system and transports in a Hermitian
system.

the boundary acts as a non-Hermitian scattering center in
association with the SS dynamics.

V. PROBABILITY PRESERVING
AND ELASTIC COLLISION

From the analysis in the above sections, we find that the
extending rectangular wave or flat-top wave packet bounds
back at two ends of the chain. We note that there are two
features in the reflection process: (i) There is no interference
pattern (standing wave) as usual. (ii) This process acts like
a time-refection one, i.e., the profiles of input and output
are identical. In this section, we will study the underlying
mechanism of this phenomenon. For this purpose, it will be
convenient to think in terms of the symmetric case and extend
the conclusion to a general case, i.e., taking the case with
κ0 = π/2. In this case, the initial state is a superposition of
eigenstates with small odd n. These eigenstates are all long-
wavelength standing waves, the superposition of which has no
ability to form an interference pattern with small frequency.

On the one hand, Fig. 3 and an analytical analysis show
that two edges of the flat-top wave packet touch the two ends
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FIG. 8. (a) Three-dimensional plots of evolved wave packets for
initial states expressed in Eq. (17) with κ0 = π/6 and q = 0.05,
obtained by numerical simulation. (b) Plot of P(t ) for the time
evolutions for (a). (c) The profiles of the evolved wave packet at
several typical instants. The parameters for the SSH chain are 2N =
500, δ = 0.9, and γ = 1.8. It shows that the evolved states become
a traveling wave packet after the first reflection on the one side, i.e.,
it propagates as a translational motion, preserving the probability
before the subsequent reflection on the other side.

of the chain at instant t = τ/4. We note that

|ψ (τ/4)〉 =
∑

n=1,σ=±
cσ

2n−1 exp(−inσπ )iσ
∣∣ψσ

2n−1

〉
, (26)

which are both PT - and CT -symmetric, satisfying

PT |ψ (τ/4)〉 = |ψ (τ/4)〉, (27)

CT |ψ (τ/4)〉 = i|ψ (τ/4)〉, (28)

taking |ψ (τ/4)〉 as an initial state, and using the conclusion
[Eq. (A21)] in the Appendix, we obtain

|〈 j|ψ (τ/4 + 
t )〉|2 ≈ |〈 j|ψ (τ/4 − 
t )〉|2, (29)

i.e., the reflection process is symmetric about the instant t =
τ/4. We refer to this phenomenon as elastic reflection due to
the fact that it is analogous to a mass-spring system in classical
physics.

On the other hand, the dynamics before reflection is the
same for an initial state located anywhere in the chain. Then
the elastic reflection also happens for the initial state with
κ0 �= π/2. We will show that the combination of two such fea-
tures leads to a probability preserving dynamics that usually
appears in a Hermitian system. Such a process occurs when
an initial state is located far from the center of the chain. As
an extension of the wave packet, one of its edges moves in the
opposite direction after the elastic bounce from one end of the
chain. Then two edges of the wave packet move in the same
direction with the same speed, which results in a translational
motion of the wave packet, preserving the Dirac probability.
Figure 8 displays a profile of the evolved state for an initial
state with κ0 �= π/2.

Now we consider the time evolution for an initial state
as a superposition of two wave packets. Such an inves-
tigation is trivial for a Hermitian system. However, some
unexpected phenomena may be found in a non-Hermitian
system, although it is also a linear system. This is because the

FIG. 9. The same as that in Fig. 8, but for initial states (a1) |�+〉 and (b1) |�−〉 expressed in Eq. (30) with κ01 = π/6, κ02 = 5π/6,
obtained by numerical simulation. Parts (a2) and (b2) are plots of P(t ) for the time evolutions for (a1) and (b1), respectively. Parts (a3) and
(b3) are the profiles of the evolved wave packets at several typical instants for (a1) and (b1), respectively. We see that when two wave packets
are separated, the total probability is always constant, while it changes when they overlap. In the case of (a2), the probability doubles as
indicated by two dotted lines. It is due to the anomalous interference phenomenon, in which there are no interference patterns. In contrast,
from (b2) we see that the probability becomes very small, as if two wave packets annihilate together or absorb each other. It is a peculiar
dynamics, with no counterpart in a Hermitian system.
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FIG. 10. Plots of profiles of the evolved states for initial state
Eq. (24) in a semi-infinite non-Hermitian SSH chain at several
typical instants. The parameters for numerical simulations are kc =
π/2, α = 0.1, Nc = 150, δ = 0.5, and γ = 1. The time is in units
of 10J−1. It indicates that the predesigned initial state can be
replaced by a Gaussian wave packet to generate a laser wave train
with a length on demand.

Dirac probability is not defined by a canonical inner product
(biorthonormal inner product). The initial state is taken in the
form

|�±〉 = �√
2

∑
n=1,σ=±

σ [sin(nκ01) ± sin(nκ02)]

× exp(−qn)

n

∣∣ψσ
n

〉
, (30)

where κ01 and κ02 determine the initial locations of two wave
packets. The trajectories and profiles of two wave packets
are clear when they do not overlap. We are interested in
what happens when they meet. To answer this question, we
employ the numerical simulation to compute the probability
of the evolved state. Figure 9 shows that the dynamics of |�+〉
behaves as a Hermitian one, while |�−〉 exhibits a peculiar
behavior: It looks like two wave packets cancel each other
out when they meet. Furthermore, Fig. 10 indicates that the
predesigned initial state can be replaced by a Gaussian wave
packet to generate a laser wave train with a length on demand.

VI. SUMMARY

In summary, we have investigated the non-Hermitian ana-
log of an active laser medium, and we found a scenario for the
mechanism of lasing in the framework of quantum mechanics.
We have proposed an alternative lasing mechanism induced
by the EP in a finite non-Hermitian system rather than SS in
an infinite system with a non-Hermitian scattering center. The
key difference between two mechanisms is that a laser can be
fired everywhere on the former while only at the scattering
center in the latter. The present non-Hermitian system also
exhibits many peculiar dynamic behaviors, such as elastic
reflection, collision, and probability preserving translational

propagation, etc. The underlying mechanism of such features
is the balance of distortion and staggered imaginary poten-
tials, while an SS laser solution does not require the balance.
In general, the positions of EPs are a little different for the
same model but with different boundary conditions, or more
generally speaking, with and without some defects. When the
initial state is local in coordinate space, its dynamics within
a certain period of time is independent of the boundary con-
dition and its initial location. This provides a way to explore
the dynamics, which is a combination of a quasi-Hermitian
and Jordan block time evolution in a general non-Hermitian
system. So the key point in practice is the specific class of
initial states. For the present model, the linear increase of
probability arises from such a combination. It can be seen
from the nonzero overlap

|〈φc|ψ (0)〉| ≈
√

δ(1 − δ)�

Nδ
arctan

(
sin κ0

sinh q

)
, (31)

where

|φc〉 = 1√
2N

N∑
j=1

(−1) j (|2 j − 1〉 + i|2 j〉) (32)

is the coalescing eigenvector of the conjugate Hamiltonian H†

in Eq. (1) with the periodic boundary condition. Our results,
on the one hand, provide an alternative lasing theory in the
context of non-Hermitian quantum mechanics, and on the
other hand they indicate that the non-Hermitian system is
fertile ground for many unknown features in physics.
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APPENDIX

1. Definition of “small n”

From the dispersion relation in Eq. (7) we have the approx-
imate expression of energy around k0 as

εk ≈ εk0 +
(

∂εk

∂k

)
k0

(k − k0) + 1

2

(
∂2εk

∂k2

)
k0

× (k − k0)2 + 1

3!

(
∂3εk

∂k3

)
k0

(k − k0)2 + · · · . (A1)

If γ = γc = 2δ, we have(
∂εk

∂k

)
0+

=
√

2(1 − δ)δ, (A2)

(
∂2εk

∂k2

)
0

= 0, (A3)

(
∂3εk

∂k3

)
0+

= (3 − 5δ)
√

(1 − δ)δ

4
√

2δ
. (A4)

For a non-Hermitian SSH system at EP, there exists a
critical nc that denotes the critical number of energy levels.
Any levels with n < nc are quasi-equal-level spacing. The
value of nc can be estimated as follows. The ratio between
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the contributions from linear and cubic terms can be utilized
to characterize the precision of the equal-level spacing. For
example, we can take∣∣∣∣∣∣ lim

k→0+

1
3!

(
∂3εk
∂k3

)
γ=γc

k3
c(

∂εk
∂k

)
γ=γc

kc

∣∣∣∣∣∣ = 0.01 (A5)

to determine nc by

kc ≈ ncπ

N
. (A6)

With a certain approximation, one can define

nc = N

π

√∣∣∣∣ 0.48δ

3 − 5δ

∣∣∣∣. (A7)

The result shows that the value of nc is a function of the size of
the system N and the distortion factor δ. Then we can define

“small n,” which satisfies n < nc = N
π

√
| 0.48δ

3−5δ
|.

2. Symmetry of the initial state

In this subsection, we show why the initial state is con-
structed in that way. We start with some general properties
of dynamics for a PT - and CT -symmetric system, which is
helpful for the subsequent discussions. In Secs. III and V,
we reveal two features of dynamics, which are related to the
symmetries of the system, but not exact results. The first one
is a quasisymmetric time evolution, and the second one is
about time-reflection symmetry. The obtained result in this
subsection is applicable for a more general system.

Unlike the symmetry related to a linear operator L, here
PT and CT are antilinear operators, which act in a different
way in the time evolution for a symmetric initial state. Con-
sider a Hamiltonian H with L, PT , and CT symmetries, i.e.,

[L, H] = [PT , H] = {CT , H} = 0, (A8)

respectively. An initial state |ψ (0)〉 is taken as the eigenstate
of L, PT , and CT , e.g.,

L|ψ (0)〉 = PT |ψ (0)〉 = CT |ψ (0)〉 = |ψ (0)〉. (A9)

We are interested in the symmetry of the evolved state
|ψ (t )〉 = e−iHt |ψ (0)〉. Direct derivations show that

L|ψ (t )〉 = CT |ψ (t )〉 = |ψ (t )〉, (A10)

PT |ψ (t )〉 = |ψ (−t )〉, (A11)

which indicate that the evolved state may not maintain the
initial symmetry associated with an antilinear operator.

Applying the above analysis to the present SSH model, we
can make the following observations. Here L can be taken as
an operator

∑N
j=1(a†

j a j + b†
jb j ) as an example, which obeys

Eq. (A10). For the PT -symmetric initial state, we have the

symmetric Dirac probability distribution

|〈 j|ψ (0)〉|2 = |〈 j|PT |ψ (0)〉|2

= |〈2N + 1 − j|ψ (0)〉|2. (A12)

However, for the evolved state we have

|〈 j|ψ (t )〉|2 = |〈 j|(PT )−1eiHtPT |ψ (0)〉|2
= |〈2N + 1 − j|ψ (−t )〉|2, (A13)

which cannot guarantee a symmetric probability profile.
Now we will show that the time evolution is approximately

symmetric for a class of initial state. For small n, the approxi-
mate eigenstate of the Hamiltonian with even N reads

|ψ±
n 〉 ≈ e±iπ/4

√ ±1

N + 1

N∑
j=1

(−1) j sin(k j)

× (a†
j − ib†

j )|0〉 (A14)

by taking

ϕk ≈ π

2
. (A15)

The implication of the approximation is clearly that two
eigenstates |ψ±

n 〉 with opposite energy ±En have the same
expression. The time evolution of |ψ±

n 〉 is

e−iHt |ψ±
n 〉 ≈ e∓iEnt e±iπ/4

√ ±1

N + 1

N∑
j=1

(−1) j

× sin(k j)(a†
j − ib†

j )|0〉. (A16)

Furthermore, for a CT -symmetric state, e.g.,

|ϕ+〉 =
∑

n

c+
n (|ψ+

n 〉 + |ψ−
n 〉), (A17)

with real c+
n , we have

e−iHt |ϕ+〉 =
∑
n=1

c+
n (e−iEnt |ψ+

n 〉 + eiEnt |ψ−
n 〉)

≈
√

1

N + 1

N∑
j=1

f ( j, t )(a†
j − ib†

j )|0〉, (A18)

where

f ( j, t ) =
∑

n

(−1) jc+
n (e−iEnt eiπ/4 + i c.c.) sin(k j). (A19)

The function sin (k j) is an odd (even) function about the
center of the chain when n is even (odd). If the |ϕ+〉 is
a PT -symmetric state, the summation in f ( j, t ) runs over
even (or odd) n only. The function f ( j, t ) is also sym-
metric due to the fact that any combination of odd (even)
functions is also an odd (even) function. Then probability
|〈0|(a j + ib j )e−iHt |ϕ+〉|2 is a symmetric function, i.e.,

|〈 j|ψ (t )〉|2 ≈ |〈2N + 1 − j|ψ (t )〉|2. (A20)

Together with Eq. (A13), we have

|〈 j|ψ (t )〉|2 ≈ |〈 j|ψ (−t )〉|2, (A21)

which indicates that the time evolution has time-reflection
symmetry about zero t .
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We conclude that the evolved state has symmetric proba-
bility distribution and time-reflection symmetry if the initial
state satisfies three conditions: (i) PT symmetry, (ii) CT
symmetry, and (iii) involving very small n. We would like to

point out that these results are approximate rather than exact,
and they are referred as to quasisymmetric dynamics. This
result is important to construct and characterize the laser mode
in the present non-Hermitian SSH chain.
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