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The resource theory of thermal operations aims at describing possible transitions of microscale systems
interacting with a macroscale environment under the fundamental assumption of energy conservation. For initial
quantum states diagonal in the basis of the local Hamiltonian, these transitions are completely described by
thermal processes (TPs), which form a convex set. In this paper, we give a complete characterization of the set
of states that can be achieved through TPs, by describing the boundary of the allowed set of states using the
so-called thermomajorization curves as a tool. We address the problem of achieving a certain transition through
a convex combination of products of extremal TPs. We characterize all extremal TPs by associating them with
transportation matrices. It becomes evident that there are extremal TPs that are not required in the implementation
of any transition allowed by TPs. The statement holds for every dimension d � 4 of the state space. A property
of the associated graphs, biplanarity, is identified as the distinguishing feature of these extremal TPs that are
required for the arbitrary transition allowed by TPs.
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I. INTRODUCTION

One of the approaches to a quantum description of mi-
croscale systems interacting with a macroscale environment
is through the so-called resource theories, with thermal op-
erations (TOs) [1,2] being one of the most fruitful. Within
TOs one is not constrained to a specific type of system-
environment interaction. Instead, it is only assumed that the
resulting operation commutes with the sum of the local Hamil-
tonians of the system and of the environment, and that the
environment is in a thermal (Gibbs) state with respect to some
temperature. Any state of the system that is not thermal with
respect to this temperature constitutes a resource that can
exhibit a nontrivial transition under TOs. All these transitions
have been fully characterized for initial system states diagonal
in the eigenbasis of a local Hamiltonian [1,3,4]. In this case,
under the assumption that work is stored deterministically
on a selected qubit subsystem, formulas for maximal work
extraction and minimal work cost of state formation [4,5]
have been given, along with microscale second laws of ther-
modynamics constituting a set of necessary and sufficient
conditions for state transitions. The latter are expressed as the
nondecreasing of generalized free energies of the system [6].

Thermal processes (TPs) enter the picture in this specific
case of diagonality of the initial state of the system. Due
to the fact that TOs commute with the local evolution of
the system, coherences in the basis of the local Hamiltonian
cannot be created by TOs acting on initially diagonal states
[7]. Therefore, it is only the vector on the diagonal of the
density matrix of the system that can be modified, and an
associated action on this vector can be described by a thermal
process, i.e., a left-stochastic matrix that preserves the Gibbs
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distribution with respect to temperature of the environment
(see Preliminaries section for details). Thermal processes
form a convex set. On the other hand, the set of states that can
be achieved by TPs from a given initial state, characterized
by the so-called thermomajorization condition [4], is known
to be convex as well. Nevertheless, relations between the two
sets remain unknown, as well as the characterization of the set
of states achievable by TPs by their extremal points.

This lack of knowledge makes it difficult to address one of
the basic problems of TOs: achievability of their predictions
in a realistic experimental setting. In such a case, one does not
have full control over the system-environment interaction, and
therefore possibly cannot perform the unitary commuting with
the total Hamiltonian that leads to the optimal performance.
Efforts have been undertaken to show which predictions of
TOs can be saturated, that is, which state transitions are
possible in practice. On one hand, in [8] the authors showed
that all TPs can be implemented as a sequence of operations
involving partial thermalizations (which require only weak
coupling between the system and the environment [9]) and
manipulation of the system Hamiltonian, though at the cost
of using an ancilla. However, this sequence can be highly
nontrivial, and it is tempting to ask which transitions can be
achieved with only a selected subset of extremal points of TPs
at our disposal, with possible convex combinations of their
products.

The first candidate for this subset was the set of TPs acting
nontrivially only on two-dimensional subspaces of the system,
as such TPs can be implemented with high fidelity within the
Jaynes-Cummings model of interaction with a single mode
of bosonic environment [10]. Nevertheless, it has been shown
[10,11] that a set of states achievable by convex combinations
of products of two-dimensional TPs, ρ

TP(2)
init , is strictly smaller

than the set of ρ
TP(d)
init for local dimension d > 2 and some
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FIG. 1. Sets of diagonal states (blue polygons) and thermal pro-
cesses (upper green polygon) for a system in a space of dimension
d (not directly manifested in the picture). For different initial states
ρ1 and ρ2, different sets of states achievable by TPs can be obtained:
ρTP

1 and ρTP
2 , respectively (red polygons). Some extremal points of

TPs, T2 and T3, map onto an extremal or nonextremal point of ρTP,
depending on the initial state ρ. Non-biplanar extremal TPs, like T4,
never map onto an extremal point of ρTP, no matter which initial state
ρ from the blue polygon is selected. When convex combinations of
products of TPs are allowed, these extremal TPs can be discarded
with no harm to the attainable set of states (lower green polygon).
Non-biplanar extremal TPs exist for all d � 4.

initial state ρinit . Furthermore, there always exists a state ρinit

for which the same relation holds between ρ
TP(d−1)
init and ρ

TP(d)
init

for arbitrary d � 3 [11]. Even in the restricted scenario of
TP(2) transformations, the length of TP(2) sequences required
for all allowed transitions is not known for general d; only an
upper bound has been derived [10].

In this paper, we address the problem of state achievability
with limited resources, establishing a connection between the
set of extremal TPs and the extremal points of the achievable
states, ρTP

init . First, exploiting the thermomajorization condi-
tion, we obtain a complete characterization of the set of ρTP

init
by determining its extremal points, edges, and hyperfaces
for arbitrary dimension d of an arbitrary initial system state
ρinit . Afterwards, we show that all extremal TPs, for arbitrary
dimension d , possess a structure inherited from the set of
transportation matrices, and therefore can be calculated using
known algorithms for the determination of extremal points
of the latter [12]. Finally, by exploiting properties of their
associated graphs, we uniquely describe extremal TPs based
on properties of extremal states in ρTP

init , whenever a given TP
maps one of these extremal states into another.

Contrary to the intuition developed through studies of
decomposability of TPs on 3-dimensional spaces, we show
that for d � 4 there always exist extremal TPs that do not
map between extremal states in ρTP

init , no matter which non-
trivial ρinit is chosen (see Fig. 1). Consequently, these maps
do not need to be implemented in an experiment aiming at
performing all transitions allowed by TPs. We call such TPs
non-biplanar, motivated by the property of their associated
bipartite graphs: they cannot be driven into a plane form
by isometric transformations acting separately within two
disjoint sets of vertices constituting the bipartite structure. We
show a construction of such thermal processes, proving their
existence for arbitrary finite, nonzero temperature.

Interestingly, the characterization of the set of extremal
TPs may be useful for other than determining the set ρTP

init of
achievable states for decohered initial states of the system. For
coherences present in the initial state, the analogous set ρT O

init
that can be obtained through TO is only fully characterized for
qubit systems [13]. Upper bounds on the evolution of system
coherences were proposed for a general qudit case [7,13],
but it was immediately shown that for some transitions they
cannot be saturated. These bounds depend on a TP that a
given thermal operation effectively applies to the diagonal of
the system, and therefore the established knowledge about the
structure of extremal points and the boundary of TPs may give
insights into necessary and sufficient conditions for general
transitions allowed by thermal operations in a fully quantum
scenario.

We will proceed to the main part of the paper after intro-
ducing definitions and basic properties of thermal processes
and transportation matrices.

II. PRELIMINARIES

A. Thermal processes

We start with a brief description of the resource theory
of thermal operations. A d-dimensional system in a state
ρ ∈ B(HS ), HS ∼= Cd , is associated with a Hamiltonian
HS = ∑d−1

i=0 Ei|Ei〉〈Ei|. For an environment B(HB ) with a
Hamiltonian HB we define the Gibbs state B(HB ) � ρB

β =
e−βHB/ Tr[e−βHB ], where β = 1

kT ; k is the Boltzmann con-
stant, and T is temperature.

For a given β, we define a set of thermal operations (TOs)
as all maps E : B(HS ) → B(HS ) that can be constructed by
the following operations:

(1) One can perform an arbitrary unitary U on HS ⊗ HB
that commutes with the total Hamiltonian: [U, HS + HB] = 0.

(2) One can extend the system by adding an arbitrary
ancilla B(HA), HA ∼= Cd ′

, with a Hamiltonian HA, in the
Gibbs state ρA = e−βHA/ Tr[e−βHA ].

(3) One can trace out an arbitrary subsystem.
This leads to a set of trace-preserving, completely posi-

tive maps on a system, defined as ρ → E (ρ) = TrB(U [ρ ⊗
ρB

β ]U †).
Under the assumption that HS has a nondegenerated spec-

trum, a TO acting on a state that is diagonal in the basis
of its Hamiltonian ([ρS, HS] = 0) cannot lead to creation of
coherences in this basis. This follows from the fact that the
evolution of nondiagonal elements of the density matrix is
independent of the diagonal [7]. Moreover, it is easy to see that
TOs conserve the Gibbs state of the system, ρS

β . Therefore,
the action E (ρ) of the TO E on the state ρ diagonal in
HS , represented by the vector p comprising its eigenvalues,
ρ = diag[p], can be associated with the action T p of the
left-stochastic matrix T preserving the Gibbs vector g, gi =
qi,0/

d−1∑
j=0

q j,0, where we take qm,n = e−β(Em−En ), with Ei being

the eigenvalues of HS .
We call this matrix a thermal process (TP):
Definition 1. The set of thermal processes T P(d )β,HS is

the set of d × d matrices T satisfying 1T T = 1T and T g = g,
where 1T = [1, . . . , 1].
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FIG. 2. Thermomajorization diagram for a d = 3 system, and
certain HS and β defining q00 = 1, q10, and q20. According to Lemma
1, ρ, σ ∈ ρTP

init , but ζ /∈ ρTP
init and ρinit /∈ ζ TP. Elbows of curves are

indicated by circles. Curves β(σ ) and β(ρ ) are thermomajorized
by curve β(ρinit ). Curve β(σ ) is tightly thermomajorized by curve
β(ρinit ). States ρinit and ζ have β order (2,3,1), while states σ , ρ have
β order (1,2,3).

In what follows, we will omit the indices d, β, HS when
this does not lead to confusion, assume that E0 = 0, and
assume that all states ρ satisfy [ρ, HS] for a nondegenerated
Hamiltonian HS and therefore can be represented by vectors p
carrying information about their occupations on energy levels
of HS .

Above we showed that for every given TO, one can define
its associated TP. On the other hand, for every TP there exists
a TO on the environment and a system diagonal with respect
to HS that performs this TP on the system [4]. Therefore,
all transformations allowed for diagonal states within thermal
operations resource theory can be equivalently characterized
by TPs.

Definition 2. ρTP
init is the set of states that can be obtained

through thermal processes from a state ρinit .
From the fact that thermal processes form a convex poly-

tope one can easily see that ρTP
init is a convex polytope as

well (cf. Remark 6 in Appendix A). Moreover, ρTP
init is fully

characterized by a criterion exploiting the representation of
a vector p on the so-called thermomajorization diagram (see
Fig. 2).

Definition 3 (thermomajorization curve). Define a vector
s = (q00, q10, q20, . . . , qd−1,0). For every state ρ of the system
commuting with HS , let the vector p represent occupations pi

of energy levels Ei, i = 0, 1, . . . , d − 1. Choose a permutation
π on p and s such that it leads to a nonincreasing order of el-

ements in the vector d, dk =
∑k

i=0(π p)i∑k
i=0(πs)i

, k = 0, . . . , d − 1. The

set of points {∑k
i=0(π p)i,

∑k
i=0(πs)i}d−1

k=0 ∪ {0, 0}, connected
by straight lines, defines a curve associated with the state ρ.
We denote it by β(ρ) and call it the thermomajorization curve
of the state ρ represented by p.

The points {∑k
i=0(π p)i,

∑k
i=0(πs)i}d−1

k=0 will be called
elbows of the curve β(p). The curve is concave due to the
nonincreasing order of elements in d. Let us note that there
might be more than one permutation leading to a concave
curve β(ρ). The vector π (1, . . . , d )T will be called a β order
of ρ. It shows the order of segments assuring convexity of
β(ρ).

Thermomajorization curves are used to characterize possi-
ble transitions between states under TPs [4]:

Lemma 1. A transition from ρinit ∈ B(HS ), HS ∼= Cd , to
ρout ∈ B(HS ) under TPs is possible if and only if β(ρinit )
thermomajorizes β(ρout ); i.e., all elbows of β(ρout ) lie on
β(ρinit ) or below it.

For the sake of characterization of the set of extremal
points of ρTP

init (Sec. III), we single out a specific relation
between two curves:

Definition 4 (tight thermomajorization). If the curve β(ρ)
has all elbows on the curve β(σ ), then β(σ ) tightly thermo-
majorizes β(ρ).

B. Transportation matrices

Below we introduce the notion of transportation matrices,
whose properties will be useful in characterizing the connec-
tion between sets of states achievable by thermal processes,
ρTP

init , and the set of thermal processes itself.
Definition 5 (transportation matrix). A transportation ma-

trix M is an m × n matrix with non-negative entries deter-
mined by two vectors c and r of lengths m and n, respectively,
in a way that all entries from the ith row (column) of M sum
to ri (ci), and

∑
i ci = ∑

j r j = C.
For all pairs of non-negative vectors c and r satisfying

the summation condition, an associated transportation matrix
always exists: if C = 0, it is a matrix with all entries equal 0;
for other cases we can construct M as Mi, j = ric j/C.

For every pair of vectors the set of transportation matrices
is a convex polytope, called a transportation polytope. The set
of its extremal points is fully characterized by the following
constructive algorithm ([12], Theorem 4.1), cf. Fig. 3(a):

Theorem 1 (extremal points of transportation polytope).
A transportation matrix with defining vectors c, r,

∑
i

ci =∑
i

ri = C is extremal if and only if it can be constructed by

repeating the following step, starting with a matrix with no
values assigned:

(1) Pick a position (i, j) in the matrix that has no assigned
value, and fill it with min(ri, c j ). If ri � c j (ri � c j), fill
all remaining entries within the ith row ( jth column) of the
matrix with 0. (This implies that if ri = c j , all the remaining
entries within the ith row and jth column will be filled
with 0.) Update the values ri → ri − min(ri, c j ), c j → c j −
min(ri, c j ). The updated vectors are non-negative and satisfy
the summation criterion; therefore they define a transportation
matrix.

(2) If r = 0 and c = 0, abort. All entries of the matrix have
been determined, with at most n + m − 1 positive ones.

We define an important class of extremal transportation
matrices in the following way:

Definition 6 (biplanar extremal transportation matrix). An
extremal transportation matrix with defining vectors c, r,
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(a)

(b) (c)

FIG. 3. (a) First three steps of procedure in Theorem 1 deter-
mining three nonzero matrix elements of an extremal point of a
transportation polytope set by vectors c and r such that ck > r j ,
ri > cl , ri − cl > ck − r j . Entries of the vectors r and c are listed
along the corresponding rows and columns, and are updated with
each step. (b) Arrows joining nonzero matrix entries fixed in the
consecutive steps of procedure in Theorem 1. An arbitrary element
with nondetermined value can be fixed in the next step. (c) Arrows
joining nonzero matrix entries fixed in the consecutive steps of
procedure in Definition 6. Only elements with nondetermined values
that lie on the same row or column as the previously picked element
can be fixed in the next step.

∑
ci = ∑

ri = C is biplanar if it can be constructed by the
following procedure:

(1) Pick a position (i, j) in the matrix and fill it with
min(ri, c j ). If ri � c j (ri � c j), fill all the remaining entries
within the ith row ( jth column) of the matrix with 0. (This
implies that if ri = c j , all the remaining entries within the ith
row and jth column will be filled with 0.) Update the val-
ues ri → ri − min(ri, c j ), c j → c j − min(ri, c j ). The updated
vectors are non-negative and satisfy the summation criterion;
therefore they define a transportation matrix.

(2) If for indices i and j from step 1 the updated vec-
tor r( c) satisfies ri �= 0 (c j �= 0), choose a position without
assigned value from the ith row ( jth column) as a starting
position of step 1, and execute it. If both ri = c j = 0, pick
another position in the matrix that has no assigned value,
(i′, j′), and return to step 1 by substituting i′ → i, j′ → j.

(3) If r = 0 and c = 0, abort. All entries of the matrix have
been determined, with at most n + m − 1 positive ones.

(a) (b)

(c) (d)
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FIG. 4. Forests with no isolated vertices on bipartite graphs

for chosen extremal transportation matrices: (a)
(

1 3 4
2 0 0
5 0 0

)
, with r =

(8, 2, 5), c = (8, 3, 4); (b) the same as in (a); (c)
(

0 0 2
0 7 0
5 0 1

)
, with

r = (2, 7, 6), c = (5, 7, 3); (d)

⎛
⎜⎝

4 0 0 0
5 3 6 7
0 0 2 0
0 0 0 1

⎞
⎟⎠, with r = (4, 21, 2, 1),

c = (9, 3, 8, 8); (e)

⎛
⎜⎝

1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

⎞
⎟⎠, with r = (2, 2, 2, 1), c = (4, 1, 1, 1).

Notice that the graph in (b) is the plane version of the bi-
planar graph in (a). Graphs in (d) and (e) cannot be driven
into plane forms by isomorphisms that do not switch vertices
between sides of the bipartite structure. The graph in (c) can
be driven into such form, and, as opposed to the rest of the
graphs, is a forest composed of two trees instead of one tree.
Labels of the vertices on the left (right) side of the graphs corre-
spond to columns (rows) of the respective extremal transportation
matrix.

The difference between the procedures of Theorem 1 and
Definition 6, i.e., between constructing an arbitrary extremal
transportation matrix and a bipartite one, is visible in Fig. 3(b)
and Fig. 3(c).

The name of biplanar extremal transportation matrices
comes from the property of the graphs associated with their
adjacency matrices (see Fig. 4). To every extremal matrix
we can assign its adjacency matrix. It is a matrix of the
same size as the transportation matrix, with 0 entries except
where its corresponding transportation matrix has a positive
entry, where the adjacency matrix entry is 1. We construct the
associated graph in the following way: associate the rows of
an adjacency matrix with graph vertices on the right side of a
bipartite graph, and the columns of the adjacency matrix with
graph vertices on the left side of a bipartite graph, and connect
vertices by edges whenever the corresponding entry of the
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adjacency matrix is 1. For biplanar extremal transportation
matrices, all the vertices of such a graph are assigned to
disjoint subgraphs in a way that, within a selected subgraph,
every vertex is connected to another vertex by a single path on
edges.

In the graph-theoretic language, this means that extremal
points of transportation matrices correspond to forests (sets
of trees) on bipartite graphs with no isolated vertices [14].
This property is also visible directly from the construction of
Theorem 1, which enforces that every vertex of the bipartite
graph is included in some subgraph if vectors r and c are
positive, and also sets these subgraphs to be trees. If they were
not trees, the procedure would have to allow for the subgraphs
to have cycles, which is forbidden by the fact that at every
step we put 0 elements at nondetermined entries of a matrix
along some column or row, and therefore we cannot assign to
entries of this column or row positive entries in further steps,
so cycles cannot be formed.

Biplanar extremal matrices are characterized by the prop-
erty that for their associated graphs one can perform an
isometric transformation on the vertices that preserves the
bipartite structure (i.e., one can change positions of the ver-
tices within each side of the bipartite graph without changing
nearest neighbors within the graph), such that none of the
edges cross (the graph becomes plane). This property justifies
the name; while the existence of an isometric form of a graph
with no edges crossing is a defining property of a planar graph,
here we restrict isomorphic maps to those that preserve the
bipartite structure. This property characterizes matrices from
the biplanar class, because picking an initial element in step 1
of Definition 6 fixes the initial column and row numbers, as
well as defines an edge connecting the corresponding vertices
on the associated bipartite graph. If in step 2 we decide to
continue the procedure on the same column, we would add an
edge to a new vertex on the right side of the graph. In contrast,
if we were to define a new element in the same row as the
previous one, it would be equivalent to adding an edge starting
from a selected vertex on the right side of the graph. The
selection of a new, independent element starts the construction
of a new tree.

What will be crucial in our applications is that the above
implies that there exists an order of vertices (determined in
the direction from the bottom to the top) of the bipartite
graph such that the graph is plane. On the other hand, if
such an order exists, then the extremal transportation matrix
can be created by the procedure from Definition 6; thus the
transportation matrix belongs to the class of biplanar extremal
matrices. Note that in general this does not have to be the case;
i.e., there exist bipartite graphs with forests of edges and no
isolated vertices, such that they cannot be driven to a plane
form by isomorphic transformations conserving the bipartite
structure. Yet, these graphs can be associated with extremal
transportation matrices [see Fig. 4(d)].

Note that a transportation matrix does not mix between el-
ements belonging to different trees [Fig. 4(c)]. For rectangular
transportation matrices of size n × n, the maximal number of
trees is achieved by a diagonal extremal transportation matrix
(if it exists for given c and r). Such a matrix has also the
smallest possible number of positive elements (n).

III. GEOMETRY OF THE SET OF STATES
ACHIEVABLE BY TPs

In this section we present our results concerning character-
ization of extremal points and the boundary of the set of states
achievable through TPs from a given initial diagonal state ρinit .
This characterization is vital for the next section, where we
address the problem of finding the minimal set of maps on the
system required in performing all transitions allowed by TOs
for initially diagonal states.

Let us denote by Extr[A] the set of extremal points of a
convex set A.

Theorem 2 (extremal states achievable from ρinit by thermal
processes). A state ρ belongs to Extr[ρTP

init] if and only if β(ρ)
is tightly thermomajorized by β(ρinit ).

The proof of sufficiency of tight thermomajorization for
extremality is based on Lemma 1, and is presented below.
To prove necessity, in Appendix B we present a procedure
for finding a representation of every state in ρTP

init as a convex
combination of states with curves tightly thermomajorized by
β(ρinit ). This also shows that every state with a curve that is
thermomajorized, but not tightly thermomajorized by β(ρinit ),
cannot be an extremal point of ρTP

init .
Proof (if part). If β(ρ) is (tightly) thermomajorized by

β(ρinit ), then ρ belongs to ρTP
init due to Lemma 1. Moreover,

ρ is an extremal point of this set: if it were not true, then
there would exist two different states σ1, σ2 belonging to ρTP

init ,
such that ρ could be created as their nontrivial convex com-
bination. But this would imply that the thermomajorization
curve of at least one of these states is not thermomajorized
by β(ρinit ), therefore contradicting the fact that σ1 ∈ ρTP

init .
This implication is visible from the following reasoning: for
a thermomajorization curve β(ρ), by βi(ρ) we will denote
the slope of the segment of length given by si. ρ = aσ1 +
(1 − a)σ2 implies βi(ρ) = aβi(σ1) + (1 − a)βi(σ2) for every
i = 0, . . . , d − 1. Therefore, if we choose i such that βi(ρ) is
the highest slope of β(ρ), from the fact that β(ρ) is tightly
thermomajorized by β(ρinit ) we see that βi(ρ) is the maximal
slope that the segment of length si can take, such that β(ρ)
is thermomajorized by β(ρinit ). But from the convex combi-
nation relation we have that either βi(σ1) > βi(ρ), βi(σ2) >

βi(ρ), or βi(σ1) = βi(σ2) = βi(ρ). Therefore, in the first two
cases σ1 /∈ ρTP

init or σ2 /∈ ρTP
init , and we arrive at the thesis. In

the third case, we proceed to the segment characterized by
i such that it has the second-highest slope of β(ρ). Again,
as β(ρ) is tightly thermomajorized by β(ρinit ), βi(ρ) is the
highest possible slope of the segment of length si, provided
the slope of the segment of the highest slope is fixed according
to the previous step. Again, creating ρ as a mixture of σ1

and σ2 would lead to a conclusion that either βi(σ1) > βi(ρ),
βi(σ2) > βi(ρ), or βi(σ1) = βi(σ2) = βi(ρ). By iterating this
procedure for consecutive segments, according to descending
order of the slopes of β(ρ), we see that the only allowed
decomposition of ρ that is tightly thermomajorized by ρinit

into σ1,2 ∈ ρTP
init is for σ1,2 = ρ. Therefore, ρ ∈ Extr[ρTP

init]. �
Remark 1. The state ρinit is a vertex of the set ρTP

init .
Proof. This trivially follows from Theorem 2 and the fact

that for all states ρ, β(ρ) is tightly thermomajorized by
itself. �
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Having characterized the vertices of ρTP
init in terms of ther-

momajorization curves, we can give a similar description of
the faces of the set:

Remark 2. A state ρ ∈ ρTP
init lies on a face of ρTP

init if and only
if at least one of the elbows of β(ρ) lies on β(ρinit ).

We refer the reader to Appendix B 2 for the proof. Natural
observations follow:

Remark 3. The interior of the set ρTP
init is composed by states

ρ such that β(ρ) has all elbows below β(ρinit ).
Remark 4. For ρinit �= ρβ [i.e., for β(ρinit ) with segments of

different slopes], the Gibbs state ρβ = e−βH/ Tr[e−βH ] lies in
the interior of the set ρTP

init .
In the most general case, for a d-dimensional system, we

can obtain a description of the boundary of ρTP
init in terms of its

hyperfaces.
Definition 7 (hyperface). A hyperface of a polytope ρTP

init is
a convex subset H of states ρ ∈ ρTP

init that cannot be expressed
as a nontrivial convex combination of states from ρTP

init/H .
For d = 3, the set ρTP

init is a polygon (see Fig. 5), with
all its nontrivial hyperfaces (i.e., different from ρTP

init itself)
being its edges and vertices. For d = 4, ρTP

init belongs to a
tetrahedron of all possible diagonal states, and can have as its
nontrivial hyperfaces both edges and vertices, as well as faces
of dimension 2.

For a given ρinit , let us denote by Sρinit the set of all possible
nonempty sets of elbows of curves tightly thermomajorized
by β(ρinit ). For every S ∈ Sρinit , we define HS as the set of
all states ρ such that their thermomajorization curves β(ρ)
coincide with β(ρinit ) exactly on S. Every element of the set
Sρinit then defines a hyperface:

Theorem 3. HS is a hyperface of ρTP
init . We refer the reader

to Appendix B 3 for the proof.
If we take S1, S2, . . . , Sk ∈ Sρinit such that S1 ⊆ S2 ⊆ · · · ⊆

Sk , then HS1 ⊇ HS2 ⊇ · · · ⊇ HSk . In particular, we see that
every extremal point ρ of ρTP

init , such that β(ρ) has an elbow
on β(ρinit ) on a given point, belongs to all hyperfaces of
ρTP

init that are composed by states with thermomajorization
curves overlapping with ρinit on this point. Moreover, the
characterization of hyperfaces of the set of achievable states
in terms of nonempty sets S is complete:

Remark 5. Every hyperface of ρTP
init is HS for some S ∈ Sρinit .

If this was not true, then there would be some hyperface
containing a state ρ with β(ρ) such that it has no elbows on
ρinit . From Remark 2 it follows that such a state belongs to the
interior of ρTP

init , and therefore does not belong to any hyperface
of ρTP

init .
Let us denote by Pab a permutation of a and b elements in

a given sequence. Then we can identify all nearest neighbors
of every extremal point by the following lemma (proof can be
found in Appendix B 4):

Lemma 2. For a state ρinit with all slopes of β(ρinit ) dif-
ferent, two distinct extremal states ε1, ε2 ∈ ρT O

init , with orders
of thermomajorization curves π1 and π2, respectively, are
connected by an edge iff π1 = Pd−i,d−i+1π2, for some i ∈
{2, . . . , d}.

IV. GEOMETRY OF THE SET OF TPs

In this section we are going to use properties of biplanar
transportation matrices. Every thermal process T acting on

(a)

(b)

FIG. 5. Geometry of the set of achievable states for d = 3 and β

and HS such that q10 + q20 � 1. (a) Set ρTP
init (solid-lined red polygon)

for some state ρinit with thermomajorization curve with β order
(231). Regions of states with different β orders are separated by
dotted black lines. Vertices 1,2,3 correspond to states diag[1, 0, 0],
diag[0, 1, 0], and diag[0, 0, 1], respectively. (b) Thermomajorization
curves of extremal points of ρTP

init . Shape and color of elbows within
a curve correspond to shape of points in (a). Note that β order of
the state represented by a yellow square is not determined uniquely,
so its rightmost elbow can be placed both on pentagon and diamond
elbows. In particular, the yellow rectangle state is achieved by an

extremal thermal process
(

1 − q10 − q20 1 1
q10 0 0
q20 0 0

)
on the diagonal elements

of ρinit . One can check that this thermal process has a graph repre-
sentation as in Fig. 4(a) and Fig. 4(b), and therefore has associated
orders πinit = (231) and πout = (123) or πout = (132). Theorem 4
implies then that it is the only process mapping ρinit into the yellow
rectangle state. Green triangle, blue diamond, and purple pentagon
extremal states can be obtained uniquely from ρinit by the extremal

TPs
(

1 0 0
0 1 − q21 1
0 q21 0

)
,

(
1 − q10 1 − q21 1

q10 0 0
0 q21 0

)
,

(
1 − q20 0 1

0 1 0
q20 0 0

)
, respectively.

a d-level system can be turned into a transformation matrix
P by the transformation P = T diag[1, q10, . . . , qd−1,0]. P is
characterized by the vectors r = c = [1, q10, . . . , qd−1,0]. P
and T have identical adjacency matrices, and therefore the
same graph representation. Therefore, all extremal TPs can be
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FIG. 6. Construction of an extremal thermal process from ther-
momajorization diagram.

associated with forests with no isolated vertices on bipartite
graphs, having at most 2d − 1 positive entries (note, however,
that some forests with isolated vertices may exist only for
a specific choice of r and c, so not all of them lead to
extremal thermal processes). Moreover, extremal TPs that
correspond to biplanar extremal transportation matrices play
a special role in the characterization of transitions allowed
by thermal operations. Below we show that every such TP
can be attributed two quantities: an order πin(T ), which is a
sequence of labels on the left side of the bipartite graph of
the associated transportation matrix P, and πout (T ), which is
a sequence of labels on the right side of the bipartite graph
of the associated transportation matrix P, such that for these
sequences the graph is plane. Note that these orders may not
be given uniquely.

A. Biplanar extremal thermal processes

Lemma 3 (tight thermomajorization relation on states de-
fines a biplanar extremal thermal process). Every pair of states
ρout, ρinit , such that p := β(ρinit ) tightly thermomajorizes r :=
β(ρout ), determines a biplanar extremal thermal process T
such that T ρinit = ρout, πin(T ) = π (p), and πout (T ) = π (r).
If all slopes of p are different, then T is the only TP that
transforms ρin into ρout.

Please note that with a slight abuse of notation, we rep-
resent here the state and its thermomajorization curve by the
same symbol. We will also denote the slope of the segment i
on the curve associated with p as ∂ pi.

Proof. Thermal process: Gibbs state preservation. Every
β fixes values of qk,0 coefficients that determine lengths of
segments of curves p and r on a thermomajorization diagram,
and the association between states and TPs is done on the basis
of thermomajorization curves p and r. If r is tightly thermo-
majorized by p, then from the thermomajorization diagram
we propose a procedure that determines all components of the
transformation.

In the case presented in Fig. 6, rw receives contributions
from multiple segments of p. It is visible that for every

w, rw can be formed from complete contributions from
some levels of p (we will label these levels by y), and at
most two partial contributions from segments x and z of
p. These two partial contributions are a product of slopes
∂ px and ∂ pz of respective segments of the curve p and the
lengths of these segments. These lengths can be calculated
as differences in components of the partition function.
We will denote them by Z→ = ∑

qi,0/Z for a sum over
lengths of segments situated to the right from the point
where the first segment included in

∑
py originates, while

Z← = ∑
qi,0/Z is a sum over lengths of segments situated

to the left from the point which the last segment included
in

∑
py has reached. Z

′
→ and Z

′
← are defined analogously,

but now with reference points changed to be initial and end
points of the segment w of the curve r. From the definition,
the length of this segment is qw,0, while its height is rw.
We arrive at the following formula describing the map
transforming state p into r which is tightly thermomajorized
by p: rw = ∂ px(Z

′
→ − Z→) + ∑

y
py + ∂ pz(Z ′

← − Z←). We

have to show that this transformation is Gibbs preserving.
In general we have ∂ px = pxq0,x. If we start from a
Gibbs state curve px = qx,0/Z , then we arrive at rw =
qx,0q0,x/Z (Z ′

→ − Z→) + ∑
y

qy,0/Z + qz,0q0,z/Z (Z ′
← − Z←) =

(Z ′
→ − Z→ + ∑

y
qy,0 + Z ′

← − Z←)/Z . But from Fig. 6 it is

visible that −Z→ − Z← + ∑
y

qy,0 = −Z . Therefore, we have

rw = (Z ′
→ + Z ′

← − Z )/Z = (Z + qw,0 − Z )/Z = qw,0/Z ,
which is a coefficient of a Gibbs state.

The same holds for all other possible constructions of
rw: if Z ′

→ = Z→, then
∑

y
py = Z ′

← − Z←, while for Z ′
← =

Z←, we have
∑

y
py = Z ′

→ − Z→, and one reaches the same

conclusion about Gibbs state preservation of the process.
Moreover, for all elbows of r lying within one segment f of
β(p), we have Z← + Z→ = Z and have

∑
y

py = 0, for which

rw = p f q0 f qw0, which again equals qw,0 for initial Gibbs state
p f = q f ,0/Z . This exhausts the set of all possible geometrical
relations between p and a selected segment rw of the curve r.

Thermal process: Stochasticity. Stochasticity of the trans-
formation stems directly from the fact that r is a curve on a
thermomajorization diagram corresponding to a state: there-
fore every element pi is fully distributed into some set or {r j} j

(elements of every column of T : T ρinit = ρout sum to 1).
Extremality and biplanarity. To show that T is extremal and

biplanar, it is enough to find a graph associated with P that is
plane, and to show that the graph is a forest with no isolated
vertices. We will construct this graph by connecting a vertex a
from the right and b from the left side of the graph whenever a
segment b on p lies on the thermomajorization diagram above
a segment a on r, as it signifies the positive coefficient in P on
the position (a, b) (and therefore a positive element in T ). This
leads to a graph of forests (because once a particular segment
is considered, it does not reappear after we move to another
segment on the same curve, so cycles are not possible) with no
isolated vertices (because every segment lies below or above
at least one segment). Furthermore, the graph is planar, with
orders πin(T ) and πout (T ) fixed to be the same as orders π (p)
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and π (r), respectively. We see that this sequence of mappings
is the one in which elements of the transportation matrix P are
fixed according to the defining procedure in Definition 6.

Uniqueness. Notice that the order of π (r) may not be
given uniquely, as it is in principle possible to obtain a state
with a curve r that has more than one segment with the
same slopes. On the other hand, if more than one segment
has the same slope in p, this means that the transformation
between the states may not be unique: In the extremal
case, if all slopes of p are the same, every TP performs
the mapping (as every TP preserves a Gibbs state ρβ).
Therefore, we demand that all slopes in p are different:
this prohibits segments of p to be permuted and fixes the
sequence of points (i, j) that the procedure in Definition
6 utilizes to construct an associated transportation matrix.
For every thermal process T there is an associated matrix
T s := 1

Z2 diag[1, q0,1, . . . , q0,d−1]T diag[1, q1,0, . . . , qd−1,0]
that transforms slopes of the thermomajorization curve x
into slopes of y: T x = y ⇐⇒ T s∂x = ∂y. T s has the same
adjacency matrix as T , and therefore is associated with the
same transportation matrix P as T is. Therefore, we see that
the condition that r is tightly thermomajorized by p implies
a map T s that is unique for all slopes of p different, as only
this map assures the curve r has each of its elbows as high
as possible (i.e., on p), given position of elbows to the left.
Therefore, T is also set uniquely. The property of the map
of pushing the elbows as high as possible is resembled by
construction of the corresponding transportation matrix P
(Definition 6), where we assign the value min(ri, c j ) to a
given row or column; this value is the biggest possible under
constraints of r and c at a given step of the procedure. �

On the other hand, every biplanar extremal thermal process
is associated with a pair of β orders of states, which are
connected by a tight thermomajorization relation of their
corresponding curves:

Lemma 4 (every biplanar extremal thermal process defines
tight thermomajorization relation on states). For an arbitrary
biplanar extremal thermal process T at temperature β, charac-
terized by orders πin(T ) and πout (T ), and a state ρinit such that
π (β(ρinit )) = πin(T ), we have that ρout = T ρinit ∈ Extr[ρTP

init]
and π (β(ρout )) = πout (T ). If all slopes of β(ρinit ) are differ-
ent, then T is the unique transformation that maps ρin to ρout.

Proof. Every biplanar extremal thermal process T is char-
acterized by sequences of πin(T ) and πout (T ), which label the
left and right side of the associated graph of a transportation
matrix P, and for which the graph is planar. Therefore, for
every initial state ρinit with order π (β(ρinit )) = πin(T ), we
obtain a state ρout = T ρinit with order π (β(ρout )) = πout (T ).
Also, ρout is an extremal point of ρTP

init , because β(ρout ) pro-
vides the highest possible position for elbows for a given
order π (β(ρout )), and the latter follows from the proof of
uniqueness from Lemma 3. The proof for uniqueness of the
transformation T is the same as in Lemma 3. �

To summarize, the relation between biplanar extremal TPs
and states with a tightly thermomajorizable relation can ex-
pressed as follows:

Theorem 4. For a state ρinit with β(ρinit ) with all slopes
different and β order π (β(ρinit )), ρout with β order π (β(ρout )),
and a biplanar extremal thermal process T with orders πin(T )
and πout (T ), respectively, ρout = T ρinit ∈ Extr[ρTP

init] if and

only if π (β(ρinit )) = πin(T ) and π (β(ρout )) = πout (T ). T is
the only TP that satisfies T ρinit = ρout.

Proof. If part follows directly from Lemma 4. Only if part
follows from Lemma 3. �

The example of the relation between extremal TPs and
extremal states in ρTP

init is shown in Fig. 5 for a qutrit system
and temperature low enough to allow for q10 + q20 � 1 for a
given Hamiltonian HS . From Theorem 4 is follows that, for
a selected temperature β, one can calculate all biplanar ex-
tremal thermal processes from thermomajorization diagrams
by investigating all possible β orders of initial and final states,
where initial states have curves with all their slopes different,
and they tightly thermomajorize the curves of output states.
Note that any change of β influences the relations between
the different qmn determining the lengths of segments, which
in turn influence possible β orders of curves associated with
ρout ∈ Extr[ρTP

init]. In this way, the temperature-dependent ge-
ometry of ρTP

init reflects the temperature-dependent geometry of
the set of thermal processes.

B. Non-biplanar extremal thermal processes

We see that it is enough to be able to perform an arbitrary
biplanar extremal TP, as it allows one to achieve an arbitrary
extremal point of ρTP

init for every ρinit . Therefore, while ex-
tremal TPs that do not belong to the class of biplanar extremal
TPs cannot be calculated from thermomajorization diagrams,
they also seem to lack an operational meaning: when we allow
for convex combinations of TPs, every state in the set of ρTP

init
can be achieved solely by the use of biplanar extremal TPs.
Moreover, extremal TPs that are not biplanar cannot even lead
to extremal points of Extr[ρTP

init] for the case of different slopes
of β(ρinit ), for any ρinit . This follows from the uniqueness of T
for states with curves that have all slopes different. Naturally,
in a degenerated case with some slopes in β(ρinit ) the same
(ρinit = ρβ being an extreme case), many processes may lead
to the same state, so non-biplanar and biplanar extremal TPs
can effectively coincide for a subset of possible ρinit .

The question arises as to whether non-bipartite extremal
TPs exist for a given d . In fact, all extremal TPs for d = 2, 3
are biplanar (their list can be found in [11]). For d = 4, while
we have shown a transportation matrix that is non-biplanar
[Fig. 4(d)], this construction is not valid for r = c, as in this
case, the link connecting vertices labeled by 1 on both sides
implies that there should be no edge connecting vertex “1”
on the left with vertex “2” on the right. Therefore, we cannot
construct a corresponding thermal process, for which it is
necessary that r = c = [1, q10, . . . , qd−1,0].

Extremal points of TPs have a very simple form for zero
temperature. There, they have a vector [1, 0, . . . , 0]T as the
first column, and independent permutations of this vector in

different columns, e.g.,

⎛
⎜⎝

1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎠. Therefore, they are trans-

portation matrices. It is visible that these matrices are asso-
ciated with graphs that are forests (each column has exactly
one “1”, so no loops are possible), but isolated vertices may
be present (as there are some rows filled with “0”). Moreover,
each of the rows of the matrix corresponds to an independent
tree in a forest, so the graphs are biplanar. However, already
for d = 4, when going from zero to small temperatures, while
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all graphs become connected, some of them also become
immediately non-biplanar. Consider the extremal TP:

Tnon−biplanar =

⎛
⎜⎝

1 − q10 1 0 0
q10 − q20 0 1 0
q20 − q30 0 0 1

q30 0 0 0

⎞
⎟⎠. (1)

This process has an associated transportation matrix

P(Tnon−biplanar ) =

⎛
⎜⎝

1 − q10 q10 0 0
q10 − q20 0 q20 0
q20 − q30 0 0 q30

q30 0 0 0

⎞
⎟⎠, (2)

described by a graph composed from a forest with no isolated
vertices, shown in Fig. 4(e). Note that the construction can be
trivially extended for arbitrary d > 4. Therefore, non-bipartite
extremal TPs are present for an arbitrary nonzero temperature
for d � 4, and absent for d = 2, 3.

V. CONCLUSIONS

The established link between all physically significant ex-
tremal thermal processes and thermomajorization curves gives
a recipe for determining the form of relevant extremal TPs for
systems of higher dimension. The complexity of the algorithm
is the same as for determining the corresponding extremal
transportation matrices. The number of extremal points of
transportation polytopes is not known in general.

With the complete characterization of the set ρ
TP(d)
init estab-

lished, a similar description of ρ
TP(n)
init for n < d should allow

for the solution of the decomposability problem (n = 2) by
determining the length of sequences of two-level transforma-
tions needed to generate ρ

TP(2)
init for an arbitrary initial state.
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APPENDIX A: PROOFS OF SECTION II

Below we show that a set ρTP
init of states that can be achieved

by thermal processes from an initial state ρinit is a convex
polytope.

Remark 6. ρTP
init is a convex polytope.

Proof. From the definition of a thermal process we see
that T P is a convex polytope. Now, take ρ1, ρ2 ∈ ρTP

init:
T1ρinit = ρ1, T2ρinit = ρ2, where T1, T2 ∈ T P. For every 0 �
α � 1, a state αρ1 + (1 − α)ρ2 belongs to ρTP

init due to con-
vexity of T P: αρ1 + (1 − α)ρ2 = αT1ρinit + (1 − α)T2ρinit =
T3ρinit , where T3 = [αT1 + (1 − α)T2] ∈ T P. Therefore, ρTP

init
is convex. Each of ρout ∈ ρTP

init can be represented as ρout =∑
αiT ext

i ρinit , where 0 � αi � 1 and
∑

i αi = 1 and {T ext
i }i

is a set of extremal points of T P. If ρout is extremal, then
T ext

k ρinit = T ext
l ρinit for all pairs of T ext

i contributing with a
nonzero coefficient to the decomposition of ρout. Therefore,

the number of extremal points of ρTP
init cannot be bigger than

the number of extremal points of T P, and as the latter set is a
convex polytope, the former one is a polytope as well. �

APPENDIX B: PROOFS OF SECTION III

1. Theorem 2, Section III, only if part (procedure for
constructing a convex decomposition of a state)

Let us recall that, according to Theorem 2, tight thermoma-
jorization of a curve β(ρ) by a curve β(ρinit ) is equivalent to
ρ being an extremal point of ρTP

init . Below we present a proof
that every state in ρTP

init with a thermomajorization curve that is
not tightly thermomajorized by β(ρinit ) cannot be an extremal
point of ρTP

init .
We do this by representing every state ρ ∈ ρTP

init as ρ =∑
piσi, where

∑
pi = 1, 0 < pi, and thermomajorization

curves of σi, β(σi ), are all tightly thermomajorized by β(ρinit );
therefore, this set of extremal points is complete. First, we
notice that for a 2-level system, every thermal process can
be described with just two extremal TPs: I = (1 0

0 1) and B =

(1 − q10 1
q10 0). Therefore, if ρ ∈ ρ

TP(2)β,HS
init , then ρ = [(1 − α)I +

αE]ρinit , for 0 � α � 1. The corresponding curve, β(ρ(α)),
has an elbow on two possible vertical lines (see Fig. 7). For
α = 0, the elbow is on the initial curve β(ρinit ); it goes down
with increasing α to reach a line characterizing a Gibbs state
β(ρβ ), switches lines, and continues up, to reach β(ρinit ) again

for α = 1. In this way, we can achieve all states of ρ
TP(2)β,HS
init

characterized by curves with elbows lying between β(ρinit )
and β(ρβ ) on two specified lines. In what follows, we will
be using this to decompose a given d-level state belonging to
ρ

TP(d)β,HS
init into two states that have equal occupations on all

FIG. 7. All states ρ ∈ ρ
TP(2)β,HS
init can be represented as ρ(α) =

[(1 − α)I + αE]ρinit , with value α ∈ [0, 1] determining the position
of the only elbow of thermomajorization curve β(ρ(α)). The move-
ment of the elbow associated with continuous increase of α is marked
by arrows. For α = 1/(1 + q10) marking a transition to a Gibbs state
ρβ , the elbow disappears, to reemerge for higher α on a different
vertical line.

042110-9



PAWEŁ MAZUREK PHYSICAL REVIEW A 99, 042110 (2019)

(d − 2) levels, apart from the selected two. The difference in
occupations on these two levels makes one of the elbows from
each of corresponding β curves lie on a different position, as
in Fig. 7 for β(ρ(0)) and β(ρ(1)), while the rest of the elbows
from the two curves lie on the same positions.

First, decompose the curve β(ρ) = c1,1γ
′
1,1 + c1,2γ

′
1,2 [see

Fig. 8(a)] into a convex combination of curves γ ′
1,1 and γ ′

1,2
such that γ ′

1,1 has the same β order as β(ρ), i.e., π (γ ′
1,1) =

π (β(ρ)), and γ ′
1,2 has the same β order as β(ρ), except

for the last two segments, which are permuted: π (γ ′
1,2) =

Pd−1,dπ (β(ρ)), where Pd−1,d marks the permutation between
the segments that are at the position d − 1 and d in the
following vector. Demand also that the last elbows of γ ′

1,1
and γ ′

1,2 lie on β(ρinit ). Other elbows of γ ′
1,1 and γ ′

1,2 have the
same positions as in β(ρ). This decomposition corresponds
to a decomposition of a state ρ into two states that differ by

FIG. 8. Representing a state as a convex composition of ex-
tremal points (step 1). Decomposition of a state ρ = c1,1ρ(γ1,1) +
c1,2ρ(γ1,2), with last elbows of γ1,1 and γ1,2 lying on β(ρinit ).
(a) Validity of a construction comes from a decomposition of states
of two-level systems (Fig. 7), trivially extended to states of higher
dimension and equal occupations on the added levels. (b) Permuting
the segments turns γ ′

1,1 and γ ′
1,2 into γ1,1 and γ1,2, respectively, and

asserts that the curves are concave.

occupations only on two selected levels. As we see from the
case of two-level systems, these requirements fix parameters
c1,1 and c1,2, while preserving c1,1 + c1,2 = 1. At the end,
whenever curves γ ′

1,1 or γ ′
1,2 are not concave, we change

order of segments such that we obtain proper thermomajoriza-
tion curves, γ1,1 and γ1,2, respectively [Fig. 8(b)]. Therefore,
we have obtained ρ = c1,1ρ(γ1,1) + c1,2ρ(γ1,2), where ρ(γ )
marks a state ρ associated with thermomajorization curve γ ,
and ρ(γ1,1), ρ(γ1,2) ∈ ρTP

init .
In the second step, we decompose the curves γ1,1

[Fig. 9(a)] and γ1,2 [Fig. 9(b)] as c1,1γ1,1 = c2,1γ
′
2,1 + c2,2γ

′
2,2

and c1,2γ1,2 = c2,3γ
′
2,3 + c2,4γ

′
2,4, such that π (γ ′

2,1) = π (γ1,1),
π (γ ′

2,2) = Pd−2,d−1π (γ1,1), π (γ ′
2,3) = π (γ1,2), π (γ ′

2,4) =
Pd−2,d−1π (γ1,2), and such that the two last elbows of γ ′

2,1, γ ′
2,2,

γ ′
2,3, γ ′

2,4 lie on β(ρinit ), while the position of the remaining
elbows is like in the original lines, γ1,1 and γ1,2, respectively.
Therefore, again we were using a decomposition of a given
state into states with different occupations on just two energy
levels; just now these two levels correspond to segments
on a thermomajorization curve shifted towards the left.

FIG. 9. Representing a state as a convex decomposition of ex-
tremal points (step 2). Decomposition of (a) ρ(γ1,1) and (b) ρ(γ1,2)
into states represented by thermomajorization curves γ2,i, i =
1, 2, 3, 4, with last 2 elbows lying on β(ρinit ).
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Again, if necessary we permute segments to obtain concave
curves γ2,1, γ2,2, γ2,3, and γ2,4,. In this way, parameters c2,1,
c2,2, c2,3, c2,4,

∑
i=1,4

c2,i = 1 are fixed, and a decomposition

ρ = ∑
i=1,4

c2,iρ(γ2,i) is obtained.

In general, we iterate this procedure for steps j =
1, . . . , d − 1, in each step dividing curves c j−1,iγ j−1,i =
c j,2i−1γ

′
j,2i−1 + c j,2iγ

′
j,2i for all i = 1, . . . , 2 j such that

π (γ ′
j,2i−1) = π (γ j−1,i ), π (γ ′

j,2i ) = Pd− j,d− j+1π (γ j−1,i ), such
that the last j elbows of γ ′

j,2i−1 and γ ′
j,2i lie on β(ρinit ),

and the remaining elbows lie on γ j−1,i. We take c0,1 = 1
and γ0,1 = β(ρ). We permute segments to obtain concave
curves γ j,2i−1 and γ j,2i. As each step fixes one more elbow
of curves to lie on β(ρinit ), after j = d − 1 steps all curves
in the decomposition β(ρ) = ∑

i=1,2d−1

cd−1,iγd−1,i are tightly

thermomajorized by β(ρinit ). Also, as at each step we have
c j−1,i = c j,2i−1 + c j,2i, this implies

∑
i=1,2d−1

cd−1,i = 1. There-

fore, after rewriting cd−1,i = pi and ρ(γd−1,i ) = σi, we arrive
with the convex decomposition ρ = ∑

piσi.

2. Remark 2, Section III

Proof (if part). It is enough to show that for every ρ ∈ ρTP
init ,

with at least one of the elbows of β(ρ) lying on β(ρinit ),
there is a state ρ1 ∈ ρTP

init such that there is no state ρ2 ∈ ρTP
init

satisfying ρ = λρ1 + (1 − λ)ρ2, λ ∈ [0, 1]. Choose ρ1 such
that β(ρ1) has elbows on the same positions as β(ρ), apart
from the one lying on a vertical line that goes through a
selected elbow of β(ρ) lying on β(ρinit ); place this elbow δ

distance below the elbow β(ρ). We can always choose δ > 0
to be small enough such that π (ρ) = π (ρ1). In this case, in
order for ρ = λρ1 + (1 − λ)ρ2 to be satisfied, all elbows of
β(ρ2) have to lie on elbows of β(ρ1), apart from the one that
lies on a vertical line that goes through a selected elbow of
β(ρ) lying on β(ρinit ); this elbow has to lie ε > 0 above the
elbow of β(ρinit ). But this implies that ρ2 �∈ ρTP

init . �
Proof (only if part). If a state ρ lies on a face of ρTP

init ,
then there exists some state ρ1 ∈ ρTP

init such that there is no
state ρ2 ∈ ρTP

init that satisfies ρ = λρ1 + (1 − λ)ρ2, λ ∈ [0, 1].
Assume that all elbows of β(ρ) lie below β(ρinit ). We will
show that it leads to a contradiction, i.e., that for an arbitrary
state ρ1 ∈ ρTP

init we can construct a state ρ2 that satisfies ρ =
λρ1 + (1 − λ)ρ2. For curves that have all elbows below an
initial curve, we can always modify the procedure of decom-
posing a state ρ into extremal points of ρTP

init (only if part of
the proof of Theorem 2) by taking γ ′

1,1 such that π (γ ′
1,1) =

π (β(ρ1)) and γ ′
1,2 such that π (γ ′

1,2) = Pd−1,dπ (β(ρ1)) in the
first step, and then carry on with the procedure. At the end,
we have cd−1,1 = λ, ρ(γd−1,1) = ρ1 and

∑
i=2,2d−1 cd−1,i =

(1 − λ),
∑

i=2,2d−1 ρ(γd−1,i ) = ρ2. �

3. Theorem 3, Section III

Proof. Assume that HS is not a hyperface. Therefore, there
is ρ from HS , which can be represented as a convex combina-
tion ρ = λρ1 + (1 − λ)ρ2, λ ∈ [0, 1], ρ1,2 ∈ ρTP

init , such that at
least one state, ρ1, belongs to ρTP

init/HS . This implies that on a
vertical line passing through some point of β(ρinit ), being an

FIG. 10. A state ρ belongs to a facet HS of ρTP
init given by a set

of points S. A point from this set defines a set of segments X =
{x1, . . . , xn} that lie to the left of it on β(ρ ). If ρ1 /∈ HS , then β(ρ1)
has an elbow below S (case [A]) or a segment below S (case [B]).
Then, the state ρ2 from the decomposition ρ = λρ1 + (1 − λ)ρ2, λ ∈
[0, 1], has a curve that has to lie over S, both in the case [C] with all
segments of β(ρ2) to the left from S being taken from the set X , as
well as for different arrangements (case [D]). Therefore, ρ2 /∈ ρTP

init .

elbow of some curve tightly thermomajorized by β(ρinit ) and
belonging to S, β(ρ1) lies below this elbow (see Fig. 10).

Let us denote state populations by vectors p, r, and q:
ρ1 = diag[p], ρ2 = diag[r], ρ = diag[q]. Assume that β(ρ1)
has an elbow on this line (case [A]). If we denote by X =
{x1, . . . , xn} a set of segments lying to the left of the elbow
on β(ρ), it is clear that in order to have

∑
X qx = λ

∑
X px +

(1 − λ)
∑

X rx, ρ2 has to satisfy
∑

X qx <
∑

X rx if the elbow
of β(ρ1) lies below the elbow of S (

∑
X px <

∑
X qx). This

is because, if all segments of β(ρ1) that lie to the left from
the elbow belong to X , we have

∑
X px <

∑
X qx. If some

segments from X lie to the right from the elbow on β(ρ1),
this means that

∑
X px is even smaller. Assume that segments

from X of ρ2 all lie to the left of the elbow (case [C]). Then,
as

∑
X qx <

∑
X rx, we see that β(ρ2) is not thermomajorized

by β(ρinit ), and therefore ρ2 /∈ ρTP
init . On the other hand, if some

segments from the set X lie to the right of the elbow (case
[D]), this implies that other segments in β(ρ2) have even
higher slopes, and the curve β(ρ2) reaches even higher on a
vertical line passing through the elbow; therefore ρ2 /∈ ρTP

init .
Now we will consider the case of β(ρ1) not having an

elbow on the vertical line passing through an elbow belonging
to S (case [B]). Again, this implies that

∑
X px <

∑
X qx, as

otherwise
∑

X qx �
∑

X px and the curve β(ρ1) would not
be thermomajorized by β(ρinit ) or β(ρ1) would not lie below
S [as before, for β(ρ1) to have some segments with higher
slopes than segments from X , this only increases the height
of the β(ρ1) curve over the elbow from S on β(ρinit )]. There-
fore,

∑
X px <

∑
X qx <

∑
X rx in order to have

∑
X qx =

λ
∑

X px + (1 − λ)
∑

X rx, but this, as we showed before,
leads to ρ2 /∈ ρTP

init (a contradiction). �
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4. Lemma 2, Section III

Proof (if part). For two extremal points to share an edge
means that for all states ρλ = λε1 + (1 − λ)ε2, λ ∈ (0, 1),
belonging to ρTP

init , and for every state σ ∈ ρTP
init and σ /∈ {ρλ}λ,

there is no state σ ′ ∈ ρTP
init such that ρλ = γ σ + (1 − γ )σ ′

for γ ∈ [0, 1]. For an arbitrary σ /∈ {ρλ}λ, there is at least
one elbow of β(ρλ) lying on β(ρinit ), such that β(σ ) lies
below it.

Assume that, looking from the left side of the thermo-
majorization diagram, the first elbow of β(ρλ) satisfies this
property. This means that the segment of β(σ ) of the same
length as the first segment of β(ρλ) has to have smaller
slope than the slope of this segment in β(ρλ). Therefore,
a corresponding segment in β(σ ′) has to have bigger slope
than the slope of this segment in β(ρλ), as only in this
way we can achieve ρλ = γ σ + (1 − γ )σ ′ ⇐⇒ ∀iβi(ρλ) =
γ βi(σ ) + (1 − γ )βi(σ ′). But this leads to a contradiction
with the requirement that σ ∈ ρTP

init , as β(σ ′) would not be
thermomajorized by β(ρinit ).

If we assume that β(σ ) coincides with β(ρλ) on its first
elbow lying on β(ρinit ), but the second such elbow of β(ρλ)
lies above β(σ ), then this means that β(σ ) had to have an
elbow on the first elbow of β(ρλ); otherwise, β(ρλ) would
not be thermomajorized by β(ρinit ) for all of its slopes differ-
ent. Therefore, we conclude that β(ρλ), β(σ ) and β(σ ′) are
identical on their first segments. We can therefore treat the

first elbow of β(ρλ) as the effective start of a new thermoma-
jorization diagram, and apply the argument from the last step
again.

We continue doing so for all the segments of β(ρλ), until
we reach a segment d − i. If no elbow of β(ρλ) is lying above
β(σ ) on this side of the original thermomajorization diagram,
we apply the same reasoning to the right side of the diagram,
until we reach the segment d − i + 1. In this way, we are
guaranteed to find an elbow of β(ρλ) that lies above β(σ ),
as otherwise σ ∈ ρλ. At such event, we reach a conclusion
σ ′ /∈ ρTP

init , as shown above. �
Proof (only if part). Assume that for two distinctive ex-

tremal states ε1 and ε2, their respective orders cannot be
related via π1 �= Pd−i,d−i+1π2, for any of i ∈ {2, . . . , d}. This
means that a construction ρλ = λε1 + (1 − λ)ε2 for λ ∈ (0, 1)
results in β(ρλ) that has at least 2 elbows below β(ρinit ), as
Pd−i,d−i+1 is the only relation between the orders of distinctive
extremal states that leads to 1 elbow below β(ρinit ) for all
slopes of β(ρinit ) different. According to the procedure for
decomposing a given state into extremal states (only if part
of the proof of Theorem 2), every elbow of ρλ leads to a
generation of 2 extremal points in the convex decomposition
of this state into extremal points of ρTP

init . Therefore, ρλ can
be decomposed into at least 4 states, which contradicts the
uniqueness of the decomposition ρλ = λε1 + (1 − λ)ε2, λ ∈
(0, 1). �
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