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The question of whether two indistinguishable particles are bosons or fermions can be answered by
observing the Hong-Ou-Mandel effect on a beam splitter. However, already for three particles one can consider
symmetries that are neither bosonic nor fermionic. In this work, we propose a notion of a genuine multipartite
indistinguishability and describe a simple method of quantifying it experimentally.
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I. INTRODUCTION

The concept of indistinguishability is rooted in the permu-
tation symmetry. In essence, particles are indistinguishable if
the underlying state remains unchanged after a permutation
of their labels. This means that there are only two types
of indistinguishable pairs of particles, bosons and fermions,
since there are only two possibilities for such a system not to
be affected by a transposition [1]. However, at some points
in the history of physics, scientists believed that new types of
particles, already discovered or just predicted to exist, could
be described by different rules, known as parastatistics.

For instance, quarks seem to be indistinguishable with re-
spect to cyclic permutations rather than transpositions, which
turned out to be a signature of a hidden property—color
[2]. Their exotic behavior follows from the fact that the re-
quirement of symmetry or antisymmetry applies to the global
state of the system, not to the state of a particular degree
of freedom. Thus, in principle, exploiting an extra labeling
degree of freedom allows one to engineer states that appear to
have arbitrary symmetries.

In this work, we describe the indistinguishability present
in such states. As already mentioned, this notion is usually
defined with respect to the transposition of particles, but
we focus on their cyclic permutations instead. Our main
result consists in introducing the concept of genuine mul-
tipartite indistinguishability. We also provide its clear oper-
ational measure by considering unique evolution exhibited
by genuine multipartite indistinguishable states on symmetric
multiports.

This characteristic behavior stems from a nontrivial mul-
tipartite interference effect [3] that connects the system’s
symmetry with suppressed probabilities of certain outcomes
on multiports. In particular, we show that just as the Hong-
Ou-Mandel effect [4] can be used to differentiate between
two bosons and two fermions, the generalized suppression
laws enable the detection and characterization of genuine
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multipartite indistinguishability. This result provides another
perspective on the previous works that proposed the use of the
discrete Fourier transform to detect the indistinguishability of
a set of particles [5–9].

There are three main motivations behind our research.
First, indistinguishability can be considered a potential quan-
tum resource [10–13] related to yet different from entangle-
ment. Since the resource theory of entanglement [14] had a
large impact on many fields of quantum science, we believe
that a parallel development of the resource theory of indistin-
guishability can also prove to be a worthy endeavor. To lay
its foundations, we discuss indistinguishability outside of a
standard bipartite setting. In particular, we provide a rigorous
definition of a genuine multipartite indistinguishability and
propose its experimentally feasible measure.

Second, indistinguishability is studied as a necessary con-
dition for the multipartite interference [15]. From this per-
spective, the states we investigate are particularly interesting,
as they consist of particles that share some form of global
indistinguishability. This leads to peculiar interference effects
that might find some applications in quantum information
protocols. For example, a form of bunching in which not
all the particles tend to group together could be exploited to
tweak the evolution of multipartite quantum walks [16,17].
Moreover, multipartite permutation symmetric states can be
used in secret-sharing scenarios [18,19].

Finally, we are also interested in the dynamical properties
of the parastatistical states in the context of genuine mul-
tipartite entanglement. Note that the evolution of correlated
noninteracting classical particles can be considered a mixture
of independent evolutions, studied particle by particle. On
the other hand, due to nonclassical correlations, a collection
of noninteracting quantum particles may evolve in a funda-
mentally multipartite way. An example of such behavior is
the bunching of bosons and the antibunching of fermions.
Here, we observe nontrivial patterns in the particle-count
statistics. If the particles were distinguishable, the corre-
sponding patterns could only result from genuine multipartite
entanglement.
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II. INDISTINGUISHABILITY AND PERMUTATIONS

A. Bipartite indistinguishability

Consider a quantum system made of n particles. For sim-
plicity, we assume that it can be described by a pure state

|ψ〉 =
∑

k1,...,kn

αk1,...,kn |k1 . . . kn〉, (1)

where ki denotes the state of the ith particle.
The goal is to determine if these particles can be considered

indistinguishable. As already mentioned in the introduction,
this property is connected with permutation invariance. For
instance, we say that two particles, i and j, are indistinguish-
able if the swap of their labels

�i j |ψ〉 = �i j

∑
k1,...,kn

αk1,...,kn |k1 . . . ki . . . k j . . . kn〉

=
∑

k1,...,kn

αk1,...,kn |k1 . . . k j . . . ki . . . kn〉 (2)

does not change the state of the system, i.e., |〈ψ |� jk|ψ〉|2 =
1.

The above condition leads to a natural measure of bipartite
indistinguishability,

Ii j ≡ |〈ψ |�i j |ψ〉|2. (3)

Note that 0 � Ii j � 1. The value 1 is attainable if particles
i and j are indistinguishable, i.e., they are in a symmetric
(bosonic) or antisymmetric (fermionic) state. On the other
hand, the value 0 occurs if the state after the permutation
is orthogonal to the initial one, which implies perfect distin-
guishability. In other words, here we do not ask whether the
particles are bosons or fermions but rather whether they are
indistinguishable.

As the swap of particle labels is not a physical operation,
one may question if there exists an experimentally feasible
method to measure Ii j . However, it turns out that this value
can be easily obtained by investigating the interference phe-
nomenon known as the Hong-Ou-Mandel effect [4]. When
two particles are cast into different input ports of a symmetric
beam splitter, they leave it through the same output port
(bunch) with probability

pB = 1 + 〈�i j〉
2

(4)

or remain in different modes (antibunch) with probability

pA = 1 − 〈�i j〉
2

. (5)

This means that

Ii j = |pB − pA|2. (6)

B. Genuine tripartite indistinguishability

We would like to generalize the above operational measure
to more than two particles. Before we start, let us note that in
multipartite systems indistinguishability is related to all pos-
sible symmetries. Since in general permutation operators have
only two common eigenvectors, it is natural to consider only

the corresponding indistinguishable particles: totally symmet-
ric bosons and totally antisymmetric fermions. However, one
may also consider subgroups of permutation operators that
define more general types of particle parastatistics. In the
following, we will investigate genuinely multipartite indistin-
guishability stemming from the subgroups generated by cyclic
permutations.

The simplest example of such parastatistics can be obtained
in a tripartite system. Consider the subgroup made of identity
operator 1, cyclic permutation �312 = �23�12, and its inverse
�231 = �12�23. In analogy to Eq. (3), we define a measure of
tripartite indistinguishability

I123 ≡ |〈ψ |�312|ψ〉|2 = |〈ψ |�231|ψ〉|2. (7)

The tripartite parastatistics correspond to states that maximize
I123. To find them, we consider the eigenstates of cyclic per-
mutation operator, which were also discussed by Peres in [2]

|α〉 = 1√
3

(|123〉 + |312〉 + |231〉), (8)

|β〉 = 1√
3

(|123〉 + ω|312〉 + ω2|231〉), (9)

|γ 〉 = 1√
3

(|123〉 + ω2|312〉 + ω|231〉), (10)

|ᾱ〉 = 1√
3

(|213〉 + |132〉 + |321〉), (11)

|β̄〉 = 1√
3

(|213〉 + ω|132〉 + ω2|321〉), (12)

|γ̄ 〉 = 1√
3

(|213〉 + ω2|132〉 + ω|321〉). (13)

Here ω = ei 2π
3 and the notation |xyz〉 means that the

first particle is in mode x, the second in mode y, and
the third in mode z. For all these states, I123 = 1, but
I12 = I23 = I13 = 0; therefore, they exhibit a genuinely
tripartite indistinguishability without its bipartite counterpart.

C. Symmetric operations

Before we proceed, let us stress that studies on indistin-
guishability need to be based on symmetric operators. This
is because application of asymmetric operators requires the
ability to distinguish between the particles. However, we
cannot a priori assume that the particles are distinguishable.
This is what we want to check. Therefore, as long as we do
not gain access to a degree of freedom which can be used to
effectively label and distinguish between the particles, we are
fundamentally limited to symmetric operators.

This restriction makes differentiating between all the states
given by Eqs, (8)–(13) impossible. To see this, notice that
transpositions preserve the expectation value of any symmet-
ric operator A

Tr{Aρ} = Tr{(�i jA�i j )ρ} = Tr{A(�i jρ�i j )} (14)

and the bipartite permutation operators swap between the
states {|α〉, |ᾱ〉}, {|β〉, |β̄〉}, and {|γ 〉, |γ̄ 〉}. This means that the
states within each of these pairs cannot be distinguished using
symmetric operators. However, one can check that the rank-2
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states

ρβ = 1
2 (|β〉〈β| + |β̄〉〈β̄|), (15)

ργ = 1
2 (|γ 〉〈γ | + |γ̄ 〉〈γ̄ |), (16)

ρα = 1
2 (|α〉〈α| + |ᾱ〉〈ᾱ|) (17)

commute with all the permutation operators and thus can be
considered as representatives of the tripartite parastatistics.
Note that Tr{�312ρα} = Tr{�312ρβ} = Tr{�312ργ } = 1, but
Tr{�i jρα} = Tr{�i jρβ} = Tr{�i jργ } = 0 for any i �= j. As a
result, the problem of measuring the tripartite indistinguisha-
bility reduces to finding a method to perfectly distinguish
among ρα , ρβ , and ργ .

III. DETECTION OF TRIPARTITE
INDISTINGUISHABILITY

As explained in the previous section, to experimentally
measure I123 we should look for a simple natural process
capable of perfectly discriminating between the states ρα , ρβ ,
and ργ . In particular, we ask if it is possible to achieve it with
free evolution, i.e., without interaction between the particles.
We are going to show that the answer is positive.

Recall that each of the three particles can be in one of
the three modes: |1〉, |2〉, or |3〉. We consider a single-partite
transformation between these modes given by the quantum
Fourier transform (QFT)

U (3)
QFT = 1√

3

⎛
⎝1 1 1

1 ω ω2

1 ω2 ω

⎞
⎠. (18)

This transformation can be implemented with a multiport
commonly known as a tritter [20]. It can be visualized as a
three-port, i.e., a device with three inputs and three outputs.
Since all the entries of U (3)

QFT have the same modulus, a single
particle cast on the tritter is equally likely to end up in each
of its output ports. In fact, a tritter can be represented by any
unitary 3 × 3 matrix with this property, as they all generate
equivalent dynamics.

Next, we apply U = U (3)
QFT ⊗ U (3)

QFT ⊗ U (3)
QFT to the states

ρα , ρβ , and ργ . In other words, we feed the tritter with the
tree particles that are in one of the above three states and
observe the output ports. The tritter generates the following
transformations on our basis states:

|α〉 → |111〉 + |222〉 + |333〉
3

(19)

+ω
|213〉 + |132〉 + |321〉

3
+ ω2 |123〉 + |312〉 + |231〉

3
,

|β〉 → |211〉+ω|121〉+ω2|112〉
3

(20)

+|322〉+ω|232〉+ω2|223〉
3

+|133〉+ω|313〉+ω2|331〉
3

,

|γ 〉 → |122〉 + ω|221〉 + ω2|212〉
3

(21)

+|233〉+ω|332〉+ω2|323〉
3

+ |311〉 + ω|113〉+ω2|131〉
3

.

TABLE I. Probabilities of particle number counts after the tritter
transformation on three particles. We consider three states corre-
sponding to different parastatistics, symmetric state, antisymmetric
state, state of three distinguishable particles, and an arbitrary state ρ.

ρα ρβ ργ |+〉 |−〉 |123〉 ρ

{1, 1, 1} 2/3 0 0 1/3 1 2/9 p111

{3, 0, 0} 1/9 0 0 2/9 0 1/27 (pα − p111)/3
{0, 3, 0} 1/9 0 0 2/9 0 1/27 (pα − p111)/3
{0, 0, 3} 1/9 0 0 2/9 0 1/27 (pα − p111)/3
{2, 1, 0} 0 1/3 0 0 0 1/9 pβ/3
{0, 2, 1} 0 1/3 0 0 0 1/9 pβ/3
{1, 0, 2} 0 1/3 0 0 0 1/9 pβ/3
{1, 2, 0} 0 0 1/3 0 0 1/9 pγ /3
{0, 1, 2} 0 0 1/3 0 0 1/9 pγ /3
{2, 0, 1} 0 0 1/3 0 0 1/9 pγ /3

Transformations on |ᾱ〉, |β̄〉, and |γ̄ 〉 are the same as on the
unbarred states, with the only exception that one needs to
swap ω ↔ ω2.

Let us focus on particle number measurements at the output
ports of the tritter. We will denote their results as {n1, n2, n3},
where n1 + n2 + n3 = 3 and ni is the number of particles
detected at the ith port. The statistics of such measurements,
presented in Table I, offer a clear way of distinguishing be-
tween different representatives of the tripartite parastatistics.
If we detect only four possible particle number configurations,
{1, 1, 1}, {3, 0, 0}, {0, 3, 0}, or {0, 0, 3}, we know that the
corresponding state is a mixture of the totally symmetric and
antisymmetric states (like ρα) or their superposition. In the
case of {2, 1, 0}, {0, 2, 1}, or {1, 0, 2}, we can deduce that
the state is ρβ . Finally, the outcomes {1, 2, 0}, {0, 1, 2}, or
{2, 0, 1} indicate that the state is ργ .

Since we consider a tripartite system in which each particle
enters the tritter through a different port, a corresponding
input state is a superposition, or a mixture, of the six pos-
sible permutations of the state |123〉. Equivalently, an input
state can be also represented in terms of the states given by
Eqs. (8)–(13). The formulas (19), (20), and (21) show that
their tritter transformations lead to a particle count statistics
that is describable by only four parameters (three, if one takes
into account normalization). In particular, we observe that
some events occur with the same probabilities

p{1,1,1} ≡ p111, (22)

p{3,0,0} = p{0,3,0} = p{0,0,3} ≡ pα − p111

3
, (23)

p{2,1,0} = p{0,2,1} = p{1,0,2} ≡ pβ

3
, (24)

p{1,2,0} = p{0,1,2} = p{2,0,1} ≡ pγ

3
, (25)

where pμ = Tr{ρρμ} (μ = α, β, γ ). Therefore, if an arbitrary
state of three particles is fed into the tritter, the particle count
statistics at the output is determined by pα , pβ , and pγ (see
the last column in Table I).

The above observations allow us to arrive at the operational
formula for the measure of tripartite indistinguishability (7)

I123 = |pα + ωpβ + ω2 pγ |2. (26)
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Note that I123 = 1 for ρα , ρβ , and ργ . In addition, it is also
equal to one for the tripartite symmetric and antisymmetric
states. On the other hand, for a state of distinguishable par-
ticles, like |123〉 (see the fourth column in Table I), we get
pα = pβ = pγ = 1/3 and as a consequence I123 = 0.

IV. N-PARTITE INDISTINGUISHABILITY

So far, we have considered the simplest case of cyclic
indistinguishability of three particles. Now we generalize our
results to n-partite systems. Just as before, we define our
measure of indistinguishability as the expectation value of the
cyclic permutation operator

I12...n ≡ |〈ψ |�n1...(n−1)|ψ〉|2. (27)

Since (�n1...(n−1))n = I , the eigenvalues of the cyclic permu-
tation operator are the nth roots of unity. They are all (n − 1)!
degenerate and it is easy to verify that the vectors belonging
to the same eigenspace can be converted into each other with
a proper permutation of the particle labels. Because of that,
the eigenvectors corresponding to the same eigenvalue cannot
be distinguished with symmetric operators. This means that
there are exactly n indistinguishability classes stemming from
I12...n.

Let us represent these classes with the eigenvectors of form

|λk〉 = 1√
n

(|1, 2, . . . , n〉 + λk|n, 1, . . . , n − 1〉

+ λ2 k|n − 1, n, . . . , n − 2〉 + · · ·
+ λ(n−1)k|2, 3, . . . , n, 1〉), (28)

where k ∈ {1, . . . , n} and λ = ei 2π
n . For all these

states, the n-partite indistinguishability measure
I1,2,...,n = 〈ψ |�n,1,...,(n−1)|ψ〉 = 1 while I1,2,...,m =
〈ψ |�m,1,...,(m−1)|ψ〉 = 0 for all m < n. This means they
are genuinely n-partite indistinguishable.

In order to find an operational formula for I12...n, we study
the evolution of the states |λk〉 on a Fourier multiport given by

U (n)
QFT | j〉 = 1√

n

n∑
k=1

ei 2π
n ( j−1)(k−1)|k〉. (29)

Just as in the tripartite case, we look for the outputs that are
characteristic for each indistinguishability class. This time,
however, we will use a suppression law proposed in Ref. [3].
It links the set of allowed output events with the symmetry of
the input state and its transformation. Applied to the evolution
of the state |λk〉 it yields the condition

n−1∑
i=0

iai ≡ k (mod n), (30)

where a0, a1, . . . denote the number of particles in each
consecutive output port. Clearly, if a specific configuration
(a0, a1, . . . , an−1) solves the equation for λk , it cannot solve
it for any other eigenvalue λ j . This means that the sets

Ak :=
{

(a0, a1, . . . , an−1) :
n−1∑
i=0

iai ≡ k (mod n)

}
, (31)

consisting of outputs stemming from the evolution of states of
different indistinguishability classes are completely disjoint.
Thus, we can define

pk :=
∑

(a0,a1,...,an−1 )∈Ak

p{a0,a1,...,an−1} (32)

and use it to obtain the operational formula for I12...n

I1,2,...,m =
∣∣∣∣∣

n−1∑
i=0

piλ
i

∣∣∣∣∣
2

. (33)

V. SUMMARY

We have shown that the concept of genuine multipartite
indistinguishability naturally emerges if we define indistin-
guishability with respect to cyclic permutations. Then, we
found that this new type of indistinguishability can be tested
using symmetric multiports in setups that generalize the
Hong-Ou-Mandel one.

The notion of genuine multipartite indistinguishability
does not require the usual bosonic or fermionic invariance
under all permutations of particle labels. Instead, it focuses
on cyclic invariance, which could be engineered in quantum
states by exploiting an additional labeling degree of freedom
(a relevant idea is explored in Ref. [21]). Given that such
states exhibit unique dynamical properties, they may find
applications in quantum algorithms based, for example, on
multipartite quantum walks. Moreover, our results provide a
new way of describing multipartite indistinguishability and,
in general, multipartite correlations.
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