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Robustness of the fractional topological phase to dephasing
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In this work, we demonstrate theoretically via Kraus maps that the fractional topological phase in qudits is
robust to phase noise. In our proposal, dephasing noise is inserted in an optical setup designed for measuring
the fractional topological phase on photonic qudits encoded in path variables after local unitary operations are
applied. Qudit states can be prepared with photon pairs generated by spontaneous parametric down-conversion
crossing a multiple-slit array. Polarization as an additional degree of freedom and a two-photon longitudinal
interferometer are the basic ingredients of the proposed setup. Although the visibility of the interference pattern
decreases when noise is added, our calculation shows that the topological phase is preserved. This result
stimulates further studies for the use of fractional topological phase in quantum gates due to its robustness
in environments where phase noise is present.
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I. INTRODUCTION

Two-qubit maximally entangled states (MESs) have been
shown to be an interesting system for demonstrating the
double-connectedness of the SO(3) rotation group [1]. This
demonstration uses the one-to-one map between the group
elements and the set of two-qubit MES [2–4]. It was shown
that certain types of SU(2) ⊗ SU(2) cyclic transformations on
two-qubit MES can reveal a topological property of the SO(3)
ball by establishing a relation between the SO(3) topology and
the global phase of a quantum state: the topological phase. The
measurement of the topological phase for a two-qubit system
was realized in different works [5–7]. In 2011, Oxman and
Khoury [8] extended this discussion for qudit systems and
showed that fractional topological phases (FTPs) appear in a
two-qudit MES system undergoing a SU(d ) ⊗ SU(d ) cyclic
evolution. An explicit description of the topological structure
of the local SU(d ) evolution in qudit bipartite systems was
later presented in Ref. [9]. Recently, Khoury et al. [10]
proposed an experiment to measure the FTPs in a two-qudit
system by using two Mach-Zehnder interferometers. This
phase was later measured with a conjugated Sagnac interfer-
ometer, an alternative and more stable setup than the original
one proposed [11], and more recently with a hyperentangled
photon source that provided higher fringe visibilities [12].

Geometric phase robustness to noise has been demon-
strated theoretically by using adiabatic and nonadiabatic
cyclic evolution of the quantum system [13–16]. This im-
portant result stimulates the search for quantum systems
suitable for being used as geometric quantum gates and for
geometric quantum computation [14,17–23]. Two-qudit topo-
logical phase evolution under dephasing noise was studied
recently by using a master equation for treating the system-
environment coupling [24].
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In this work, we demonstrate theoretically via Kraus maps
that the FTP is robust against the action of phase damping
(dephasing in the photon path variables) when it is present
in an interferometer suitable for measuring the two-qudit
topological phase [10]. This result points in the direction
of demonstrating the robustness of the fractional topological
phase under dephasing in a concrete application. We organize
this paper as follows.

In Sec. II, we introduce the concept of fractional topo-
logical phase as exposed in Ref. [10]. In Sec. III, we show
how the phase noise is added in the original optical setup and
calculate the evolution of the two-qudit state via Kraus maps
including the experimental parameters used in Ref. [25]. In
Sec. IV, we describe the FTP measurement process through
the coincidence counts of correlated photon pairs, which give
us a two-photon interference pattern. In Sec. V, we plot
the theoretical interference patterns showing the expected
phase shift between the initial and final interference patterns
corresponding to the FTP with and without dephasing noise
to compare with [10] curves. We draw our conclusions in
Sec. VI.

II. FRACTIONAL TOPOLOGICAL PHASE
FOR ENTANGLED QUDITS

Consider a bipartite system with discrete degrees of free-
dom represented by |m〉 and |n〉. In Einstein’s sum notation, a
two-qudit pure state can be written as

|�0〉 = αmn |m, n〉 . (1)

For convenience, let us call the first qudit signal (S) and
the second idler (I), referring to the photons generated by
spontaneous parametric down-conversion (SPDC) prepared
in qudit states, as described in the next sections. The state
can be represented by a d × d matrix α with elements αmn.
Its norm and the internal product are given respectively by
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〈ψ |ψ〉 = Tr[α†α] and 〈ψ |φ〉 = Tr[α†β] (β is the d × d ma-
trix associated with φ). Local unitary qudit evolutions US and
UI lead to a state characterized by

α′ = USαU T
I . (2)

By using the polar decomposition of a matrix, a general
state can be parametrized in the form α = QU , where Q is
a (unique) positive semidefinite Hermitian matrix and U ∈
U (d ). The factor U , which is unique for invertible α’s,
can be further decomposed as U = eiφS, where S ∈ SU(d )
and eiφ = d

√
det U . The dth root is determined by the prop-

erty d
√

eiχ = eiχ/d . Then, for time-varying unitary operations,
we identify smooth and differentiable transformations on
three sectors: φ → φ′, Q → Q′, and S → S′, where eiφ′ =
eiφ d

√
det US det UI , Q′ = ŪSQŪ †

S , and S′ = ŪSSŪ T
I . Here, ŪS

and ŪI are the SU(d ) parts of the local unitary operations:
US = d

√
det US ŪS , and UI = d

√
det UI ŪI .

Now, let us consider a cyclic evolution, that is, one where
the final state is physically equivalent to the initial state. After
an interval T , they only differ by a phase factor

α(T ) = eiθα(0). (3)

By applying the polar decomposition on both sides,

eiφ(T )Q(T )S(T ) = eiθ eiφ(0)Q(0)S(0), (4)

we see that the phase θ is the sum of three components
originated from each sector of the coefficients’ matrix:

θ = 	φ + γQ + γS. (5)

First we identify a trivial phase evolution φ(T ) = φ(0) + 	φ

from sector U(1), which has contributions from signal and
idler, φ = φS + φI . From the sector of positive definite Her-
mitian matrices, if we write Q(T ) = eiγQ Q(0), the condition
of hermiticity imposes that γQ = 0. Finally, in the SU(d )
sector we have S(T ) = eiγS S(0), where using the matrix de-
terminant property det S(T ) = eidγS det S(0) and the fact that
S(T ), S(0) ∈ SU(d ), we obtain the fractional phase

γS = 2nπ

d
= θ − 	φ (n = 1, 2, . . . , d − 1). (6)

This corresponds to the difference between the global and
the trivial phases. Therefore, only fractional phases from the
SU(d ) sector arise and the nature of this phase is purely
topological. This is due to the fact that the set of SU(d )
matrices S with the identification S(T ) ≡ eiγS S(0) is repre-
sented by a nonsimply connected manifold. It is noteworthy
that the SU(d ) manifold without the identification is simply
connected.

The fractional topological phase (FTP) is measured from
the phase difference between two displaced interference pat-
terns, as Aharonov and Anandan wrote in a similar experi-
mental purpose for the geometrical phase measurement [26]:
“Then the phase difference between the two beams is just
the geometrical phase, which is observable in principle, from
the interference pattern, even when the magnetic field is
varied nonadiabatically.” In Berry’s words [27], “This phase
factor is observable by interference if the cycled system is
recombined with another that was separated from it at an
earlier time and whose Hamiltonian was kept constant.” In the
next sections we introduce the FTP measurement experiment
with dephasing noise in a quantum optical setup.

III. DEPHASING MAPS ON SPATIALLY
ENCODED QUDITS

A. Spatial encoding of qudits

Consider the interferometer shown in Fig. 1. Two non-
collinear beams of entangled horizontally polarized photons,
named signal (S) and idler (I), are generated in a nonlinear
crystal by SPDC [28]. Each photon beam passes through one
of the two identical multiple-slit masks (d slits), preparing the
photon pair in a two-qudit state on their transverse path degree
of freedom. Therefore we can write

|�0〉 = αmn |mH, nH〉 , (7)

where m, n = 1, 2, . . . , d , αmn is the probability amplitude of
having one signal photon (S) passing through the slit m and
one idler photon (I) passing through the slit n. For notation
simplicity, we use in this article the Einstein summation
convention. After the slits, two half-wave plates rotate the
photons polarization by 45◦, and the initial quantum state is
transformed to

|�0〉 = αmμ,nν |mμ, nν〉 , (8)

where αmμ,nν = αmnαμ,ν , with αμ,ν = 1/2 and μ, ν = H or V .
The state density operator is then given by

ρSI = αmμ,nνα
∗
m′μ′,n′ν ′

4
|mμ, nν〉 〈m′μ′, n′ν ′| . (9)

This is the state just before the two Mach-Zehnder inter-
ferometer entrances. Phase noise and unitary operations are

FIG. 1. Experimental proposal for measuring the fractional topo-
logical phase in a two-qudit photonic system in the presence of
dephasing. Idler (I) and signal (S) photons are generated through
spontaneous parametric down-conversion. NLC is a nonlinear crystal
and each multiple-slit (MS) mask has d apertures. HWP is a half-
wave plate. SLM is a spatial light modulator. L indicates a pair
of lenses that project the image of the slits to the SLMs. PBS is
a polarizing beam splitter. POL is a polarizer, θ j ( j = S and I ) is
a path phase added by the displacement of the mirror coupled to
piezoelectric ceramic (PZT), and Dl (l = 1 and 2) is a single-photon
detector.
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then applied to the photon path degrees of freedom inside
the interferometers conditioned to the photon polarization.
Suitable unitary operations will transform the input state and
generate the FTP in the transformed state. We refer to the
unitary operation leading to the FTP as the “FTP operation”.
The phase noise and the FTP operations can be performed
by the spatial light modulators (SLM) positioned within the
two Mach-Zehnder interferometer built with input and output
polarizing beam splitters (PBSs). The SLMs are controlled
externally by a computer that changes the voltage on a desired
region of the liquid crystal display placed in the path of the
photons, thus varying the phases added to them. In this way,
it can insert different phases on each transversal path mode
labeled by m and n. The applied operations to the photon path
degrees of freedom are represented by Kraus operators [29].

Let the Kraus operators that apply a transformation on the
path of each photon be conditioned to the polarization. This
operation is feasible, because the horizontal (H ) and vertical
(V ) polarization components of each photon are separated
in the arms of a Mach-Zehnder interferometer. They are
written as

KSI
h j = (

KS
hα ⊗ |α〉 〈α| ) ⊗ (

KI
jβ ⊗ |β〉 〈β| ), (10)

where KS and KI act over the signal and idler spatial subspace,
respectively, and the projectors act over the polarization sub-
space (α, β = H or V ). They implement the following map
that acts on the pure state density matrix shown in Eq. (9):

εK (ρSI ) = ph jKSI
h j ρSI KSI†

h j , (11)

where ph jKSI†

h j KSI
h j � Î , Î is the identity operator and∑

h, j ph j = 1 , with h, j = 0, 1, . . . , d . The initial pure state
is transformed to a mixed state weighted by ph j , which is
the classical probability that gives different weights for the
different Kraus operators. The term p00 is the probability that
the identity operator Î acts on the initial state and ph j �=00 are
the probabilities that the initial state is transformed by the
other Kraus operators.

The operators performing the FTP operation in a Mach-
Zehnder are represented by the following diagonal unitary
matrices:

US = eiφp(tS )|p〉 〈p|, UI = eiχq (tI )|q〉 〈q|, (12)

where φp and χq are the phases added to the transversal path
states of S (|p〉) and I (|q〉) photons during the evolution
parametrized by tS and tI . Notice that U †

S US = Î and U †
I UI =

Î . We can represent these operators by a Kraus operator that
can be expressed similarly to Eq. (10) as

TSI = (
eiφpδ

V
α |p〉 〈p| ⊗ |α〉 〈α|)S⊗

(
eiχqδ

V
β |q〉 〈q| ⊗ |β〉 〈β|)I ,

(13)

where T †T = Î and δ
j
i is Kronecker δ that is 1 for i = j and 0

for i �= j. The Kronecker δ function in Eq. (13) guarantees
that there is no phase addition if the photon polarization
is horizontal and that there is the addition of the phases
implementing the FTP operation if the photon polarization is
vertical. By using Eq. (11) we obtain the transformed density
matrix from Eq. (9). If the Kraus operator given in Eq. (13) is

used we obtain the state

εT (ρSI ) = αmμ,nνα
∗
m′μ′,n′ν ′

4
|mμ, nν〉 〈m′μ′, n′ν ′|

× ei(φmδV
μ+χnδ

V
ν )e−i(φm′ δV

μ′+χn′ δV
ν′ )

. (14)

B. Dephasing maps

Now consider a specific phase noise called dephasing
which is also added to the photons path conditioned to the
vertical polarization [30]. This dephasing operation is repre-
sented by the following Kraus operators:

DSI
h j =

(
eiπδh

pδ
V
α |p〉 〈p|⊗ |α〉 〈α|)S ⊗ (

eiπδ
j
qδ

V
β |q〉 〈q| ⊗ |β〉 〈β|)I ,

(15)

where DSI
h j

†DSI
h j = Î and h, j = 0, 1, . . . , d . The dephasing

noise can be added to the photons’ transversal paths by
the second SLM (SLM2) shown in Fig. 1, following the
experimental strategy discussed in Ref. [25]. Applying the
dephasing Kraus operators on the state described by εT (ρSI ),
we find

εD[εT (ρSI )] = ei[(πδh
m+φm )δV

μ+(πδ
j
n+χn )δV

ν ]ρSI ph j

× e−i[(πδh
m′ +φm′ )δV

μ′+(πδ
j
n′+χn′ )δV

ν′ ], (16)

which is a mixture of pure states weighted by ph j . Note that
the original state ρSI still appears in the expression but it is
now modified.

The topological phase is measured by varying two inde-
pendent phases in the interferometer and measuring the inter-
ference pattern with and without the local unitary operations
applied to the two-qudit path state. The fractional topological
phase is measured from the shift in the interference patterns.
The phase scanning operations (which add θS and θI to the
signal and idler paths, respectively) are realized by the mirrors
coupled to piezoelectric transducers (PZTs) in one of the
arms of the Mach-Zehnders (Fig. 1). This operation can be
expressed as

S = (
eiθSδ

H
α Ipath ⊗ |α〉 〈α|)S⊗

(
eiθI δ

H
β Ipath ⊗ |β〉 〈β|)I , (17)

with S†S = Î . Finally, taking into account all the quantum
operations applied to the input state in the Mach-Zenhder in-
terferometers, represented by ε(ρSI ) = εS ◦ εD ◦ εT (ρSI ), we
obtain the final transformation of the initial density operator as

ε(ρSI ) = ph jF
h j
mμ,nνF h j∗

m′μ′,n′ν ′ |mμ, nν〉 〈m′μ′, n′ν ′| , (18)

where

F h j
mμ,nν = αmμ,nν

2
ei{[(πδh

m+φm )δV
μ+θSδ

H
μ ]+[(πδ

j
n+χn )δV

ν +θI δ
H
ν ]}. (19)

The final density operator describes a system whose state is a
mixture of pure states weighted by the classical probabilities
ph j and by the final amplitudes F h j

mμ,nν , according to

ε(ρSI ) = ph j |ψh j〉 〈ψh j | , (20)

where

|ψh j〉 = F h j
mμ,nν |mμ, nν〉 . (21)

It is useful to decompose the density matrix elements of the
evolved density operator [Eq. (18)] in three distinct parts:
one part corresponding to the initial amplitudes (αmμ,nν/2),
another one responsible for a positive or negative sign in
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the density matrix elements as a consequence of adding the
dephasing noise (Dh j

mμ,nν ), and the last part composed by the
unitary operation and the scanning phase factors ( fmμ,nν ).
Then, we can rewrite the pure state amplitudes as

F h j
mμ,nν = 1

2 αmμ,nν Dh j
mμ,nν f mμ,nν, (22)

where

Dh j
mμ,nν = eiπ (δh

mδV
μ+δ

j
nδ

V
ν ) = (−1)(δh

mδV
μ+δ

j
nδ

V
ν ),

f mμ,nν = ei[(φmδV
μ+θSδ

H
μ )+(χnδ

V
ν +θI δ

H
ν )]. (23)

Equation (22) shows us that the phase factors
f mμ,nν f ∗

m′μ′,n′ν ′ are identical for all components of the
sum over h and j in the mixed state. Note that if we
remove the dephasing noise from the interferometers
(ph jD

h j
mμ,nνDh j∗

m′μ′,n′ν ′ = 1) and make explicit the polarization
components [Eq. (8)] we recover the state studied by Khoury
et al. [10]:

|�〉 = αm,n

2

[
ei(θS+θI ) |mH, nH〉 + ei(θS+χn ) |mH, nV 〉

+ ei(φm+θI ) |mV, nH〉 + ei(φm+χn ) |mV, nV 〉 ]
. (24)

Equation (18) indicates that we obtain the same final
state by exchanging the operators’ order and therefore by
exchanging the quantum operations in the Mach-Zehnder
interferometers. Indeed, it is important to remember that
the path dephasing does not produce photon losses and that
the dephasing effect will only result in decreased visibilitiy
of the interference pattern used to measure the fractional
topological phase.

The results presented here can be obtained by a setup
similar to the one shown in Fig. 1, but without the two Mach-
Zehnders. The use of Mach-Zehnders is pedagogical, but for
practical purposes they can be substituted by a phase-shifter
inside a Sagnac interferometer as shown in Ref. [11], replac-
ing the PZT to introduce the phases θs and θi between the
component H and V of the state. It is important to remember
that the SLM acts only in one polarization component, either
H or V , depending on the SLM’s orientation axis. From the
theoretical point of view, this change does not have funda-
mental impact. However, the use of a Sagnac interferometer
can be better in the experimental implementation for being
more stable.

IV. SPATIAL QUANTUM CORRELATIONS
UNDER DEPHASING

We follow below the steps shown in Ref. [10] for obtaining
the coincidence rate at the exit of the interferometer shown in
Fig. 1. The positive frequency components of the signal and
idler vector field operators are

E+
S = E+

SH êH + E+
SV êV , E+

I = E+
IH êH + E+

IV êV , (25)

where êμ (μ = V or H) is the unit vector along the direc-
tion of the vertical (V ) or horizontal (H ) polarization. Each
component is expanded in terms of the slit modes η and the
annihilation operators a and b as

E+
Sμ = apμηp(rS), E+

Iν = bqνηq(rI), (26)

where rj (j = S and I) are the signal and idler position
variables. The slit modes refer to the field spatial distribution

transmitted through the different slits. Each function ηp (ηq)
is the projection of the slit state (photon path state in the
slit spatial mode) over the continuous spatial Hilbert space
ηm(r) = 〈x|m〉, such that the orthogonality condition∫

d2r η∗
m(r)ηm(r) = δmn (27)

is valued. The operators apμ and bqν are the annihilation op-
erators acting in the usual way on two-photon states |mσ, nε〉
representing one signal photon passing through slit m with σ

polarization and one idler photon passing through slit n with
ε polarization. The action of the annihilation operators reads

apμbqν |mσ, nε〉 = δpmδμσ δqnδνε |vac〉 , (28)

where |vac〉 is the vacuum state meaning no photon is trans-
mitted through the slit m or n. After transmission through the
final PBS, the field operators at the detectors planes are

E+
1 = 1√

2
(iE+

SV + E+
IH ), E+

2 = 1√
2

(E+
SH + iE+

IV ). (29)

The coincidence count function at the exit of the PBS is given
by

C(r1, r2) = Tr[E+
2 E+

1 ρE−
1 E−

2 ], (30)

where E−
j = (E+

j )† ( j = 1 or 2). By using the density matrix
given by Eq. (22) and the action of the annihilation operators
according to Eq. (28), we obtain the coincidence counts from
Eq. (30):

C(r1, r2) = ph j
(
F h j

mH,nH F h j∗
m′H,n′H η2

mη1
nη

2∗
m′η

1∗
n′

+ F h j
mV,nV F h j∗

m′V,n′V η2
nη

1
mη2∗

n′ η
1∗
m′

− F h j
mH,nH F h j∗

m′V,n′V η2
mη1

nη
2∗
m′η

1∗
n′

− F h j
mV,nV F h j∗

m′H,n′H η2
nη

1
mη2∗

n′ η
1∗
m′

)/
4. (31)

We are only interested in the phase originated from the lo-
cal operations [Eq. (12)] on the qudits. Since the slit modes are
orthonormal, the integration in the transversal spatial variables
of the coincidence counts eliminates the spatial interference
between different slit modes and it will show only the Mach-
Zehnder longitudinal interference in the two-photon correla-
tion. This integration corresponds experimentally to the use
of large-aperture detectors, insensitive to the detailed spatial
structure of the two-photon quantum correlations. However,
the Hilbert space dimension remains manifested through the
two-qudit coefficients in the integrated coincidence function.
The coincidence count calculated through the integration of
Eq. (31), considering the orthonormality condition Eq. (27), is

C ≡
∫

d2r1d2r2C(r1, r2)

= ph j

4

(
F h j

mH,nH F h j∗
mH,nH + F h j

mV,nV F h j∗
mV,nV − F h j

mH,nH F h j∗
nV,mV

− F h j
mV,nV F h j∗

nH,mH

)
. (32)

Remembering that αmμ,nν = αm,nαμ,ν (μ, ν = H or V ) and
using Eq. (19), we can work out the integrated coincidence
count to find

C = 1
16

[
2 − αm,nα

∗
n,m ph j

(
f h j

m,n + f h j ∗
n,m

)]
, (33)
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where

f h j
m,n ≡ (−1)(δh

m+δ
j
n )ei[(φm+χn )−(θS+θI )],

f h j ∗
n,m ≡ (−1)(δh

n+δ
j
m )e−i[(φn+χm )−(θS+θI )]. (34)

This is the coincidence count at the exit of the PBS placed
before the detectors (Fig. 1) in the scheme proposed to mea-
sure the fractional topological phase of qudits in a dephasing
environment.

We use Eq. (33) in the next section for comparing the frac-
tional topological phase of qudits which can be measured from
the interferometer shown in Fig. 1 without and with dephasing
noise. Note that the normalized coincidence count given by
Eq. (33) is limited to 1/4. This is so because of the polarizers
filtering before the detectors and the signal loss due to events
where signal and idler photons exit the final PBS through the
same output port and do not produce a coincidence. Therefore,
in the examples shown below, we multiply Eq. (33) by 4 to
make the interference patterns oscillate in the interval between
0 and 1 when maximal visibility is attained.

Our final results are limited to diagonal operations, but it is
possible to change Eq. (15) including new terms that represent
an off-diagonal operation and redo the calculation. We chose
to study the noise diagonal operations at first because their
experimental implementation for slit states is straightforward
with the use of spatial light modulators. It is possible to use
different noise environments, such as amplitude damping, in
a way similar to that done above.

V. NUMERICAL RESULTS

In the next steps we refer to the setup with no dephasing
and the results from Ref. [10] to compare the cases with and
without noise.

Consider two photonic qubits (d = 2), qutrits (d = 3),
or ququarts (d = 4) under their respective signal and idler
unitary diagonal operations

US = diag[eiφ1 , eiφ2 , . . . , eiφd ],

UI = diag[eiχ1 , eiχ2 , . . . , eiχd ]. (35)

As shown in Ref. [10], the coincidence counts at the
exit of the interferometer used to measure FTP shift is
proportional to

C =
∑
m,n

|αm,n|2 cos2

[
φm + χn − θ

2

]
, (36)

where it was considered θ = θS + θI − π . The following
phases are used in the local operations [Eq. (35)] and are
supposed to be applied to the photonic qudit path states
(d = 2, 3, or 4) by the SLMs [10]:

d = 2

{
φ1 = χ1 = π

2 t,
φ2 = χ2 = −π

2 t,

d = 3

⎧⎪⎨
⎪⎩

φ1 = χ1 = 2π
3 t − π

3 (2t − 1)H
(
t − 1

2

)
,

φ2 = χ2 = − 2π
3 t,

φ3 = χ3 = π
3 (2t − 1)H

(
t − 1

2

)
,

d = 4

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ1 = χ1 = −π
4 t + π

2 (1 − 2t )H
(
t − 1

2

)
,

φ2 = χ2 = π
4 t,

φ3 = χ3 = 3π
4 t − π

2 (1 − 2t )H
(
t − 1

2

)
,

φ4 = χ4 = − 3π
4 t,

(37)

in which t is a real parameter, t ∈ [0, 1], and H (t ) is the
Heaviside function

H (x) =
⎧⎨
⎩

0, if x < 0;
1
2 , if x = 0;
x, if x > 0.

(38)

Equation (37) describes a continuous evolution of the phases
in each slit mode which produces an SU(d ) local evolution
applied on each qudit independently. However, the FTP phase
is extracted from the phase shift obtained from the displace-
ment of the interference pattern at t = 1 relative to the t = 0
interference pattern. Then, it is sufficient to calculate the
coincidence counts in terms of θ for a few particular t values
like the ones shown in Table I. The interference visibility
vanishes at t = 1/2 for the MES. This means that at t = 1/2
the evolved qudit state is orthogonal to the initial state (t = 0).
This feature will be checked with the following MESs for
qubits (d = 2), qutrits (d = 3), and ququarts (d = 4),

|ϕmes〉 = 1√
2

(|11〉 + |22〉),

|ϕmes〉 = 1√
3

(|11〉 + |22〉 + |33〉),

|ϕmes〉 = 1√
4

(|11〉 + |22〉 + |33〉 + |44〉), (39)

and compared with the following product states (PSs),

|ϕps〉 = 1
2 (|1〉 + |2〉) ⊗ (|1〉 + |2〉),

|ϕps〉 = 1
3 (|1〉 + |2〉 + |3〉) ⊗ (|1〉 + |2〉 + |3〉),

|ϕps〉 = 1
4 (|1〉 + |2〉 + |3〉 + |4〉) ⊗ (|1〉 + |2〉 + |3〉 + |4〉).

(40)

TABLE I. Phase values given by Eq. (37) for t = 0, 1/2, and 1.
Note that t = 0 and t = 1 correspond to the initial and final instants
of the two-qudit SU(d ) operations for d = 2, d = 3, and d = 4 . The
FTP is obtained from the shift of the interference pattern when t
varies from 0 to 1.

Principal phases

t φ1 = χ1 φ2 = χ2

0 0 0
1
2 π/4 −π/4
1 π/2 −π/2

t φ1 = χ1 φ2 = χ2 φ3 = χ3

0 0 0 0
1
2 π/3 −π/3 0
1 π/3 −2π/3 π/3

t φ1 = χ1 φ2 = χ2 φ3 = χ3 φ4 = χ4

0 0 0 0 0
1
2 −π/8 π/8 3π/8 −3π/8
1 −5π/4 π/4 7π/4 −3π/4
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TABLE II. Expressions for the two-photon interference patterns
given by Eq. (33) for the two-qudit maximally entangled (MES) and
product (PS) states with d = 2, 3, and 4 , when the local SU(d )
operations shown in Eq. (35) are applied. The parameter values
t = 0, 1/2, and 1 are considered. Two-qudit states are in a dephasing
environment determined by parameter p ∈ [0, 1]. The visibilities vps

and vmes for product and maximally entangled states are presented.

FTP calculation under dephasing

t Cmes(p) (d = 2) vmes

0 1
2 − (−1+p)2

2 cos(θ ) (−1 + p)2

1
2

1
2 0

1 1
2 − (−1+p)2

2 cos(θ − π ) (−1 + p)2

t Cps(p) (d = 2) vps

0 1
2 − (−1+p)2

2 cos(θ ) (−1 + p)2

1
2

1
2 − (−1+p)2

4 cos(θ ) (−1+p)2

2
1 1

2 0

t Cmes(p) (d = 3) vmes

0 1
2 − (3−2p)2

18 cos(θ ) (3−2p)2

9
1
2

1
2 0

1 1
2 − (3−2p)2

18 cos(θ − 2π

3 ) (3−2p)2

9

t Cps(p) (d = 3) vps

0 1
2 − (3−2p)2

18 cos(θ ) (3−2p)2

9
1
2

1
2 − 2(3−2p)2

81 cos(θ ) 4(3−2p)2

81

1 1
2 − (3−2p)2

162 cos(θ − 2π

3 ) (3−2p)2

81

t Cmes(p) (d = 4) vmes

0 1
2 − (−2+p)2

8 cos(θ ) (−2+p)2

4
1
2

1
2 0

1 1
2 − (−2+p)2

8 cos(θ − π

2 ) (−2+p)2

4

t Cps(p) (d = 4) vps

0 1
2 − (−2+p)2

8 cos(θ ) (−2+p)2

4
1
2

1
2 − 2(2+√

2)(−2+p)2

128 cos(θ ) (2+√
2)(−2+p)2

32

1 1
2 − (−2+p)2

32 cos(θ − π

2 ) (−2+p)2

16

If we substitute the phases shown in Table I into Eq. (33)
for the MESs and the PSs [Eqs. (39) and (40)], we are
able to compute the FTP for the state evolution under local
SU(d ) operations in the presence of dephasing. In Table II
we present the calculated coincidence counts. The notation
Cmes(p) and Cps(p) are used for the coincidence counts for the
cases of maximally entangled and product qudit states (d = 2,
d = 3, and d = 4), respectively. In Eq. (11), we consider
local iso-weighted dephasing for each photon, i.e., ph j =
ph × p j , ph �=0 = p j �=0 = p/d , and p0 = 1 − p. The parameter
p determines the weight of dephasing relative to the identity
operation. The visibility of the interference pattern will be
calculated as v = (Cmax − Cmin)/(Cmax + Cmin). When p = 0
in the equations shown in Table II, we recover the result given
by Eq. (36) for the case without phase noise, as expected [10].
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FIG. 2. Interference patterns for measuring the fractional topo-
logical phase of two-qubits states: (a) maximally entangled state and
(b) product state. Coincidence rates (C) at the exit of the final PBS
shown in Fig. 1 are plotted in terms of θ for photons prepared in two-
qubit maximally entangled and product states. The corresponding
expressions are presented in Table II. The curves that correspond
to the first three labels shown on the right of each set of graphs,
t = 0 (black continuous curves), t = 0.5 (red continuous thick and
thin curves), and t = 1 (blue continuous thick and thin curves), are
calculated for p = 0 (no phase noise present). The curves that cor-
respond to the remaining three labels, t = 0 (black continuous thick
curves), t = 0.5 (yellow and red shortdashed curves), and t = 1 (blue
and green dashed curves), are calculated for p = 1 (100% dephasing
present). The π interference pattern displacement between t = 0 and
t = 1 SU(d ) operations for p = 0 correspond to the predicted FTP
for the maximally entangled two-qubit states. The visibility goes to
zero at t = 0.5 for MES because the evolved state for t = 0.5 is the
orthogonal to the initial state and the two-qubit state is the only case
in which the visibility is null under 100% dephasing (p = 1).

Let us analyze the expressions presented in Table II. Except
for the two-qubit product state, the 2π/d shift is present in all
cases between t = 0 and t = 1 interference patterns, although
the visibility falls in the two-qudit (d > 2) product state. This
occurs even for p = 1 (100% of dephasing). These results
show us that the 2π/d shift under local SU(d) operations in
the presence of dephasing is very robust.

Figures 2–4 show plots of the coincidence expressions
displayed in Table II for p = 0 (no dephasing) and p = 1
(maximum dephasing) for the maximally entangled and prod-
uct states when t = 0, 1/2, and 1.

The visibility of the interference patterns vanish at t = 1/2
for the MES, which means that the evolved state for t = 1/2
is orthogonal to the initial state. Another significant aspect
with MESs is the complete recovery of the initial visibility at
the end of the cyclic SU(d ) ⊗ SU(d ) evolution (t = 1). The
two-qubit case is the only one in which the visibility goes to
zero under 100% dephasing (Fig. 2). For the product states
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FIG. 3. Situation analogous to Fig. 2 for two-qutrit states:
(a) maximally entangled state and (b) product state. The curves that
correspond to the first three labels shown on the right of each set
of graphs, t = 0 (black continuous curves), t = 0.5 (black dashed
curves), and t = 1 (blue continuous curves), are calculated for p = 0
(no phase noise present). The curves that correspond to the remaining
three labels, t = 0 (black continuous curves), t = 0.5 (black dotted
curves), and t = 1 (blue continuous curves), are calculated for p = 1
(100% dephasing present). In this case, the displacement between
t = 0 and t = 1 is 2π/3. Now, the visibility does not become null
under 100% dephasing.

with d > 2, although there is no complete recovery of the
initial visibility when the cyclic SU(d ) ⊗ SU(d ) operation
is completed, the 2π/d phase shift is evident from both the
equations shown in Table II and the graphs shown in Figs. 3(b)
and 4(b). On the other hand, the visibility of the interference
patterns is almost zero when the operation is realized in the
presence of 100% dephasing (p = 1).

Finally in Fig. 5 we plot the visibilities of the interference
patterns for maximally entangled and product states obtained
from the coincidence expressions presented in Table II as a
function of the dephasing weight represented by the param-
eter p . Note that the expressions for t = 0 are identical for
maximally entangled and product states.

VI. CONCLUSION

We demonstrate the robustness of fractional topological
phases in two-qudit states under local SU(d ) operations in
a dephasing environment. A photonic experimental proposal
is presented where the fractional topological phases are mea-
sured on two-photon interference. The two-qudit states are
encoded in the transverse modes of entangled photon pairs
generated by spontaneous parametric down-conversion. The
SU(d ) ⊗ SU(d ) and dephasing operations are applied to the
transverse photon path variables, which can be realized with
a spatial light modulator. The dephasing process is included
by using the corresponding Kraus operators. The two-photon
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FIG. 4. Situation analogous to Fig. 2 for two-ququart states:
(a) maximally entangled state and (b) product state. The curves that
correspond to the first three labels shown on the right of each set of
graphs, t = 0 (black continuous curves), t = 0.5 (red dashed curves),
and t = 1 (blue continuous curves), are calculated for p = 0 (no
phase noise present). The curves that correspond to the remaining
three labels, t = 0 (black continuous curves), t = 0.5 (black dotted
curves), and t = 1 (blue continuous curves), are calculated for p = 1
(100% dephasing present). In this case, the displacement between
t = 0 and t = 1 is π/2. Again, the visibility does not become null
under 100% dephasing.
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FIG. 5. (a) Visibilities (v) of the interference patterns for the
two-qudit maximally entangled states (d = 2, 3, or 4) in terms of
the dephasing parameter p . (b) Visibilities (v) of the interference
patterns for the two-qudit product states (d = 2, 3, or 4) in terms of
the dephasing parameter p . Expressions are shown in Table II.
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interference allows us to determine the fractional topological
phases through the shift of the interference fringes as the
cyclic operation is completed. Topological phase robustness
is predicted even for 100% dephasing for two-qudit systems
with d > 2 . This fact suggests that the fractional topologi-
cal phase can be a useful tool for quantum phase gate im-
plementations under the action of dephasing environments.
Another interesting subject that remains to be understood
is the role played by fractional topological phases in quan-
tum phase transitions. The scaling of geometric phases in
quantum phase transitions of spin chains has already been
discussed in the literature [31–33]. Meanwhile, the occurrence
of fractional topological phases in multiple-qubit systems
have already been investigated [34]. Therefore, the connection

between fractional topological phases and quantum phase
transitions offers a natural course of future research.
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