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We study the relation between lack of information backflow and completely positive divisibility for nonin-
vertible qubit dynamical maps. Recently, these two concepts were shown to be fully equivalent for the so-called
image nonincreasing dynamical maps. Here we show that this equivalence is universal for any qubit dynamical
map. A key ingredient in our proof is the observation that there does not exist a completely positive and
trace-preserving projector onto a three-dimensional subspace spanned by qubit density operators. Our analysis is
illustrated by several examples of qubit evolution, including dynamical maps which are not image nonincreasing.
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I. INTRODUCTION

With the discovery of new experimental techniques, quan-
tum information is no longer a subject of solely theoretical
interest. Numerous quantum protocols, principles, and results
discovered theoretically are now being tested, verified, and re-
inforced by experiments. Along with these new developments
comes a serious challenge of controlling and understanding
real- life quantum systems which are inherently open to the
environment. This has resulted in a lot of interest regarding
open quantum systems recently [1-6]. The evolution of such
systems is represented by a dynamical map, that is, a family
of completely positive (CP) trace-preserving (TP) maps A; :
B(H) — B(H) (t > 0), where B(H) denotes a linear space
of bounded operators acting on the system Hilbert space .
(Actually, in this paper we consider only finite-dimensional
cases and hence B(H) coincides with all linear operators on
H.) Moreover, one assumes a natural initial condition A;—g =
id (identity map).

Usually, the origin of a dynamical map is a composed
system living in H ® Hg, with Hg denoting a Hilbert space
of environment. Now, if H = Hg + Hr + H;, is the total
Hamiltonian of the composed system and p ® pg is an initial
product state, then the standard reduction procedure defined
via partial trace operation,

A(p) = Tre(e™ p ® pp ™), (1)

gives rise to a legitimate dynamical map (in the paper we keep
hA=1).

Recently, the notion of non-Markovian quantum evolu-
tion has received considerable attention (see review papers
[7-10]). This property, although well defined in the classi-
cal regime, has a number of nonequivalent prescriptions in
quantum theory. On the level of dynamical maps, two main
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approaches which turned out to be very influential are based
on the concept of CP divisibility [11] and information flow
[12]. One calls a dynamical map A, divisible if

A =Visolhs, (259), 2

where V, ; : B(H) — B(H) is a linear map defined on the
entire 5(H). Being divisible the map A; is:

(i) P-divisible if the map V;; is positive and trace-
preserving (PTP), and

(ii) CP-divisible if the map V; ; is CPTP [13]. (For math-
ematical details of positive and completely positive maps see
[14,15].)

In the latter case one may interpret V;; as a legitimate
quantum channel, mapping states at time s into states at
time ¢. Following [11] one calls the quantum evolution to be
Markovian if and only if (iff) the corresponding dynamical
map is CP divisible.

A second idea developed in [12] is based upon the notion
of information flow: for any pair of density operators p; and
0> one defines an information flow

d
o(p1, p2;t) = E”At(PI)_AZ(IOZ)”l, 3

where ||A||; = Trv/ATA denotes the trace norm of A. Actually,
llor — p2|l1 represents the distinguishability of p; and p;.
Moreover, %(1 + |lp1 — p2ll1) gives the maximal guessing
probability in the unbiased scenario, that is, when p; and
p> are prepared with the same probability [16]. Following
[12] Markovian evolution is characterized by the condition
o(p1, p2;t) <0 for all + > 0 and any pair of initial states
01 and p,. Whenever o(p1, p2;t) > 0 one calls it informa-
tion backflow, meaning that the information flows from the
environment back to the system. Note that o (p;, p2;¢) > 0
implies distinguishability of the time-evolved states A;[p;],
and A,[p;] fails to be monotonically decreasing at time .
A detailed description of how departure from monotonicity
can be seen as information backflow is given in [8]. In this
case the evolution displays nontrivial memory effects and

©2019 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.042105&domain=pdf&date_stamp=2019-04-08
https://doi.org/10.1103/PhysRevA.99.042105

CHAKRABORTY AND CHRUSCINSKI

PHYSICAL REVIEW A 99, 042105 (2019)

is hence called non-Markovian. One calls o (p;, p2;t) <0 a
Breuer-Laine-Piilo (BLP) condition.

In this paper, we address the problem of analyzing how
far these two approaches to Markovianity are equivalent. Ac-
tually, the connection between P divisibility and information
backflow was first analyzed in [17]. Later on in [18], it was
shown that for invertible dynamical maps CP divisibility is
equivalent to the lack of information backflow on an extended
system comprised of the system and a d-dimensional ancilla
in an extended scenario when two states p; and p, are
prepared with probabilities p; and p,. Bylicka et al. [19]
observed that one may still use only the unbiased case p; =
P2, but the price one pays is the use of (d + 1)-dimensional
ancilla. These results were then extended to image nonin-
creasing dynamical maps [20], which is a large class of
dynamical maps including all invertible ones. Also recently,
the equivalence between divisibility and a monotonic decrease
of information in terms of guessing probability was studied by
Buscemi and Datta in [21] for time-discrete dynamical maps.

We show here that the equivalence between CP divisibility
and lack of information flow, as described in the previous
paragraph, can be extended to an arbitrary dynamical map
if we use only dynamical maps on qubits. Our results prove
the complete equivalence of the two main approaches to
Markovianity for qubit dynamical maps.

The paper is structured as follows: In Sec. II, we review the
recent results in this direction so as to provide a background
for the paper. Next, in Sec. III we present the main result of
our paper and in Sec. IV, we discuss some examples before
drawing our conclusions in Sec. V.

II. INVERTIBLE VS NONINVERTIBLE MAPS

By an invertible dynamical map we understand A, such
that A;"! exists for all # > 0. Note that even if it exists, the
inverse need not be completely positive (it is always trace
preserving). The inverse is also completely positive if and only
if the map A, is unitary, thatis, A,(p) = U, pU,', where U, is a
time-dependent unitary operator in H. Now, an invertible map
is always divisible; indeed one finds V; ; = A,A;l. Moreover,

Theorem 1 ([18]). An invertible dynamical map A, is P
divisible if and only if

d
E”AI(PI/OI —p2p2)lli €0 “)

for all probability distributions p; + p, = 1 and density oper-
ators pi, pp in H. Moreover, it is CP divisible if and only if

d .
E”[ldd ® Ad(pror — p202)lll €0 &)

for all probability distributions p; + p, = 1 and density oper-
ators 01, 02 in C¢ @ H (with d = dim H).

Note that the BLP Markovianity condition coincides with
(4) with p; = p,. Interestingly, one may use only the com-
pletely unbiased case (p; = p») due to the following:

Theorem 2 ([19]). An invertible dynamical map A; is CP
divisible if and only if

d . .
E”[lddﬂ ® Ao —02)Ih <0 (6)

for all density operators g}, 02 in C**! @ H.

For maps which are not invertible even divisibility is not
evident [19,20]. Note that V; ; is well defined on the image of
the maps A; [we denote by Im(A;)]. Actually, as shown in
[20], divisibility of A, is equivalent to the following property:

Ker(A;) < Ker(A/), (7

for any s < ¢, that is, the map is kernel nondecreasing. This
condition guarantees that V; ; can be consistently extended
from Im(Aj) to the whole space B(#H). Chruscinski et al. [20]
analyzed the question of when the extension of V; ; is CPTP.
The central result of [20] states the following:

Theorem 3 ([20]). If the dynamical map A, satisfies

d .
E”[ldd ® Al(pro1 — p202)lh <0, ¥

for all probability distributions p; + p, = 1 and density oper-
ators o1, 02 in C? ® H, then it is divisible with V; s completely
positive on B(H) but trace preserving only on the image
Im(Ay).

Interestingly, there exists a class of dynamical maps for
which the extension of V,  is not only completely positive but
also trace preserving, that is, such maps are CP divisible. One
calls a dynamical map A, image nonincreasing [20] if

Im(A,) C Im(A;) &)

fort > s.
Theorem 4 ([20]). If the dynamical map A, is image non-
increasing and it satisfies

d . .
Eﬂ[ldd ® Ad(pror — p202)lli <0 (10

for all probability distributions p; + p, = 1 and density oper-
ators 01, 0, in C? ® H, then it is CP divisible.
Finally, Theorem 2 may be generalized as follows:
Theorem 5 ([20]). If the dynamical map A, is image non-
increasing and it satisfies

d .
E”[lderl ® Aller —e2)lh <0 1D

for all density operators g1, 0» in C?*! ® H, then it is CP
divisible.

III. QUBIT DYNAMICAL MAPS

Now, we consider the simplest scenario—dynamical maps
for qubits. The main result of this paper is provided by the
following:

Theorem 6. A qubit dynamical map A, is CP divisible if
and only if

d .
E”[ldz(g)[\r](plQl —po)lh <0 (12)

for all probability distributions p; + p, = 1 and two-qubit
density operators g1, 0, in C? ® C2.

We stress that this results is universal, that is, we do not
assume that the map is invertible (as in Theorem 1) nor that
it is image nonincreasing (as in Theorem 4). Of course, for
invertible qubit maps it is just a special case of Theorem 1.

The proof of this result consists of the following steps: First
it is shown (Proposition 1) that the image of any CPTP qubit
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projector is never three-dimensional. This observation supple-
mented by the Alberti-Uhlmann theorem allows to show that
condition (12) is indeed equivalent to CP divisibility.

It was shown in [20] that if A; is not invertible and #; > 0
is the first moment of time such that A/’ ! does not exist, then
condition (12) implies that

l_[tl = hm ‘/l],tlfé (13)
e—>0t

defines a completely positive projector onto Im(A;, ).

Proposition 1. There is no CPTP projector IT : M»(C) —
M,(C) onto a three-dimensional subspace of M,(C) spanned
by density operators.

Actually, the above Proposition follows from the following
result of [22] (however, we provide an independent proof
in Appendix A). Let @ be a qubit quantum channel and let
PO(®) be the pure output of P, that is, a set of pure state in
the image of @,

PO(d) = ®(B)N S,

where B is a Bloch ball and S a Bloch sphere—a set of qubit
pure states. One proves the following:

Proposition 2 ([22]). Let ® be a qubit quantum channel
such that PO(®) has more than two elements. Then PO(®) =
S, that is, all pure states belong to the pure output of ®.

Now, suppose that there exists a CPTP projector @ such
that its image is three-dimensional. Being a projector, it does
not change the purity of the input states in subspace Im(®).
It is, therefore, clear that the intersection Im(®) NS defines
a circle on the Bloch sphere. But it contradicts Proposition 2,
which requires that in this case PO(®) = S.

The above observation leads us to the following:

Corollary 1. If the qubit dynamical map A, satisfies (12),
then the dimension of its image dim Im(A,) € {1, 2, 4}.

A pictorial representation of the above result is given in
Figs. 1(b)-1(d). Another ingredient of the proof of Theorem 6
is based on the following:

Proposition 3 (Alberti-Uhlmann [23]). Let {0, 02} and
{o], 05} be two sets of qubit states. Then there exists a CPTP
map & : B(H) — B(H) connecting them, i.e., $(o;) = o for
i = 1,2, if and only if

oy — 8ozt = lloy — o3l (14)

forall § > O.
Note that the above formula can be rewritten as follows:

Ipio1 — p2oalli 2 |Ipio] — p20slh (15)

for all probability distributions p; + p» = 1.

Now the proof of Theorem 6 easily follows. Condition (12)
implies that A, is divisible or equivalently kernel nondecreas-
ing [20]. Suppose now that Im(Ay) is two-dimensional and let
p1 and p, be two density operators such that p;(s) = As(p1)
and py(s) = As(p2) span Im(Ay). Inequality (12) implies

Ip1o1(s) — p2o2(Hll1 = lIp1e1(t) — P22t (16)

where 0;(t) = A;(p;) = Vi 5(p0i(s)). Alberti-Uhlmann theo-
rem guaranties that there exists a quantum channel V;; :
B(H) — B(H) such that p;(t) = V; ;(pi(s)). Clearly, V, ; is a
CPTP extension of V, ; : Im(Ay) — B(H).

10 10

FIG. 1. (a) Bloch ball representation of the action of the PTP map
W and the CPTP map S;. The equatorial brown disk and the thick
blue z axis represent the set of density matrices lying in the image
of maps W and S;, respectively. (b, ¢, d) The allowed structures
of density matrices lying in the image of qubit dynamical maps.
(b) When the map is invertible the image is an ellipsoid. (c¢) When
the map is noninvertible and its image is two-dimensional it forms a
line within the Bloch ball. (d) When the map is noninvertible and its
image has dimension 1 it forms a point.

If Im(A;) is one-dimensional, then A(p) = w;Trp for
some density operator ;. Since the map is divisible it follows
that Im(A,) is one-dimensional for all # > s, and hence V, ; =
; Trp is a CPTP projector which proves that the original qubit
map A, is CP divisible. (]

It should be emphasized that this proof requires that
Im(A;) be at most two-dimensional, otherwise one would
need more than two density operators to span the image of
Ay and then the Alberti-Uhlmann theorem is not enough to
prove that there exists a universal extension for all states
from the image. (See also an interesting discussion of the
Alberti-Uhlmann theorem in [24].)

Note, that Proposition 1 does not forbid the existence of
qubit quantum channel ® such that dim Im(®) = 3. As an
example consider

®(p) = 3p + 1(01001 + 02p02). (17)
One finds
d(1) =1, Do) = 301, P(02) = 102, P(03) =0,

which proves that the range of @ is three-dimensional. It is
clear that ® being a CPTP map is not a CPTP projector (it has
two eigenvalues 1/2) and hence does not preserve the purity
of the input states in Im(®).

Note that since dim Im(®) = 3, all unit trace trace Hermi-
tian operators in Im(®) will form a plane which would cut
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the Bloch sphere along a great circle. As a result, the infinite
family of pure states which form the great circle is a subset of
Im(®). This would suggest, erroneously, that the pure output
of this channel is this set of pure states. On the contrary, the
pure output of any channel is just a set of pure density matrices
lying in the image of the Bloch ball under the action of the
channel. In this case PO(®) is the empty set.

It should be stressed that this result is no longer true for
positive and trace-preserving projectors. Consider a map

U(p) = 1(3p + 01poy + 02p05 — 03p03).  (18)
One finds
() =1, ¥(o1) =01, ¥(02) =02, W(0o3) =0,
and hence W maps a density operator
p = 31+ x101 + X202 + x303) (19)
to a density operator
U(p) = (1 +x101 + x07), (20)

that is, W projects a Bloch ball into a disk x3 = 0. For more
details cf. Appendix B. Interestingly, a map projecting a Bloch
ball to the x3 axis defined by

S3(p) = 3(p + 03p03) 2L
is a CPTP projector satisfying
S3(D) =1, S3(01) =0, S3(02) =0, S3(03) = 03,

and hence dim Im(S3) = 2. A pictorial representation of the
action of W and &3 is given in Fig. 1(a).

Now, observe that for the map W only points from the
equator

11+ cos oy +singoy), ¢ € [0,27),

belonging to PO(W). Hence this map cannot be completely
positive. Actually, one proves the following:

Proposition 4. Let T1: My(C) — M,(C) be a positive
trace-preserving projector onto a three-dimensional subspace.
Then PO(IT) is a great circle on the Bloch ball S. Equivalently,
the subspace Im(®) = ®(M,(C)) is an operator system (con-
taining 1 and is closed under Hermitian conjugation [25]).

For the proof see Appendix B.

IV. EXAMPLES

In this section we illustrate our discussion by three
examples:

(1) Commutative and image nonincreasing evolution,

(2) Noncommutative but image nonincreasing, and

(3) Noncommutative and not image nonincreasing.

Recall that if the dynamical map A, is commutative, that
is, AsA, = Ay, and diagonalizable, meaning that time-
independent eigenvectors X, of A; and Y, of the dual map
Af (so-called damping basis [26])

AMXel = A (OX ,  AJ[Ye] = A5(0)Ya,

span the entire B(#), the map A, gives rise to the following
spectral representation:

A(p) = ) ha(OX T (Y, p). (22)

Moreover, in this case if the map is divisible, that is, kernel
nondecreasing, then necessarily it is image nonincreasing.

Example 1. A well-known example of a commutative di-
agonalizable qubit dynamical map is generated by the follow-
ing generator (it was already analyzed in [20]):

Ly =yi®)L1 + () Ly + y3(t) L3, (23)

where L;(p) = %(akpak — p). The corresponding dynamical
map reads

3
A(p) =) pu(t)oupoa, (24)
a=0

with g = 1, and
po(t) = ZI1 + A1(0) + Aa(r) + A3(1)],
pi(t) = g[1+1i(1) = Aa(1) = As(0)],
pa(t) = 311 = 7 (0) + Aa(t) — A3(0)],
p3(t) = 311 = A1(0) = Aa(0) + A3(1)],
and the corresponding eigenvalues A, (¢) read
i) =exp(—T;@) — (@),

where {i, j, k} is a permutation of {1,2,3}, and I'y(z) =
fot yi(t)dt. The map A, is invertible if all ['x(z) are finite
for finite times. Now, if, for example, one has I'; (") = oo,
then A,(¢") = A3(t')= 0, which means that the image of A,
is two-dimensional and, of course, it is orthogonal to the
two-dimensional kernel:

Im(A,) = spanfog, o1}, Ker(A,) = span{os, 03).

Divisibility requires that I'1(¢) = oo for ¢ > ¢'. Now, if I'»(¢)
and I'3(¢) stay finite, then

Im(A;) =Im(Ay), Ker(A;) =Ker(A,)

for t > ¢’ and A, is image nonincreasing. If, for example,
[>(t") = oo, then the image of A, is one-dimensional and
it is orthogonal to the three-dimensional kernel:

Im(A,) = spanfag}, Ker(A,) = span{oy, 03, 03).

Now, divisibility requires that additionally, I';(t) = oo for¢ >
t”, and as a result,

Im(A;) = Im(A;), Ker(A;) = Ker(A;)

for t > t”. Thus in this case also A, is image nonincreasing.
Finally, the map is CP divisible iff () > 0 for t < ¢’ and
v (t), y3(t) > 0fort < t”.
The next example goes beyond commutative maps.
Example 2. Consider the following generator [27]:

L =o)L+ y+OLy +y- (DL +y3@)Ls,  (25)
where Lo(p) = —3[o;, p] is the Hamiltonian part, and
Li(p) = 3(oppo- — IHo_oy, p}),
£-(0) = Y(o-poy — Hovo. p)).
L3(p) = 3(0:p0; = p),

with 04 = (o, = i0,)/2. It defines a noncommutative family
in general, that is, £,L; # L,L,. Actually, commutativity
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holds if and only if y_(¢) = ky,(¢) for a positive constant k.
Also negative values of k would violate the CP-divisibility
condition of Eq. (25). The corresponding dynamical map

A, = Teh £dr g given by

_(1-p « _(L1—p@) a)
P = < Ol* p> g Pr = ( a(t)* p(t)>v (26)

where
p(t) = e OIGE) + pl . a(t) = a HOTHORTRO,

with T'3() = [; y3(0)dt, Q) = [; 2 w(r)d7, and
1 t
@)= 5/ (y+(7) + y—(v))dx,
0

1 t
G(t) = -/ Dy _(v)dr.
2 Jo

The corresponding time-dependent eigenvalues of A, read:
ho() =1, 2i() = @OTORTO —35(), and A3(1) =
e T (cf. Appendix C). Finally, one finds for the time-
dependent eigenvectors:

1 (1—e”’>[G(;)+1] 0 )

Xo(t) = 1 0 e—I‘(Z)G(t)

— T

X; = |0){1], Xo = |1){0 , X5 = o3,
together with Yy = 1/2,Y; = X5, Y, = X, and

L (eTOG() 0
Y3(t)—1_e—r<r>< 0 eF<f>[G(t)+1]—1)'

One easily checks that {X,, Y3} defines a damping basis, that
is,

Tr(XaY; ) = 8up-

The map is invertible if and only if I'(¢) and ['5(¢) are finite
for finite . Now, if ['3(f;) = oo, then A;(¢) = A,(t) = 0 and
hence dim[Im(A,,)] = 2. One finds

Im(All) = Span{XO(t)9 X3} ) Ker(Atl) = Span{Xz, X3}'
Divisibility requires that I'3(¢) = oo for ¢t > 11, that is,
Ker(A;) D Ker(Ay,) = span{X,, X3}.

Note that for r > #; the image Im(4A,) is a subset of Im(A,),
since Im(A,, ) spans a set of diagonal matrices. If, moreover,
we choose y; and y_ in such a way that G(t,) is finite and
I'(t2) = oo, then also A3(;) = 0 and hence dim[Im(A,,)] =
1, and it is spanned by X,(¢). Again, divisibility requires that
I'(t) = oo for t > t,. Note that in this case for r > f, one has
Xo(t) = 10) (0| and hence

Aqi(p) =Tr p|0) (0]

for t > t,, that is, all states are mapped into the |0) (0| state.
This proves that also this example being noncommutative
gives rise to the image nonincreasing evolution. The evolution
is CP divisible if y3(r) > 0 for t <, and y,(¢) > 0 and
y_(t) > 0fort < 1.

The CP-divisibility aspects of the above examples can
also be studied using the results in [20]. Therefore, we now

consider a map which is neither commutative nor image
nonincreasing.

Example 3. Let the dynamical map be a composition of
two maps:

A =U oW, (27)
where
Ulpl =Uip U] Uy = e, (28)
and
Wi[p] = [1 = p(1)lp + p(t)@[p], (29)
with
®[p] = 10) (0] p |0) O] + 1) (1] p 1) (1]~ (30)

being a totally depolarizing channel. One has 0 < p(¢) < 1
with p(0) = 0. It is clear that the map A, is CP divisible iff the
map V, is CP divisible. The map A, is invertible only if p(¢) <
1. Suppose now that p(t) < 1 fort < t, and p(¢) = 1 fort >
t.. The kernel of the map for ¢ > ¢, is two-dimensional,

Ker(A,) = span{oy, 02},

due to ®(o7) = ®(0,) = 0 and hence the map is divisible.
For the image one finds

Im(A;) = span{l, X (¢)},

sin 2t
—cos2t)’
It is clear that the condition Im(A,;) C Im(A,,) is no longer

valid and hence the map is not image nonincreasing.
The corresponding propagator V; ; satisfies

Vt,s = ut o ‘/Vt,s Ous—l’

with

sin 2t

X(1) = (cos 2t

where W, ; is the propagator for the dynamical map W, i.e.,
W, =W, ; o W,. Now, for ¢ < ¢, the map W, is invertible and
one can find the corresponding time-local generator [28]

=Y <y,
Using
Wi [p] = p)@(p) — p)
together with

U p] = (o — p(OP[p)),

I —p()
one gets
p(t)
1 —p()
Now, it is clear that the map ¥, is CP divisible iff p(r) > 0

fort <t, and p(t) = 1 for ¢t > t, [29]. As the corresponding
propagator one has

L] =

(@[p] = p).

W =WV s <,
and

Vvt,szcba S>t*~
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This implies

Vt,s =Ut(\lftq/;1)u_l, S < ly,

s

and
Vis=Uo®olU™", s>1,.
Note that V; ; is given by
Vie=1d, t <t,,
and
Vie=U oCDoZ/lt_] , >t

It is clear that V; , always defines a CPTP projector.

V. CONCLUSION

In this paper, we discussed two main approaches to Marko-
vianity based on properties of dynamical maps—CP divisi-
bility and information backflow—and studied conditions un-
der which they are equivalent. This issue has recently been
analyzed in several papers [19,20,30], and certain classes of
dynamical maps are already known for which the equivalence
could be shown, namely, invertible and so-called image non-
increasing maps. Although the image nonincreasing class in-
cludes the class of invertible maps and also several dynamical
maps known in literature, whether the equivalence could be
shown for the general case remains an open question.

Here, we showed the equivalence for general qubit dynam-
ical map (Theorem 6). A key element of the proof is the fact
that there are no CPTP projectors onto a qubit subspace of
dimension 3, which is spanned by density operators. We also
show that there can be positive projectors onto qubit subspaces
of dimension 3, but only when the subspace forms an operator
system. We expect this result will shed more light on the
theoretical understanding of dynamical maps. In a slightly
different context, divisibility of qubit channels was recently
addressed in [31].

We also discussed the conditions for CP divisibility and
the image nonincreasing property for a number of examples
of noninvertible dynamical maps. In particular, we presented
an example of a qubit dynamical map which is not image
nonincreasing to demonstrate the importance of our result.

Finally, we note that our result emphasizes the requirement
of further analysis of this topic. Moreover, the question of
whether the equivalence could be shown for higher dimen-
sions still remains open. This question, if proved affirmatively,
will present a consistent theory of Markovianity based on
properties of dynamical maps in the quantum regime.

It should be clear that our result could be immediately
applied to a classical case. One can show that for classi-
cal dynamical maps of dimension d < 3, P divisibility is
equivalent to monotonic decay of distinguishability of any
two probability vectors. A detailed discussion can be found
in Appendix D. It would be interesting to fully clarify the
problem for d > 2 in the quantum case and d > 3 in the
classical case.
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APPENDIX A: PROOF OF PROPOSITION 1

Proof 1. We will prove the proposition by contradiction. Let
a three-dimensional subspace spanned by qubit density opera-
tors be denoted by M. Assume there exists a CPTP projector
[Tr onto M. Now consider the following arguments.

Since M has dimension 3, we must have three linearly
independent density matrices py, o, and p3, which spans M.
As the set of all Hermitian operators in B(7) form a real
vector space, we can always find a nonzero Hermitian operator
K € B(H) which is orthogonal to M, i.e.,

Tr[Kpil =0 i=1,2,3. (A1)

Let us now consider the eigenvalue decomposition of K as
K = 2010} (O 4+ 2y [1) (11, (A2)

where Ao, A; are the real eigenvalues and {|0), |1)} are the
eigenvectors of K. Now, using Eq. (A1) we find Aq (0| p; |0) +
A (1] p; [1) =0 for i = 1, 2, 3. This implies A9 7 0, 1| # 0,
as any of them being zero will make all the p;’s linearly
dependent. Therefore, we can choose a Hermitian operator
H € B(H) which is orthogonal to M and has the form

H = (1/20)K = 10) (0] + 2 |1) (1], (A3)

where A # 0 is real. Note that H ¢ M and {p, 02, p3, H}
forms a basis for B(H). Now, using Egs. (A1) and (A3) we get
(0] p; |0y + A (1] p; |[1) = O for i = 1, 2, 3. Therefore we can
write all the p;’s in the basis {|0), |1)} as

_(P X (P y .
101—<x* 1_p>s)02—<y* 1_p>’
_(P <
103_<Z* l_p)a

where x, y, z € C and

(A4)

!
P=5"T

Note that p A0, p# 1 and x # y,y # 7,7 # x as py, p2 and

p3 are all independent. Let us define X = p; — p, and ¥ =
o1 — p3. Note that X,Y € M are independent and have the

form
X — 0' U + ivy Y = O. uy +ivy ’
up — v 0 Uy — ivy 0
(A6)

where uy, up, vy, v € R. Note that u; + iv; # uy +ivp as
y # z. This implies either u; # uy or v; # v,. Now since X
and Y are independent, we must also have (a) u; # 0 or u, #
0, and (b) v; # 0 or v, # 0. From condition (a) we find that if
up Z0, (up/u))X =Y =coy,andifup # 0, X — (u1/up)Y =
¢’ oy, where ¢, ¢’ € C, and o, is the Pauli y matrix. Similarly,

(A5)
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from condition (b) we find that if v; % 0 then (vy/v;)X —
Y =" oy, and if v, # 0 then X — (v1/v2)Y = ¢” o,, where
¢”, " € C, and oy is the Pauli x matrix. This implies oy, oy €
M and hence |0) (1], ]1) (0] € M. As a result we can de-
fine Z = p; — x|0) (1| — x* |1) (0|, where Z € M and has the

form
_(p O
Z = (O 1— p)' (A7)

Note that Z and H are independent. Hence we have |0) (0] =
c\H 4 ¢yZ and |1) (1| = c3H + c4Z, where

(1— p)? p
1 = , Cp = 5
1-2p(1-p) 1—-2p(1—p)
1-— 1—
o= p(1 —p) \ p (A8)

— , €4 = .
1 —=2p(1 - p) 1 =2p(1 - p)
Let us now consider the action of the CPTP projector T, on
the following operators in M:
Tm(10) (1] =10) (1], TLu[I1) (O[] = |1} (O,
HNulZl =2 (A9)

Let us now consider the Choi matrix I'(ITpr) given by

F(Ma) = Y i) (1 ® Toulli) (l]

i,j=0,1

10) (O] ® IT[10) (O[] 4 10) (1] ® [0) (1

+ 1) (01 @ [1) (O] + [1) (1] ® T pq[1) (111
(A10)

J

As ITy, is a CPTP map, I'(IT () must be positive. Also note
that IT [ |0) (O] ] and TTp4[ |1) (1| ] must be density matrices.
Let us choose them in the form

Mull0) (0] = (3;1 | flql);

M1 (1] = (1 i fl’j)

where 0 < g1, ¢> < 1 and w, w, € C. We can now form the
Choi matrix:

(Al1)

q1 w1 0 1

_fwi 1—q 0 0
F(My) = 0 0 l—¢q w
1 0 w3 9

(A12)

It can be easily seen from the above form that since I"(IT )
is positive we must have g1g, — 1 > 0, which is possible only
when ¢ = g, = 1. As a result, preserving the positivity of
IT[10) (O] ] and TTaq[|1) (1]], we get w; = wy, = 0. This
implies ITx[10) (O] =[0) (O] and TIn[[1) (1]]= 1) (L].
This in turn implies [Ty[H] = H. As a result, Im(ITy() ¢
M, which is a contradiction.

Proof 2. The proposition also follows from a result in [22].
It was shown in Theorem 4.9 of the paper that if any qubit
channel (CPTP map) has more than two pure states in its
output it must contain all pure states in its output. From our
analysis in the above proof it can be easily seen that the infinite
family of pure states

{IYe) = VP10) + /1 = pe” |1);6 € R} C M

appears in the output of I1 4, but the states |0) and |1) do not.
Hence IT 4 cannot be a CPTP map.

(A13)

APPENDIX B: ARE THERE PTP PROJECTORS ON THREE-DIMENSIONAL SUBSPACES SPANNED BY QUBIT STATES?

We consider a qubit space H = C2. Let us consider a PTP projector m ¢ onto M, where M is as defined in Appendix A.

Therefore, 7 ¢ must have the following properties:
(a) Im(wp) C M.
(b) Tpm[X]=Xif X € M.
Following the same analysis as in Appendix A, we find

Tml10) (1T = 10) (1], maq[1) (O] = [1) (O] , mm[Z] = Z. (BI)

Now consider the action of 7y on H using the form given in Eq. (A3). As w4 is TP, without loss of generality we get

TmlH]l = (1+21)Z +510) (1] + 5™ [1) (0] = 1

1—-2p

Z +510) (1] 4+ 5™ (1) (O], (B2)

where s € C. Here we have used the relation between p and A, as given in Eq. (AS5).
Now consider any state p € P (H) having the following form in the {|0), |1)} basis:

_ (4
=

" ) (B3)

1—g¢q

where 0 < ¢ <1, r € C, and |r|> < g(1 — ¢). Note that this is the most general form of a qubit state. Also note that the
maximum value that |r| can take is 1/2, which is when p = |%) (£|, where |£) = %OO) 4 |1)). Now, consider the action

of 7 on p:

wmlel = g Tmll0) (011 + (1 — g) (1) (114 7 10) (1] + r* 1) (O]
=gq mpmleiH 4+ 2 Z]1 + (1 — q) wmlesH + caZ]+ 7 |0) (1] + 7% |1) (0]
=[gci+ (1 —q@cslmmlH]+ [g c2 + (1 — @)eslZ + 7 [0) (1] + r*|1) (0]
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1
=[gci+ (1 —g)s] 1

1-2p 1-
=gl +e) +a-aa
—p 1—

Now inserting the values of ¢; and c¢;, as given in Eq. (A8), we find c1 p +c = C3 —p 2 1 ¢, = 1. As aresult, we find

mmlol = (r* P ff;) (BS)

-2
_;Z+[q e+ (1 —q)cs]Z + (r +5)10) (1] + (7 4+ s™) 1) (0]

2;7+C4>]Z+(F+S)|O><l|+(I’*+S*)|l)<0|. (B4)

In the above form if [ p] is positive, we must have
Ir+ 51> < p(1 = p) < 1/4, (B6)

where we have used the fact that p(1 — p) < 1/4 and the equality is reached only when p = 1/2. Note in Eq. (B2) that s can
take any complex value. Let s = 51 + isy (51, 52 € R). If we con51der either of the real or 1mag1nary parts of s to be nonzero, we
can always choose p in Eq. (B3) tohave g = 1/2 and r = 2| e and as a result, we get |r + s|> = (2 + 51D + [2)* > %, which
contradicts condition (B6). Therefore, we must have s = 0. Now if we choose p in Eq. (B3) to have ¢ = 1/2 and r = 1/2, the
inequality in Eq. (B6) will be satisfied only when p = 1/2. Hence we conclude 4 is a PTP map only when p = 1/2. In that
case, M = span{]1 ﬂ+"‘ s ﬂ+"’ =<2} and the PTP projector has the action 1 — 1, 0y — o1, 02 — 02, 03 — 0. In other words, a PTP
projector on a three dlmenswnal qubit subspace spanned by density matrices will exist only when the subspace is an operator

system [25].

APPENDIX C: CALCULATIONS FOR EXAMPLE 2

The time-evolved state in Teittinen’s paper [27] is given by

_ (1 =P(t) a)
p(t) - At[p(o)] - ( ()l(f)* P](l))’ (Cl)
where
Pi(t) = e "V[G(t) + P (0)], (C2)
a(t) = a(0)e™ O~ TR0, (C3)

Note that G(t), 2(¢), ['(t), and I'3(¢) are as defined in Example 2. Now consider the states

|0><0|=5((1) 8) |1><1|—2<8 ‘f) ) (+ = (} }) |+y><+y|=§(_1,. j). ()

Using these states, we can easily find

1
[0) (1] = [4+) (+] — i [+y) {(+y] — TI(IO) (0] + [1) (1), (C5)
. 1+
[1) O] = [+) (+| +il+y) (+y] — Tl(|0> Of + 1) (1]). (C6)
Now, using Eq. (C1) we get the time-evolved states,
(1= e TOG@) 0
At[|0> <0|] - ( 0 e—r(r)G(t)>! (C7)
1 — e TOIGE) + 1] 0
At[|1> (1|] = < 0 e—r(t)[G(t)+ 1] ’ (CS)
1= e TO[G@) + 1] Le20-TOR-T0
M)+ = ( %efiﬂ(t)—[‘(t)/27[‘3(t) e’r(’)[G(t)-k %] (C9)
1—eTO[G@t) + 1] £e2O-TOR-T:0
Adll+y) (1 = <_7,'e_i§2(t)—r‘(t)/2—l“3(t) e TO[G() + 1] (C10)
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As a result, we can also find the action of A, on operators, which are not density matrices:

AI0) (111 = (8

0 0
A1) (0]] = (eiQ(t)F(t)/2F3(t) 0)-

IR)=T)/2-T5()
O 9

(C11)

(C12)

Now consider the operator-vector correspondence described in the following way: the vector correspondent of an operator
A= Zi, j |7) (j| is defined as the vector vec(A) = Zl.’ j i) | j). Therefore, using this notation we define ; in the following way:

vec(p(t)) = Ni[vec(p(0))].

Note that ; is a 4 x 4 matrix of the following form,

1— e TOG(r) 0

0 I AD-T(1)/2-T5(1)
N = 0 0
e TOG() 0

(C13)
0 1 —e TO[GE) + 1]
0 0
o~ IO (6)/2-T3(1) 0 (C14)
0 e TOIGE) + 1]

N; has the same eigenvalues as the qubit map A,. We found the eigenvalues and eigenvectors of N; to be of the following form

given in Table 1.

APPENDIX D: A COROLLARY FOR CLASSICAL
DYNAMICAL MAPS

Corollary 2. Consider a classical dynamical map repre-
sented by a family of stochastic matrices 7; : RY — R for

TABLE 1. Eigenvalues and eigenvectors of V.

Eigenvalues Eigenvectors

1—e TOIGH)+1]
1 o (=m0 0.0, 1}
e 't {—1,0,0,1}
eiR(=T()/2=T3(1) {0, 1,0, 0}
e iQO-T®)/2-T3() {0,0, 1,0}

(

t >0 and T,—o = 1. The map 7, is called divisible if 7, =
Si 5Ty, with S; R4 — R4 fort > s. Itis called P divisible iff
S; s is a stochastic matrix. Now, if d < 3, then 7; is P divisible
iff

d
7 1Tapr —op)l < 0, (D1)

for arbitrary probability vectors p;, p» € R?, and probability
distribution x; + x, = 1. (Recall that the L; norm of v =
{v1,...,v4} € R?is given by |v|; = Zflzl lvil.)

The proof immediately follows due to the fact that if 7, is
noninvertible, then its image has dimension 2 or 1.
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