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Orthogonalization of fermion k-body operators and representability
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The reduced k-particle density matrix of a density matrix on finite-dimensional, fermion Fock space can be
defined as the image under the orthogonal projection in the Hilbert-Schmidt geometry onto the space of k-body
observables. A proper understanding of this projection is therefore intimately related to the representability
problem, a long-standing open problem in computational quantum chemistry. Given an orthonormal basis in the
finite-dimensional one-particle Hilbert space, we explicitly construct an orthonormal basis of the space of Fock
space operators which restricts to an orthonormal basis of the space of k-body operators for all k.
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I. INTRODUCTION

A. Motivation: Representability problems

In quantum chemistry, molecules are usually modeled
as nonrelativistic many-fermion systems (Born-Oppenheimer
approximation). More specifically, the Hilbert space of these
systems is given by the fermion Fock space F = F f (h),
where h is the (complex) Hilbert space of a single electron
[e.g., h = L2(R3) ⊗ C2], and the Hamiltonian H is usually a
two-body operator or, more generally, a k-body operator on F .
A key physical quantity whose computation is an important
task is the ground-state energy

E0(H)
.= inf

ϕ∈S
ϕ(H) (1)

of the system, where S ⊆ B(F )′ is a suitable set of states on
B(F ), where B(F ) is the Banach space of bounded operators
on F and B(F )′ its dual. A direct evaluation of (1) is, however,
practically impossible due to the vast size of the state space S .

1. Abstract representability problem

As has been widely observed, this problem can be reduced
drastically by replacing the states τ ∈ S by a quantity rτ ,
the k-body reduction of τ , that only encodes the expectation
values of k-body operators in the state τ . More precisely,
denote by Ok (F ) ⊆ B(F ) the subspace of k-body operators
on F and let τ ∈ B(F )′, then rτ can be defined as the
restriction τ |Ok (F ) ∈ Ok (F )′. In other words, if ik : Ok (F ) →
B(F ) denotes the inclusion map then the mapping τ �→ rτ is
given by the dual map i′k : B(F )′ → Ok (F )′, which we call
the k-body reduction map. Now, if H ∈ Ok (F ) then τ (H) =
(i′kτ )(H) for all τ ∈ B(F )′ and (1) can be rewritten as

E0(H) = inf
τ∈S

τ (H) = inf
τ∈S

rτ (H) = inf
r∈i′k (S )

r(H), (2)

thus the evaluation of (1) is, in principle, simplified, because
the infimum has to be taken over the much smaller set i′k (S ).
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To explicitly compute the right hand side of (2), however,
one has to find an efficient parametrization of the set i′k (S ).
The representability problem for S (and k ∈ N0) amounts to
characterize the image i′k (S ) of representable functionals on
Ok (F ) in a computationally efficient way.

2. Traditional representability problems

The general framework of representability problems as
discussed here is usually invisible in the pertinent literature
because in concrete applications S is almost always chosen to
be (a subset of) the set of density matrices on F and Ok (F )′

is identified with a suitable subspace of B(F ). Moreover, in
applications of physics or chemistry the by far most important
case is k = 2, as the Hamiltonian usually is a two-body opera-
tor. In this case the two-body reduction i′k (ρ) of an N-particle
density matrix can be identified with the (customary) 2-RDM,
which is a bounded operator on

∧2
h.

3. Erdahl’s representability framework

In this paper, only the case dim h < ∞ is considered,
which is sufficient for many important applications. For exam-
ple, in quantum chemistry one commonly starts by choosing
a finite subset of L2(R3) ⊗ C2 of spin orbitals and then con-
siders their span h. In the finite-dimensional case, the reduced
k-body reduction of a density matrix ρ can be introduced as
the image πk (ρ) under the orthogonal projection onto Ok (F )
(see [1]),

πk : L2(F ) → Ok (F ) ⊆ L2(F ). (3)

As it turns out, in the finite-dimensional case πk is an equiv-
alent description of the map i′k introduced above. The reason
for this is that in the finite-dimensional case B(F ) = L2(F ),
where L2(F ) denotes the Hilbert space of Hilbert-Schmidt
operators on F , and we may identify B(F )′ ∼= L2(F ) and
Ok (F )′ ∼= Ok (F ) via the Riesz isomorphisms. Under these
identifications, the k-body reduction map i′k is given by the
adjoint i∗k of ik and πk = iki∗k . This geometric interpretation
of the representability problem is visualized in Fig. 1. Note
that Erdahl’s representability framework breaks down in the
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FIG. 1. Geometric interpretation of the representability problem
for density matrices in finite dimensions: The mapping of density
matrices ρ ∈ P1 to its k-body reduction as orthogonal projection
πk onto the subspace Ok (F ) ⊆ L2(F ) of k-body operators. The
representability problem amounts to find an efficient characterization
of the image πk (P1) within Ok (F ). The orthonormal basis B given
in Theorem I.1 is adapted to this situation as it restricts to an
orthonormal basis B ∩ Ok (F ) of Ok (F ) for every k ∈ N0.

infinite-dimensional case because then k-body operators are
generally not Hilbert-Schmidt anymore.

B. Related work

The idea of replacing density matrices by their reduced
density matrices to simplify the evaluation of (1) can be traced
back to Husimi [2]. First extensive analyses were carried out
in the 1950’s and 1960’s and lead, e.g., to the solution of
the representability problem for one-body reduced density
matrices of N-particle density matrices [3–5] and the develop-
ment of (still very inaccurate) lower bound methods based on
representability conditions. In 1978, Erdahl introduced a new
class of representability conditions [1], which were found to
significantly increase the accuracy of lower bound methods
[6]. In 2005 the representability problem for the one-body
reduced density matrices of pure states was solved by Kly-
achko [7] based on results from quantum information theory.
In 2012 Mazziotti established a hierarchy of representability
conditions providing a formal solution of the representability
problem for the two-body RDMs of N-particle density ma-
trices [8]. However, the general representability problem has
been found to be computationally intractible [8], even on a
quantum computer [9]. Computational advances [10] enabled
a range of recent applications [11–13]. Representability meth-
ods have also proved useful in Hartree-Fock theory [14]. For
a more detailed overview on the history of representability
problems, we refer to [15,16].

C. Goal and main results

The goal of the present work is to shed more light on
the projection πk in the finite-dimensional case. As a result,
we explicitly diagonalize the orthogonal projections πk si-
multaneously for all k ∈ N0. More specifically, we prove the
following.1

1See Fig. 1 for a geometric interpretation of this result and its
relation to the representability problem.

Theorem I.1 (Main Theorem). Let dimC h = n < ∞ and
ϕ1, . . . , ϕn be an orthonormal basis of h. For I = {i1 < . . . <

i j} ⊆ {1, . . . , n} define cI
.= c(ϕi j ) · · · c(ϕi1 ) and nI

.= c∗
I cI ,

where c(ϕ) denotes the usual fermion annihilation operator.
Then the following is found.

(1) An orthonormal basis B of L2(F ) is given by the
elements

1√
2n−|I∪̇J|

∑
A⊆L

(−2)|A|nAc∗
I cJ , (4)

where I, J, L run over all mutually disjoint subsets of
{1, . . . , n}.

(2) For any k ∈ N0, B ∩ Ok (F ) is an orthonormal basis
of Ok (F ).

Orthogonal decompositions of L2(F ) as implied by The-
orem I.1 have already been introduced, e.g., in [1], Sec. 8,
where an orthogonal decomposition B(F ) = ⊕

n,m �(n, m)
is used to derive new classes of representability conditions.
The spaces �(n, m) are generated by elements of the form
(66), see Sec. V. The orthonormal basis elements given in
Theorem I.1, however, have the additional property of being
normal ordered, which can be used to express πk (ρ) in terms
of the customary reduced density matrices, as in the following
example.

Corollary I.2. Let ρ be a particle number-preserving den-
sity matrix, γ ∈ B(h) its 1-RDM and d�(γ ) = ∑

i, j γ jic∗
i c j

the (differential) second quantization of γ . Then

2nπ1(ρ) = (n + 1) − 2 tr{γ } − 2N̂ + 4d�(γ ), (5)

where N̂ = ∑
i c∗

i ci denotes the particle number operator.
A similar formula for π2(ρ) exists, but is much more

complicated.

D. Overview of the paper

In Sec. II, we introduce the necessary terminology and
notation of fermion many-particle systems and general density
matrix theory, as well as, some features specific to the finite-
dimensional setting. In Sec. III, we compute the Hilbert-
Schmidt scalar product of specific monomials in creation and
annihilation operators (Proposition III.8). In Sec. IV we prove
Theorem I.1 in two steps, as follows.

(1) The orthonormal basis B of L2(F ) is constructed in
Theorem IV.2.

(2) In Theorem IV.4 we show that B ∩ Ok (F ) is a basis
of Ok (F ) for all k ∈ N0.
In many cases one also considers the space OR

k (F ) of self-
adjoint k-body operators. We generalize the above results in
Theorem IV.7, where we apply a suitable unitary transfor-
mation U on L2(F ) and show that the orthonormal basis
U (B) of L2(F ) restricts to an orthonormal basis of OR

k (F )
for all k ∈ N0. Finally, in Sec. V we present an alternative
approach for constructing an orthonormal basis of L2(F ) with
properties as in Theorem I.1, which was first communicated to
us by Gosset2 and turned out to be already present in [1].

2dgosset@uwaterloo.ca
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E. Motivating application

We illustrate the virtue of having orthonormal bases of
the space of operators explicitly available on the following
example: Consider a fermionic many-particle system with
finite-dimensional one-particle Hilbert space h, a two-body
Hamiltonian of the form

H =
∑
i, j

ti jc
∗
i c j + 1

2

∑
i, j,k,l

Vi j;kl c
∗
i c∗

j cl ck, (6)

where Vi j;kl
.= 〈ϕi ⊗ ϕ j | V (ϕk ⊗ ϕl )〉 is a matrix element

of a repulsive two-body potential V � 0. Let B be an or-
thonormal basis of L2(F ). Then for any A ⊆ B we have
PA

.= ∑
θ∈A |θ〉〈θ | � ∑

θ∈B |θ〉〈θ | = 1L2(F ) and, under suit-
able positivity requirements on the potential V , we obtain

H �
∑
i, j

ti jc
∗
i c j + 1

2

∑
i, j,k,l

Vi j;kl c
∗
i c∗

j PAclck
.= HA. (7)

Thus E0(HA) is a lower bound, which are usually more diffi-
cult to derive than upper bounds, for the ground-state energy
E0(H) of the original quantum system. In many situations,
after a suitable choice of an orbital basis ϕ1, . . . , ϕn of h, the
orthonormal basis B given by Theorem I.1 and a suitable
choice of A ⊂ B leads to a nontrivial lower bound E0(HA)
of E0(H).

II. FOUNDATIONS

Throughout this work, h denotes the one-particle Hilbert
space, i.e., a separable complex Hilbert space. We con-
sider only the finite-dimensional case here and assume n

.=
dimC h < ∞ throughout the paper.

A. General notions

In this subsection, we will recall some relevant notions
from general density matrix theory of fermion many-particle
systems that are also valid when dim h = ∞.

1. Hilbert spaces

If not stated otherwise, all Hilbert spaces are assumed to
be complex. For a Hilbert space H, the inner product between
elements ϕ,ψ ∈ H is denoted by 〈ϕ | ψ〉H and is assumed to
be antilinear in the first and linear in the second component.
When there is no risk of confusion, we will freely omit the
subscript H of the inner product. By B(H) we denote the C*-
algebra of linear bounded operators on H.

2. Hilbert-Schmidt operators

The space of Hilbert-Schmidt operators on a Hilbert space
H is denoted by L2(H) and is a Hilbert space with respect to
the inner product 〈a | b〉L2(H)

.= tr{a∗b}. Furthermore, L2(F )
is endowed with a natural real structure (i.e., a complex
conjugate involution) given by the Hermitian adjoint.

3. Fermion Fock space

For a Hilbert space h, the associated fermion Fock
spaceF .= F (h) is the completion of the Grassmann algebra∧

h = ⊕
k�0

∧k
h with respect to the inner product defined

by

〈ϕ1 ∧ · · · ∧ ϕk | ψ1 ∧ · · · ∧ ψl〉
.=

{
det(〈ϕi | ψ j〉)k

i, j=1 if k = l,

0 otherwise.
(8)

The neutral element 1 ∈ C
.= ∧0

h ⊂ F of the wedge product
on F is also called the (Fock) vacuum and denoted by �F .

4. CAR

Associated with F , there are natural linear, respectively
antilinear, maps c∗, c : h → B(F ) called the creation- and
annihilation operators which are defined for f ∈ h and ω ∈ F
by c(ϕ)

.= [c∗(ϕ)]∗ and c∗( f )ω
.= f ∧ ω, respectively. They

satisfy the canonical anticommutation relations (CAR)

{c∗(ϕ), c∗(ψ )} = {c(ϕ), c(ψ )} = 0{c∗(ϕ), c(ψ )}
= 〈ϕ | ψ〉, ∀ϕ,ψ ∈ h, (9)

and c(ϕ)�F = 0 for all ϕ ∈ h. The mappings c∗, c : h →
B(F ) induce a representation of the (abstract) CAR alge-
bra generated by h (see [17], Sec. 5.2.2), called the Fock
representation.

5. Density matrices

We denote by P .= L1
+(F ) ⊆ L2(F ) the cone of positive,

trace-class operators on F . Elements ρ from the convex subset
P1 ⊆ P which are normalized in the sense that tr{ρ} = 1
are called density matrices on F . Elements of P1 uniquely
represent the normal states on the C*-algebra B(F ) (see [18],
Theorem 2.7).

B. Finite-dimensional features

We conclude this section by summarizing some more
specific notions, which (partly) depend on the finite-
dimensionality of h.

1. Generalized creation and annihilation operators

By the CAR, we may extend c, c∗ to linear, respectively,
antilinear, maps c∗, c : F → B(F ) via

c∗(ω)η
.= ω ∧ η, c(ω)

.= [c∗(ω)]∗. (10)

Note that the definition of c is such that c(ϕ1 ∧ · · · ∧ ϕk ) =
c(ϕk ) · · · c(ϕ1), for all ϕ1, . . . ϕk ∈ h. We call c∗, c the gener-
alized creation and annihilation operators3. Note that the CAR
(9) do not hold for c∗ and c, when ϕ,ψ ∈ h are replaced by
general ω, η ∈ F .

2. Polynomials in creation and annihilation operators

We are particularly interested in operators on F , which
are “polynomials in creation and annihilation” operators, i.e.,
elements in the complex ∗-subalgebra A ⊆ B(F ) generated
by {c∗(ϕ) | ϕ ∈ h}. In the finite-dimensional case, A = B(F )
(see [17], Theorem 5.2.5) and we have a natural linear map

� : F ⊗ F̄ � ω ⊗ η̄ �→ c∗(ω)c(η) ∈ A, (11)

3This terminology is also used, e.g., in [19].
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where F̄ denotes the conjugate Hilbert space of F (see [20],
Sec. 1.2). In fact, by the Wick Theorem, � is surjective and
therefore an isomorphism, as the vector spaces involved are
all finite-dimensional.

3. k-body operators

Let k ∈ N0. We call a sum of operators of the form
c∗(ω)c(η) with ω ∈ Fr , η ∈ Fs and r + s = 2k a k-particle
operator. More generally, a sum of l-particle operators with
l � k is called a k-body operator, and we denote the space of
k-body operators by Ok (F ). We also consider the R-subspace
OR

k (F ) ⊆ Ok (F ) of self-adjoint (or real) elements of Ok (F ),
which are called k-body observables.

Remark II.1 (On the Terminology of k-Body Operators).
There are different conventions regarding the notion of a
k-body operator. Especially in the physics literature this
terminology usually refers to what we call a k-particle
operator. For example, a typical Hamiltonian in second
quantization is given by (6). In the physical literature, this
operator would then often be considered as a sum of a one-
and two-body operator, whereas in our convention (6) is
a sum of a one- and two-particle operator and therefore a
two-body operator.

4. Hilbert-Schmidt geometry

Since in the finite-dimensional case we have L2(F ) =
B(F ), the mappings �, c∗ and c introduced above are in
fact mappings between (finite-dimensional) complex Hilbert
spaces. In particular, using the natural isomorphism F ⊗ F̄ ∼=
L2(F ) the map � defined in (11) gives rise to a linear
automorphism

α : L2(F ) � |ω〉〈η| �→ c∗(ω)c(η) ∈ L2(F ). (12)

III. TRACE FORMULAS

The goal of this section is to prove Proposition III.8, which
provides a formula for the Hilbert-Schmidt inner product
〈a | b〉L2(F ) between certain monomials a, b in creation and
annhiliation operators. Our approach is to evaluate

〈a | b〉L2(F ) = tr{a∗b} =
∑

I

〈ϕI | a∗bϕI〉F (13)

for a suitable basis (ϕI )I of F (Proposition III.4). The main
work then is to characterize the set M of those I with nonvan-
ishing contributions in (13) (Proposition III.5).

A. Basic notation

1. Set-theory

For a set X , we denote by |X | ∈ N ∪ {0,∞} the number
of elements in X and by P(X ) the system of all subsets of
X . Given sets A1, . . . , A� ∈ P(X ), we write A1 ∪̇ · · · ∪̇ A�

for their union A1 ∪ · · · ∪ A� when we want to indicate or
require the A1, . . . , A� to be mutually disjoint, i.e., Aα ∩ Aβ =
∅ for all 1 � α < β � �. Given a proposition p (e.g., a set-
theoretic relation like x ∈ A ∩ B) we write

1(p)
.=

{
1 if p is true,

0 otherwise.
(14)

In the case where p is of the form a = b, we also write δa,b for
1(p) (the Kronecker Delta).

2. Orbital bases and induced Fock bases

For the remainder of this paper, let h be finite-dimensional,
dim h

.= n < ∞, and assume that {ϕ1, . . . , ϕn} is a fixed
orthonormal basis. Let Nn

.= {1, . . . , n} and P(Nn) be the
family of subsets of Nn. For A = {a1, · · · , ak} ⊆ Nn with
a1 < · · · < ak we define

ϕA
.=

{
ϕa1 ∧ · · · ∧ ϕak A �= ∅,

�F for A = ∅.
(15)

Then, by definition (8) of the inner product on F , (ϕA)A⊆Nn is
an orthonormal basis of F and, using Diracs Bra-ket notation,
(|ϕA〉〈ϕB|)A,B⊆Nn

is an orthonormal basis of L2(F ). Applying
the generalized creation and annihilation operators, we further
define for A, B ⊆ Nn the monomials

c∗
A

.= c∗(ϕA), cA
.= c(ϕA), cA,B

.= c∗
AcB, nA

.= cA,A.

(16)

B. Monomials acting on the induced Fock bases

To efficiently deal with the signs occurring in computa-
tions with the monomials of the form (16), we introduce for
A1, . . . , Ak, B1, . . . , Bl ⊆ Nn the multisign[

A1 . . . Ak

B1 . . . Bl

]
.= 〈ϕA1 ∧ · · · ∧ ϕAk | ϕB1 ∧ · · · ∧ ϕBl 〉. (17)

The main use of these multisigns is to account for the signs
occurring when reordering products of elements of the form
(15), which is made precise by the following.

Lemma III.1. The multi-sign (17) vanishes, unless A1 ∪̇
· · · ∪̇ Ak = B1 ∪̇ · · · ∪̇ Bl . However, if A1 ∪̇ · · · ∪̇ Ak = B1 ∪̇
· · · ∪̇ Bl , then[

A1 · · · Ak

B1 · · · Bl

]
(ϕA1 ∧ · · · ∧ ϕAk ) = ϕB1 ∧ · · · ∧ ϕBl . (18)

Proof. Since the ϕi anticommute as elements in F , its clear
that ϕA1 ∧ · · · ∧ ϕAk = 0 whenever the Ai are not mutually
disjoint (and similarly for the Bi). Therefore the right-hand
side of (17) trivially vanishes unless the Ai and Bi are mutually
disjoint, respectively. Now consider the case where the Ai and
Bi are mutually disjoint, but their unions A respectively B
are not equal, say there is a ∈ A \ B for some a ∈ Nn. Then
〈ϕa | ϕb〉 = 0 for all b ∈ B, thus 〈ϕA | ϕB〉 = 0 by definition
(8) and [

A1 · · · Ak

B1 · · · Bl

]
= ±〈ϕA | ϕB〉 = 0, (19)

which proves the first part. For the second part, assume that
A1 ∪̇ · · · ∪̇ Ak = B1 ∪̇ · · · ∪̇ Bl . Then, by anticommuting the
ϕi, there is λ ∈ {−1,+1} such that

ϕ
.= ϕA1 ∧ · · · ∧ ϕAk = λ · ϕB1 ∧ · · · ∧ ϕBl

.= λ · ϕ̃. (20)

042109-4



ORTHOGONALIZATION OF FERMION K-BODY … PHYSICAL REVIEW A 99, 042109 (2019)

Using the same argument, we find that ϕ̃ = ±ϕA, thus ‖ϕ̃‖2 =
1. Consequently,[

A1 · · · Ak

B1 · · · Bl

]
ϕA1 ∧ · · · ∧ ϕAk = 〈ϕ | ϕ̃〉ϕ = λ2‖ϕ̃‖2ϕ̃ = ϕ̃

= ϕB1 ∧ · · · ∧ ϕBl . (21)

Lemma III.2. For A, B, I ⊆ Nn we have

c∗
AϕI = 1(A ∩ I = ∅)

[
A I
A ∪ I

]
ϕA∪I , (22)

cAϕI = 1(A ⊆ I )

[
A I \ A

I

]
ϕI\A. (23)

Proof. If A ∩ I �= ∅ then c∗
AϕI = 0 and also the right hand side

of (22) vanishes due to Lemma III.1. Otherwise, if A ∩ I = ∅
then Lemma III.1 implies

c∗
AϕI = ϕA ∧ ϕI =

[
A B
A ∪ B

]
ϕA∪B, (24)

which completes the proof of (22).
To prove (23) note that since (ϕJ )J⊆Nn is an orthonormal

basis of F , we have

cAϕI =
∑

J⊆Nn

〈cAϕI | ϕJ〉ϕJ . (25)

Unwinding the definitions and using Lemma III.1, we com-
pute

〈cAϕI | ϕJ〉ϕJ = 〈ϕI | ϕA ∧ ϕJ〉 =
[

I
A J

]
= 1(A ⊆ I )1(J = A \ I )

[
I

A I \ A

]
, (26)

thus (23) follows by combining (25) and (26). �
Remark III.3. Definition (15) of the Fock space basis ele-

ments ϕA naturally generalizes to the case where A is a string
over the alphabet Nn. Within this generalized framework,
the multisign (17) can be interpreted as the antisymmet-
ric Kronecker Delta (see, e.g., the “algebraic framework”
in [21]).

C. Derivation of the trace formula

Proposition III.4. Let A, B,C, D ⊆ Nn, then

〈cA,B | cC,D〉L2(F )

=
∑
I∈M

[
A I \ B
C I \ D

][
I

B I \ B

][
I

D I \ D

]
, (27)

where M
.= M(A, B,C, D) is the family of all I ⊆ Nn such

that
(1) B ∪ D ⊆ I and
(2) A ∪̇ (I \ B) = C ∪̇ (I \ D).

Proof. Since (ϕI )I⊆Nn is an orthonormal basis of F , we have

〈cA,B | cC,D〉 = tr{c∗
BcAc∗

CcD} =
∑

I⊆Nn

〈c∗
AcBϕI | c∗

CcDϕI〉.

(28)

Using Lemma III.2, we compute for arbitrary I ⊆ Nn

cA,BϕI = c∗
A(cBϕI ) = 1(B ⊆ I )

[
I

B I \ B

]
c∗

AϕI\B

= 1(B ⊆ I )1(A ∩ (I \ B) = ∅)

[
I

B I \ B

]
ϕA ∧ ϕI\B,

(29)

and similarly for cC,DϕI , which yields

〈cA,BϕI | cC,DϕI〉

= 1(I ∈ M)

[
A I \ B
C I \ D

][
I

B I \ B

][
I

D I \ D

]
. (30)

Combining (30) with (28), the assertion follows. �
As stated in Proposition III.4, the contributing sets I ⊆

Nn in (27) must satisfy certain set-theoretic compatibility
relations with the given sets A, B,C and D. Moreover, Propo-
sition III.4 is of limited use because of the complicated signs
occuring in (27). The main part of this paper therefore is to
overcome these difficulties by a careful analysis of the set M
of contributing subsets I ⊆ Nn.

Proposition III.5. Let M = M(A, B,C, D) as in Proposi-
tion III.4. Then the following conditions are equivalent:

(1) M �= ∅,
(2) A ∪̇ (D \ B) = C ∪̇ (B \ D),
(3) B ∪ D ∈ M,
(4) A \ B = C \ D and B \ A = D \ C.

In any of these cases,

M = {(B ∪ D) ∪̇ N | N ∩ (A ∪ C) = ∅}. (31)

Proof. We will first show the equivalence of the conditions 1
to 3. The equivalence of 2 and 4 follows from a purely set-
theoretic argument, see Lemma III.6 below.

1⇒2: Choose M ∈ M. By definition of M, B ∪ D ⊆
M, we may write M = (B ∪ D) ∪̇ N so that M \ B =
(D \ B) ∪̇ N . Since A ∩ (M \ B) = ∅ by definition of M,
also A ∩ (D \ B) ⊆ A ∩ (M \ B) = ∅, and similarly C ∩ (B \
D) = ∅. Moreover, we have A ∩ N ⊆ A ∩ [(D \ B) ∪ N] =
A ∩ (M \ B) = ∅ and similarly C ∩ N = ∅. In summary,
we have [A ∪ (D \ B)] ∪̇ N = A ∪ (M \ B) = C ∪ (M \ D) =
[C ∪ (B \ D)] ∪̇ N and therefore A ∪ (D \ B) = C ∪ (B \ D).

2 ⇒ 3: By definition of M, M
.= B ∪ D ∈ M if and only

if A ∪̇ (M \ B) = C ∪̇ (M \ D), but by construction M \ B =
D \ B and M \ D = B \ D.

3 ⇒ 1: this follows trivially.
Now it remains to prove (31), given the conditions 1-4

hold. Denote the right-hand side of (31) by M̃.
M ⊆ M̃: Choose some M ∈ M. Since B ∪ D ⊆ M, we can

write M = (B ∪ D) ∪̇ N for some N ⊆ I \ (B ∪ D) and now
need to show that N ∩ (A ∪ C) = ∅. Since A ∩ (M \ B) = ∅
by definition of M, also A ∩ (D \ B) ⊆ A ∩ (M \ B) = ∅, and
similarly C ∩ (B \ D) = ∅. Moreover, we have A ∩ N ⊆ A ∩
[(D \ B) ∪ N] = A ∩ (M \ B) = ∅ and similarly C ∩ N = ∅,
thus N ∩ (A ∪ C) = ∅.

M̃ ⊆ M: Let M
.= (B ∪ D) ∪̇ N ∈ M̃, i.e., N ∩ (A ∪ C) =

∅. Clearly, B ∪ D ⊆ M. Moreover, by assumption we have
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A ∪̇ (D \ B) = C ∪̇ (B \ D), thus

A ∩ (M \ B) = A ∩ [(D \ B) ∪ N]

= [A ∩ (D \ B)] ∪ (A ∩ N ) = ∅. (32)

Similarly, C ∩ (M \ D) = ∅. Finally,

A ∪ (M \ B) = A ∪ [(D \ B) ∪ N] = [A ∪ (D \ B)] ∪ N

= [C ∪ (B \ D)] ∪ N = C ∪ (M \ D), (33)

thus M ∈ M, which completes the proof. �
Lemma III.6. Let X be a set and A, B,C, D ⊆ X . Then the

following conditions are equivalent
(1) A ∪̇ (D \ B) = C ∪̇ (B \ D),
(2) A \ B = C \ D and B \ A = D \ C.
Proof. 1 ⇒ 2: Let x ∈ A \ B. Then x ∈ A ⊆ A ∪̇ (D \

B) = C ∪̇ (B \ D), thus x ∈ C. Moreover, since (A \ B) ∩
D = A ∩ (D \ B) = ∅, we have x �∈ D, hence x ∈ C \ D. This
shows that A \ B ⊆ C \ D. Exchanging the roles of A,C and
B, D, respectively, also C \ D ⊆ A \ B.

Moreover, let x ∈ B \ A. If x �∈ D then x ∈ B \ D ⊆ C ∪̇
(B \ D) = A ∪̇ (D \ B), i.e., x ∈ A, contradicting our assump-
tion x ∈ B \ A. Hence, x ∈ D. Also, if x ∈ C then x ∈ C ∪̇
(B \ D) = A ∪̇ (D \ B), so x ∈ D \ B, which contradicts x ∈
B, hence x �∈ C. This shows B \ A ⊆ D \ C. Again, by renam-
ing A, B,C and D, we also see D \ C ⊆ B \ A.

2 ⇒ 1: We compute

A ∩ (D \ B) = A ∩ D ∩ Bc = (A \ B) ∩ D

= (C \ D) ∩ D = ∅. (34)

Exchanging the roles of A,C and B, D, we also get C ∩ (B \
D) = ∅. To show that A ∪ (D \ B) = C ∪ (B \ D), first note
that

A ∩ Dc = (A ∩ Dc ∩ B) ∪ (A ∩ Dc ∩ Bc) ⊆ (B \ D) ∪ (A \ B)

= (B \ D) ∪ (C \ D) ⊆ C ∪ (B \ D) (35)

and

A ∩ B = A ∩ (A ∩ B) ⊆ A ∩ (B \ A)c

= A ∩ (D \ C)c = A ∩ (C ∪ Dc)

= (A ∩ C) ∪ (A ∩ Dc) ⊆ C ∪ B \ D, (36)

where we used (35) in the last step. Consequently, we
conclude

A
(34)⊆ A ∩ (D \ B)c = A ∩ (Dc ∪ B)

= (A ∩ Dc) ∪ (A ∩ B) ⊆ C ∪ (B \ D),

(37)

where we used (35) and (36) in the last step. Moreover, we
have

D \ B
(34)⊆ (D \ B) ∩ Ac

= [(D \ B) ∩ Ac ∩ C] ∪ [(D \ B) ∩ Ac ∩ Cc]

⊆ C ∪ (D ∩ Cc ∩ Ac) = C ∪ (B ∩ Ac) ⊆ C ∪ B, (38)

and intersecting both sides of this inclusion with Bc, we obtain
D \ B ⊆ C \ B ⊆ C. Combined with (37), this shows A ∪ (D \
B) ⊆ C ∪ (B \ D) and, by exchanging the roles of A,C and
B, D, the converse inclusion follows as well. �

Remark III.7. Lemma III.6 can be further generalized by
noting that the given conditions are also equivalent to the
following (equivalent) conditions:

(1) B \ D = A \ C and D \ B = C \ A,
(2) B ∪̇ (A \ C) = D ∪̇ (C \ A).
Proposition III.8 (Trace Formula). Let K, A, B ⊆ Nn and

L,C, D ⊆ Nn be mutually disjoint, respectively. Then

〈nK cA,B | nLcC,D〉L2(F ) = δA,CδB,D · 2n−|A∪B∪K∪L|. (39)

Proof. Using Lemma III.1 and Lemma III.2, we find for
any I ⊆ Nn

nKϕI = c∗
K (cKϕI ) = 1(K ⊆ I )

[
I

K I \ K

]
c∗

KϕI\K

= 1(K ⊆ I )

[
I

K I \ K

]
ϕK ∧ ϕI\K = 1(K ⊆ I )ϕI . (40)

Combined with Lemma III.2, we therefore get for any I ⊆ Nn

nK cA,BϕI = 1(K ⊆ A ∪ (I \ B))1(B ⊆ I )1(A ∩ I \ B = ∅)

·
[

I
B I \ B

]
ϕA ∧ ϕI\B. (41)

Consequently, we have with M = M(A, B,C, D) as in
Proposition III.5

〈nK cA,BϕI | nLcC,DϕI〉
= 1(I ∈ M)1[K ⊆ A ∪ (I \ B)]1[L ⊆ C ∪ (I \ D)]

·
[

A I \ B
C I \ D

][
I

B I \ B

][
I

D I \ D

]
. (42)

Since A ∩ B = C ∩ D = ∅ by assumption, Proposition III.5
implies that 1(I ∈ M) = δA,CδB,D1(B ⊆ I )1(I ∩ A = ∅).
Thus (42) equals

δA,CδB,D1(B ⊆ I )1(I ∩ A = ∅)1[K ∪ L ⊆ A ∪ (I \ B)]. (43)

Now observe that for A = C we have L ∩ A = L ∩ C = ∅, i.e.,
K ∪ L ⊆ A ∪ (I \ B) is equivalent to K ∪ L ⊆ I \ B, which is
further equivalent to K ∪ L ⊆ I . Hence (42) equals

δA,CδB,D1(I ∩ A = ∅)1(B ∪ K ∪ L ⊆ I ) (44)

and, by summing (44) over all I ⊆ Nn, we find

〈nK cA,B | nLcC,D〉 = δA,CδB,D|P[Nn \ (A ∪ B ∪ K ∪ L)]|.
(45)

�
Example III.9 (Trace of the Particle Number Operator).

Let dim h = n < ∞. By Lemma III.2, the particle number
operatorN̂

.= ∑n
i=1 ni can be written as N̂ = ⊕n

k=0 k · id�kh.
Consequently, its trace is given by

∑n
k=0 k · (n

k

)
. On the other

hand, Proposition III.8 implies tr {N̂} = ∑n
i=1 〈1 | ni〉 =

n · 2n−1. Thus we proved the well-known identity

n∑
k=0

k

(
n

k

)
= tr{N̂} = n · 2n−1, (46)

which also follows from differentiating (1 + x)n with respect
to x and evaluating at x = 1.

042109-6



ORTHOGONALIZATION OF FERMION K-BODY … PHYSICAL REVIEW A 99, 042109 (2019)

IV. ORTHONORMALIZATION

In this section, given an orthonormal basis in h, we will
construct explicit orthogonal bases of L2(F ) which restrict
to the spaces of k-body operators and k-body observables,
respectively.

A. Orthonormal basis of L2(F )

As implied by Proposition III.8, the monomials (nK )K⊆Nn

are not pairwise orthogonal. Inspired by computer algebraic
experiments using Gram-Schmidt orthogonalization in low-
dimensional cases, we introduce for K ⊆ Nn the element

bK
.=

∑
I⊆K

(−2)|I|nI ∈ L2(F ). (47)

As we will see in Theorem IV.2, the bK are pairwise or-
thogonal and can be used to construct an orthogonal basis of
L2(F ). The key ingredient is the following lemma, which is
essentially a consequence of the binomial formula.

Lemma IV.1. Let K, L be finite sets. Then∑
I⊆K

∑
J⊆L

(−2)|I|+|J|2−|I∪J| = δKL. (48)

Proof. Let M
.= K ∩ L. We compute

S
.=

∑
I ⊆ K
J ⊆ L

(−2)|I|+|J|2−|I∪J| =
∑
I ⊆ K
J ⊆ L

(−1)|I|+|J|

2−|I∩J| , (49)

where we used that |I ∪ J| = |I| + |J| − |I ∩ J|. Since every
I ⊆ K can be written uniquely as I = I1 ∪̇ I2 with I1

.= (I ∩
M ) ⊆ M and I2

.= I \ I1 ⊆ K \ M and (similarly for J ⊆ L),
we find

S =
∑

I1,J1⊆M

(−1)|I1|+|J1|

2−|I1∩J1|
∑

I2⊆K\M

(−1)|I2|
∑

J2⊆K\M

(−1)|J2|. (50)

By the binomial formula, for any finite set X and a ∈ C we
have ∑

Y ⊆X

a|Y | = (1 + a)|X |. (51)

In particular, for a = −1 we have
∑

Y ⊆X (−1)|Y | = 1(X = ∅).
Hence ∑

I2⊆K\M

(−1)|I2|
∑

J2⊆L\M

(−1)|J2|

= 1(K \ M = ∅)1(L \ M = ∅)

= 1(K ⊆ L)1(L ⊆ K ) = δKL. (52)

Inserting (52) in (50), we find

S = δKL

∑
I,J⊆M

(−1)|I|+|J|

2−|I∩J| . (53)

To evaluate the sum in (53), instead of summing over all
I, J ⊆ M, we sum over all X

.= I ∩ J ⊆ M, I3
.= I \ X ⊆ M \

X and J3
.= J \ (X ∪̇ I3) ⊆ M \ (X ∪̇ I3) and apply (51) once

again: ∑
I ⊆ M
J ⊆ M

(−1)|I|+|J|

2−|I∩J|

=
∑
X⊆M

2|X | ∑
I3⊆M\X

(−1)|I3|
∑

J3⊆M\(X ∪̇I3 )

(−1)|J3|

=
∑
X⊆M

2|X | ∑
I3⊆M\X

(−1)|I3|1(I3 = M \ X )

=
∑
X⊆M

2|X |(−1)|M\X | = (−1)|M| ∑
X⊆M

(−2)|X |

= (−1)|M|(−1)|M| = 1. (54)

Combining (53) and (54), the assertion follows. �
Theorem IV.2. Let bK be defined as in (47), then an or-

thonormal basis of L2(F ) is explicitly given by

B=
{

bK cI,J√
2n−|I∪̇J| ∈ L2(F )

∣∣∣∣∣K, I, J ⊂ Nn pairwise disjoint

}
.

(55)

Proof. Let K, A, B ⊆ Nn and L,C, D ⊆ Nn be mutually
disjoint, respectively. By definition of bK and using Propo-
sition III.8, we obtain

〈bK cA,B | bLcC,D〉
=

∑
I⊆K

∑
J⊆L

(−2)|I|+|J|〈nI cA,B | nJcC,D〉

=
∑
I⊆K

∑
J⊆L

(−2)|I|+|J|δACδBD2n−|(A∪̇B)∪(I∪J )|

= δACδBD2n−|A∪̇B|
(∑

I⊆K

∑
J⊆L

(−2)|I|+|J|2−|I∪J|
)

= δACδBD2n−|A∪̇B|δKL, (56)

where we used that for A = C, B = D, I ⊆ K and J ⊆ L we
have |A ∪ B ∪ I ∪ J| = |A ∪ B| + |I ∪ J| in the third step and
Lemma IV.1 (see below) in the last step. This shows that (55)
is an orthonormal basis of its span S. Noting that

dim S =|B|=|{ f : Nn → {1, 2, 3, 4}}| = 4n = dim L2(F ),

(57)

we conclude that S = L2(F ). �

B. Orthonormal basis of k-body operators

Having established B as an orthonormal basis of L2(F ),
we now proceed and show that B restricts to a basis of Ok (F )
for all k ∈ N0 (Theorem IV.4).

Lemma IV.3. A basis of Ok (F ) is explicitly given by

B0
.= {cI,J |I, J ⊆ Nn, |I| + |J| = 2l with 0 � l � k },

(58)

in particular, we have dimCOk (F ) = ∑k
l=0

(2n
2l

)
.

Proof. Since the mapping α defined in (12) is a linear
automorphism of L2(F ), the cI,J = α(|ϕI〉〈ϕJ |) with I, J ⊆
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Nn form a basis of L2(F ). An element A ∈ L2(F ) of the form

A =
∑

I,J⊆Nn

AI,JcI,J (59)

is a k-body operator if and only if AI,J = 0 whenever |I| + |J|
is odd or |I| + |J| > 2k. In other words, (58) a basis of Ok (F )
and

dimCOk (F ) = |B0| =
k∑

l=0

2l∑
i=0

(
n

i

)(
n

2l − i

)
=

k∑
l=0

(
2n

2l

)
,

(60)

where we used Vandermonde’s identity. �
Theorem IV.4. The orthonormal C-basis B of L2(F ) given

in Theorem IV.2 restricts to an orthonormal basis Bk of the
space Ok (F ) of k-body operators. More specifically, we have

Bk
.= B ∩ Ok (F )

=
{

bK cI,J√
2n−|I∪J|

∣∣∣∣ K, I, J ⊂ Nn pairwise disjoint,

|I| + |J| + 2|K| = 2l with 0 � l � k

}
.

(61)

Proof. Let b ∈ B, i.e.,

b = bK cI,J =
∑
L⊆K

(−2)|L|
√

2n−|I∪J| nLcI,J (62)

for K, I, J ⊆ Nn pairwise disjoint. Since nLcI,J = ±cI∪̇L,J∪̇L
for every L ⊆ K , Lemma IV.3 implies that b ∈ Ok (F ) if
and only if |I| + |J| + 2|K| = 2l for some 0 � l � k, which
proves (61). Finally, noting that we have a bijection B �
bK cI,J → cI∪̇K,J∪̇K ∈ B0 with inverse cI,J �→ bI∩JcI\J,J\I , we
conclude that |Bk| = |B0| = dim Ok (F ) and therefore Bk is
a basis of Ok (F ). �

C. Orthonormal basis of k-body observables

The orthonormal C-basis B of L2(F ) as given in Theorem
IV.2 does not immediately restrict to bases of k-body observ-
ables, since BC contains elements which are not self-adjoint.
For example, if I ⊂ Nn is nonempty, then

(b∅cI,∅)∗ = cI �= c∗
I = b∅cI,∅.

However, BC has the special property that BC = {b∗ | b ∈
BC}, which allows us to obtain an orthonormal basis of

self-adjoint elements by a suitable unitary transformation of
L2(F ). The general principle of this idea is given by the
following.

Lemma IV.5. Let H be a finite-dimensional, complex
Hilbert space with real structure J and B an orthonormal
C-basis with J (B) ⊆ B. Then

(1) B is of the form

B = (a1, . . . , ak, b1, b∗
1, . . . , bl , b∗

l ) with ai = a∗
i

∀1 � i � k. (63)

(2) An orthonormal R-basis of VR
.= {v ∈ V | J (v) = v}

is given by

BR
.= (a1, . . . , ak,

√
2Re(b1),

√
2Im(b1), . . . ,√

2Re(bl ),
√

2Im(bl )). (64)

[Here, Re(a)
.= 1

2 (a + a∗) and Im(a)
.= 1

2i (a − a∗) denote
the real- and imaginary part of a, respectively]

Proof. 1 Since J (B) ⊆ B and J2 = 1, J defines an action
of Z/2Z on B. The set B is decomposed into the orbits of
this action, which are either of length 1 or length 2 by the
orbit-stabilizer Theorem. By construction, the orbits of length
1 are of the form {a = a∗} and the orbits of length 2 are of
the form {b, b∗}, hence the desired form (63) is obtained by
selecting an element in each orbit of B.

2 Let f : V → V be the C-linear map mapping B to BR.
Then f is represented with respect to B by the unitary matrix

1k ⊕ U ⊕ · · · ⊕ U︸ ︷︷ ︸
l times

with U
.= 1√

2

(
1 −i

1 i

)
∈ U (2).

(65)

In particular, with B also BR is an orthonormal C-basis of
V and |BR| = |B|. By construction we have BR ⊆ VR, thus
BR is an orthonormal R-basis of its R-span U . Since U is
an R-subspace of VR of dimension |BR| = |B| = dimC V =
dimR VR, we have U = VR, i.e., BR is an orthonormal R-
basis of VR. �

Remark IV.6. The ordering (63) of the basis B in Lemma
IV.7 is not uniquely determined. However, if B is endowed
with a prescribed ordering, then B can can be uniquely
reordered in the form (63) by requiring a1 < · · · < ak and
bi < b∗

i for all 1 � i � l .
Theorem IV.7. An orthonormal C-basis of L2(F ) is explic-

itly given by

BR = {2−n/2bK | K ⊆ Nn} ∪̇
{

bK (cI,J ± cJ,I )

2(n+1−|I∪J|)/2

∣∣∣∣∣K, I, J ⊂ Nn mutually

disjoint and I < J

}
.

BR restricts to an orthonormal basis of the space OR
k (F ) of k-body observables for every k ∈ N0. More specifically, an

orthonormal R-basis of OR
k (F ) is given by

BR
k

.= BR ∩ OR
k (F ) = {bK | K ⊆ Nn and |K| � k}

∪̇
{

bK (cI,J ± cJ,I )

2(n+1−|I∪J|)/2

∣∣∣∣∣ K, I, J ⊂ Nn pairwise disjoint, I < J

and |I| + |J| + 2|K| = 2l with 0 � l � k

}
,

where I < J is to be understood with respect to the lexicographic ordering.
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Proof. The first statement follows immediately from
Lemma IV.7 applied to the orthonormal C-basis B as given in
Theorem IV.2, which has been ordered according to Remark
IV.6 by defining bK cA,B < bLcC,D ⇔ (K, A, B) < (L,C, D)
(lexicographic order). �

V. ALTERNATIVE CONSTRUCTION OF AN
ORTHONORMAL BASIS

In this section, we provide an alternative construction of an
orthonormal basis of L2(F ) which restricts to an orthonor-
mal basis of Ok (F ) in the sense of Theorem IV.4. This
construction was already presented in Sec. 8 of [1], but the
corresponding proofs were deferred to a somewhat obscure
reference.

Fix an orthonormal basis ϕ1, . . . , ϕn of the one-particle
Hilbert space h and consider for j = 1, . . . , 2n the operator

aj
.=

{
c∗

k + ck if j = 2k is even,

i(c∗
k − ck ) if j = 2k + 1 is odd.

(66)

By definition, the aj are self-adjoint and, by the CAR (9),
satisfy

{a j, ak} = 2δ jk, a2
j = 1. (67)

Moreover, for a subset J = { j1 < · · · < jl} ⊆ N2n we define
aJ

.= a j1 · · · a jl where a∅
.= 1 by convention. The following

result has been suggested to us by Gosset. We present a
proof which only relies on the algebraic properties (67) of the
elements a j .

Theorem V.1. An orthonormal C-basis of L2(F ) is given
by

B̃
.= {2−n/2aJ | K ⊆ N2n}. (68)

Moreover, B̃ restricts to an orthonormal basis B̃k of Ok (F )
for every k ∈ N0, where

B̃k
.= B̃ ∩ Ok (F ) =

{
aJ

∣∣∣∣∣ J ⊆ N2n and

|J| = 2l with 0 � l � k

}
.

(69)

Proof. We will first show that 〈aJ | aK〉 = 2nδJK for
all J, K ⊆ N2n. If J = K = { j1 < · · · < jl} then, by self-

adjointness of the a j and a2
j = 1F we have

〈aJ | aK〉 = tr{a∗
J aJ} = tr{a jl · · · a j1 a j1 · · · a jl }

= tr{1F } = 2n. (70)

Now consider the case J �= K . Without loss of generality, we
may assume J ∩ K = ∅ because if i ∈ J ∩ K then, by (67),

〈aJ | aK〉L2(F ) = tr{a∗
J aK} = ± tr{a∗

J\{i}aK\{i}}. (71)

Moreover, by setting I
.= J∪̇K and noting that 〈aJ | aK〉 =

± tr{aI}, it suffices to show that tr{aI} = 0 for all nonempty
I ⊆ N2n. First, consider the case where |I| = l > 0 is even.
Then, writing I = {i1 < · · · < il we obtain, using (67) and
cyclicity of trace,

tr{aI} = tr{ai1 · · · ail } = (−1)l−1 tr{ail ai1 · · · ail−1}
= (−1)l−1 tr{ai1 · · · ail } = − tr{aI}, (72)

thus tr{aI} = 0. On the other hand, if |I| is odd, then consider
the natural Z2-grading F = F+ ⊕ F− on F induced by χ

.=
(−1)N̂, i.e., F±

.= ker{χ ∓ 1}. By definition, ai is odd with
respect to this grading for any i ∈ N2n, hence also aI is odd
when |I| is odd and therefore tr{aI} = 0. We have thus proved
that

〈aJ | aK 〉 = 2nδJK , J, K ⊆ N2n. (73)

In particular, since |B̃k| = 22n = dim L2(F ), B̃k is an ONB
of L2(F ).

To prove (69) note that, by definition, an element aJ is an
j-particle operator with j

.= |J| for any J ⊆ N2n, hence aJ is
a k-body operator if and only if |J| = 2l for some 0 � l � k.
By (69) and Lemma IV.3,

|B̃k| =
k∑

l=0

(
2n

2l

)
= dim Ok (F ), (74)

thus B̃k is an orthonormal basis of Ok (F ). �
Remark V.2 (Relation between B and B̃). If n > 0, the or-

thonormal bases B̃ and B are different. In fact, B ∩ B̃ =
{2−n/21F } since the elements of B are homogeneous with
respect to the natural grading F = ⊕

k�0

∧k
h, whereas the

elements aJ ∈ B̃ are inhomogeneous whenever J �= ∅.
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