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Supersolid behavior of a dipolar Bose-Einstein condensate confined in a tube
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Motivated by a recent experiment [L. Chomaz et al., Nat. Phys. 14, 442 (2018)], we perform numerical
simulations of a dipolar Bose-Einstein condensate (BEC) in a tubular, periodic confinement at T = 0 within
density functional theory, where the beyond-mean-field correction to the ground-state energy is included in
the local density approximation. We study the excitation spectrum of the system by solving the corresponding
Bogoliubov–de Gennes equations. The calculated spectrum shows a roton minimum, and the roton gap decreases
by reducing the effective scattering length. As the roton gap disappears, the system spontaneously develops a
periodic linear structure formed by denser clusters of atomic dipoles immersed in a dilute superfluid background.
This structure shows the hallmarks of a supersolid system, i.e., (i) a finite nonclassical translational inertia
along the tube axis and (ii) the appearance of two gapless modes, i.e., a phonon mode associated with density
fluctuations and resulting from the translational discrete symmetry of the system, and a Nambu-Goldstone
gapless mode corresponding to phase fluctuations, resulting from the spontaneous breaking of the gauge
symmetry. A further decrease in the scattering length eventually leads to the formation of a periodic linear
array of self-bound droplets.

DOI: 10.1103/PhysRevA.99.041601

Dipolar Bose-Einstein condensates (BECs) have attracted
great attention in recent years, since the first experimental
realizations of BECs with strongly magnetic atomic gases
[1–3]. This interest is motivated by the particular properties
of such systems which are characterized by anisotropic and
long-range dipole-dipole interactions in addition to short-
range contact interactions, resulting in a geometry-dependent
stability diagram [4] where the system [which is intrinsically
unstable in three dimensions (3D)] becomes stable against
collapse if the confinement along the polarization axis is
much tighter that the in-plane confinement. The properties of
dipolar BECs have been the subject of numerous experimental
and theoretical studies, which are extensively reviewed in
Refs. [5,6].

Recent experiments [7,8] on the stability of a dipolar BEC
of 164Dy trapped in a flat “pancake” trap showed the formation
of droplets arranged in an ordered structure, their collapse
being prevented by the tight confinement along the short axis.
This effect is the equivalent of the Rosensweig instability of
classical ferrofluids [9].

Remarkably, recent experiments [10] showed that self-
bound droplets can be realized in a dipolar Bose gas depend-
ing upon the ratio between the strengths of the long-range
dipolar attraction and the short-range contact repulsion. These
droplets, whose densities are higher by about one order of
magnitude than the density of the weakly interacting conden-
sate, are stable even in free space, after the external trapping
potential is removed.

The possibility of self-bound dipolar droplets has been
explained theoretically in Refs. [11–13], where it has been
shown that the binding arises from the interplay between

the two-body dipolar interactions and the effects of quantum
fluctuations. The latter can be embodied in a beyond-mean-
field energy correction [11,14], where a positive shift of the
ground-state energy with the Lee-Huang-Yang (LHY) form
[15] counteracts the destabilizing effect of the dipole-dipole
attraction. The crossover in a dipolar quantum fluid from
a dilute BEC to self-bound macrodroplets was studied in
Ref. [13], where further evidence was provided that quantum
fluctuations indeed stabilize the ultracold gas far beyond the
instability threshold imposed by mean-field interactions. The
properties of self-bound dipolar quantum droplets have been
extensively studied from a computational point of view, both
within a mean-field theory approach that takes into account
the LHY correction [12,16], and with quantum Monte Carlo
simulations [17–19].

In Ref. [20] it has been shown that in a dipolar BEC
of 166Er confined in a strongly prolate cigar-shaped trap
(“tubular” trap), the reduction of the scattering length leads to
the appearance of a roton mode. The excited-state dispersion
relation is thus characterized by a roton minimum, similarly
to the case of 4He, the roton gap amplitude depending on the
relative strengths of short-range and dipolar interactions, as
predicted in Refs. [21,22]. This suggests that when the roton
gap becomes very small, a dipolar BEC confined in an axially
elongated trap orthogonal to the polarization direction may
develop a modulated density profile in its ground state. Based
on this, it has been suggested [20] that this system may indeed
show supersolid behavior.

The existence of a supersolid phase of matter was pro-
posed long ago for 4He [23], but its experimental verification
remained elusive [24]. The possibility of forming a solid
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structure simultaneously possessing crystalline order and su-
perfluid properties [25] is associated with an excitation spec-
trum of the liquid phase characterized by a roton minimum at
a finite k vector [26], the liquid-to-supersolid transition being
triggered by the vanishing of the roton gap. Supersolid phases
have been recently predicted for confined condensed spinless
bosons in 2D [27] and 3D [28] interacting via a broad class of
soft-core repulsive potentials.

Supersolid behavior has been proposed for the stripe phase
of a dipolar Bose gas under strong confinement when the
polarization axis forms an angle with the tight confinement
axis [29–31]. Similar predictions have been made for a dipolar
BEC confined in a quasi-2D pancake-shaped trap [32], where
possible supersolid behavior is related to the formation of
a low-density “halo” of atoms among different droplets in
a cluster arrangement when the chemical potential is high
enough to let some atom escape from a single droplet. Finally,
supersolid behavior has been suggested in a ferrofluid mixture
of dipolar BEC under a “pancake” confinement [33], within a
mean-field approach.

The only experimental evidence so far of supersolid be-
havior in cold gases has been reported recently in Ref. [34],
where the authors realized an “infinitely stiff” supersolid of
87Rb atoms with the density modulation artificially imposed
by external optical lattices. Stable “stripe” modulations have
been experimentally observed recently in dipolar quantum
gas [31,35]. While no global phase coherence is found in a
similar system studied in Ref. [31], a partial phase coherence

is suggested in Ref. [35], thus indicating possible supersolid
behavior.

We notice that in the systems studied in Refs. [31,32], the
condensate → droplet transition results in the formation of
finite clusters made of a few stripes (i.e., a very elongated
droplet in the polarization direction). In both of the above two
studies many local minima of the total energy are possible,
depending upon the number of atoms in the condensate, and
these minima are characterized by the different number and
arrangement of droplets. One such state appears to be a
stationary state with a global coherence that is predicted to
be robust against quantum phase fluctuations [32].

We will propose in the following a different geometry,
where the condensate-droplet transition occurs in a tubular
confinement with periodic boundary conditions, resulting in
a density-modulated configuration made by a linear periodic
arrangement of equally spaced elongated “droplets” immersed
in a halo of low-density superfluid. We will provide here
evidence of the supersolid character of such a structure.

In this Rapid Communication, we will use numerical sim-
ulations within density functional theory (DFT) at T = 0, in
the local density approximation (LDA), to study the equilib-
rium structure and elementary excitations of a dipolar BEC
confined in a tube whose axis is orthogonal to the polarization
direction, and with periodic boundary conditions along the
tube axis.

Within the DFT framework, the total energy of a dipolar
BEC of atoms with mass m and magnetic moment μ is

E =
∫ [

h̄2

2m
|∇φ(r)|2 + Vt (r)|φ(r)|2 + g

2
|φ(r)|4

]
dr + 1

2

∫
Vdd (|r − r′|)|φ(r)|2|φ(r′)|2dr dr′ + 2

5
γ (εdd )

∫
|φ(r)|5dr. (1)

Here, g = 4π h̄2a
m , a being the s-wave scattering length, Vdd (r −

r′) = μ0μ
2

4π
1−3 cos2 θ

|r−r′ |3 is the dipole-dipole interaction between
two identical magnetic dipoles aligned along the z axis (θ
being the angle between the vector r and the polarization
direction z), and μ0 is the permeability of the vacuum.
Vt is the trapping potential. The last term is the beyond-
mean-field [Lee-Huang-Yang (LHY)] correction [14], where
γ (εdd ) = 32

3
√

π
ga

3
2 F (εdd ), εdd = μ0μ

2

3g being the ratio between
the strengths of the dipole-dipole and contact interactions, and
F (εdd ) = 1

2

∫ π

0 dθ sin θ [1 + εdd (3 cos2 θ − 1)]
5
2 . The number

density of the dipole system is n(r) = |φ(r)|2.
The minimization of the above energy functional leads to

the following Euler-Lagrange (EL) equation,

H0φ(r) ≡
[
− h̄2

2m
∇2 + Vt (r) + g|φ(r)|2 + γ (εdd )|φ(r)|3

+
∫

dr′|φ(r′)|2Vdd (r − r′)
]
φ(r) = μφ(r), (2)

and μ is a Lagrange multiplier whose value is determined
by the normalization condition

∫ |φ(r)|2dr = N (N being
the total number of dipoles). Equation (2) is the well-known
Gross-Pitaevskii equation [36] with the addition of the LHY
correction. In what follows, m is the mass of an 166Er atom.
A similar approach has been used, e.g., in Ref. [11] and other

papers addressing the effect of beyond-mean-field effects on
the dipolar Bose gas. The predictions of the DFT-LHY ap-
proach described above have been tested in Ref. [17] against
quantum Monte Carlo simulations, showing that the DFT-
LHY indeed allows rather accurate predictions.

In the following, we will assume a tubular confinement,
i.e., the dipoles are radially confined by a harmonic potential
Vt (r) = 1

2 m(ω2
y y2 + ω2

z z2), in the y-z plane (z is the polariza-
tion direction and y is the transverse direction). The harmonic
frequencies are fixed to the values ωy = ωz = 2π (600) Hz.
This geometry closely matches the experimental setup used in
the recent experiments of Refs. [13,20]. Along the third axis,
x, the system is not confined, but subject to periodic boundary
conditions (PBCs), φ(x + L, y, z) = φ(x, y, z), L being the
tube length. Note that, due to the presence of PBCs, the
system is equivalent to a ring geometry (with a ring radius
R = L/2π ), if curvature effects can be neglected (i.e., when
R is much larger that the harmonic confinement length in
the y-z plane). This allows us to test our prediction in actual
experiments, where a ring-shaped trapping potential can be
easily realized.

We solve Eq. (2) by propagating in imaginary time its time-
dependent counterpart ih̄∂φ/∂t = H0φ. In all the simulations
we fix the value of the linear density n0 = N/L and vary
the value of the ratio εdd between the dipolar and contact
interaction strengths. The total number of atoms is fixed to
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N = 6 × 104. To compute the spatial derivatives appearing in
(2), we used an accurate 13-point finite-difference formula.
Density n and wave function φ are represented in real space on
a three-dimensional spatial mesh with spacing h = 0.1 μm.
The convolution integral in the potential energy term of
Eq. (2) is efficiently evaluated in reciprocal space by using
fast Fourier transforms, recalling that the Fourier transform
of the dipolar interaction is [5] Ṽk = (μ0μ/3)(3 cos2 α − 1),
where α is the angle between k and the z axis. We verified
that the transverse dimensions of our simulation cell are wide
enough to make negligible the effects, on the energy values
and density profiles, of the spurious dipole-dipole interaction
between periodically repeated images.

In order to study the elementary excitations, we expand
the wave function in the Bogoliubov–de Gennes (BdG) form

(r, t ) = e−i μ

h̄ t [φ(r) + u(r)e−iωt − v∗(r)eiωt ], and insert this
expansion in Eq. (2). Keeping only terms linear in the ampli-
tudes u and v, one gets the BdG equations for the amplitudes u
and v and the excitation energies ε, that can be cast in a matrix
form as [16](

H0 − μ + X̂ −X̂ †

X̂ −H0 + μ + X̂ †

)(
u
v

)
= ε

(
u
v

)
, (3)

where H0 is given in Eq. (2) and the operator X̂ is defined by
its action on the function f as

X̂ f (r) = φ(r)
∫

dr′[Vdd (r − r′) + gδ(r − r′)]φ∗(r′) f (r′)

+ 3

2
γ (εdd )|φ(r)|3 f (r). (4)

Because of our use of Fourier transforms, which imply that
PBCs must be imposed in our calculations, we can expand the
wave function φ and the complex functions u, v in the Bloch
form appropriate to a periodic system. In this way, Eqs. (3)
can be solved in reciprocal space allowing us to find εk in the
right-hand side of Eq. (3) [see Ref. [28] for details about the
numerical methods used to solve Eq. (3)].

We first solve the BdG equations to compute the excitation
spectrum for a dipole system characterized by a uniform
density along the tube axis (x axis). The energies εk of the
mode along the kx direction are shown in Fig. 1 (upper panel)
for the choice n0 = 3.78 × 103 μm−1, for different values of
εdd . Notice that, as εdd is increased (i.e., the scattering length
a is decreased), a roton minimum develops in the dispersion
relation, eventually vanishing at εdd = 1.45.

This signals a possible density modulation instability that
might break the uniform symmetry along the tube axis. In or-
der to verify this, we calculated the equilibrium density profile
by solving Eq. (2) for different values of εdd . In Fig. 1 we
show the resulting density for two different values of εdd . We
plot in Fig. 1 the density ny(x, z) = ∫

n(x, y, z)dy integrated
along the y axis perpendicular to the polarization direction.
One can see that the density remains uniform along the tube
for finite values of the roton gap, while it becomes periodically
modulated as the roton gap vanishes. The resulting structure
in the latter case is shown in the lower panel of Fig. 1. The
periodicity of the density profile is fixed by λ = 2π

kc
x

, where
kc

x is the critical value of the momentum at which the roton
gap vanishes. When the tube length is not commensurate with
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FIG. 1. Upper panel: Dispersion relation of excitations propagat-
ing along the tube axis in the homogeneous system. Energies are in
atomic units. Lower panel: Integrated density ny(x, z) just below and
at the critical value of εdd where the roton gap vanishes. The total
number of atoms is N = 6 × 104. The lowest plot shows the density
n along the tube axis for different values of εdd .

the roton wavelength, as is the case shown in the figure, the
modulation develops at a wavelength most close to it. Such a
periodic modulation is maintained well below the transition,
as shown in the lowest plot in Fig. 1.

If we start instead from an initial state modulated with a
wavelength different from 2π/kc

x , we sometimes got trapped,
during the minimization procedure, into metastable states
characterized by a different number of stripes, with a higher
energy than the state shown in Fig. 1. This happens, for
instance, with a state having 12 or 9 stripes in the tube (for
values of εdd close to the roton instability value εdd = 1.45),
instead of the 11 stripes found for the ground state (a 10-stripe
solution is found to be unstable towards the lowest-energy
11-stripe structure, i.e., it always evolves towards it during
the imaginary-time evolution). The energy differences with
respect to the ground state are, however, very small (the 12-
stripe state being almost degenerate with the 11-stripe one,
with just a 0.1% relative difference, while we find a 1%
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relative difference for the 9-stripe case). This implies that
during a rapid quench of the interaction the system might
indeed get caught into one of these metastable states. The
resulting structures, however, still have supersolid properties,
being characterized simultaneously by periodic order and a
finite nonclassical translational inertia (see the following).
Finally, although close to the roton instability our structure
is a bona fide ground state, we cannot exclude that for higher
values of εdd , the solution we find is a metastable state rather
than a ground state.

The periodic structure corresponding to εdd = 1.45
appears to be made of regularly arranged, dense, elongated
clusters of dipoles immersed in a background of a very dilute
condensate, as shown in the lowest-density plot of Fig. 1.
This suggests that the systems, for εdd > 1.45, may display
a supersolid character. In order to verify this hypothesis, we
have looked for the characteristic hallmarks of supersolid
behavior of the modulated structures, i.e., Ref. [37], (i) a finite
nonclassical translational inertia and (ii) the appearance, be-
sides the phonon mode associated with the density periodicity,
of a gapless “superfluid band” resulting from the spontaneous
breaking of global gauge symmetry.

First, we check for the presence of nonclassical transla-
tional inertia (NCTI). This is done by solving for stationary
states the real-time version of the EL equation (2) in the
comoving reference frame with uniform velocity vx, i.e.,

ih̄
∂

∂t
φ(r) =

(
H0 + ih̄vx

∂

∂x

)
φ(r). (5)

Following Ref. [37], we define the superfluid fraction fs as
the fraction of particles that remains at rest in the comoving
frame,

fs = 1 − lim
vx→0

〈Px〉
Nmvx

, (6)

where 〈Px〉 = −ih̄
∫

φ∗∂φ/∂x is the expectation value of the
momentum and Nmvx is the total momentum of the system
if all the particles were moving ( fs should not be confused
with the total superfluid fraction; for instance, in the deep
nonlinear regime where self-bound droplets form, as shown
in the following, although they are individually superfluid, fs

is zero, meaning that there is no supersolid behavior).
The definition above is the most natural to reveal a global

phase coherence in a periodic system such as the one studied
here [37]. Other ways of quantifying the tunneling in strongly
confined systems made of a cluster of droplets are possible,
such as, e.g., approximately treating pairs of droplets as
bosonic Josephson junctions [31,32].

We can see from Fig. 2 that, when a modulation in the den-
sity profile appears, the superfluid fraction becomes smaller
than one, and it decreases as εdd is increased. A small jump
at the uniform → modulated transition seems to signal a first-
order transition, similarly to what is found in the case of a
supersolid transition of soft-core bosons [28].

Another characteristic of supersolid behavior is associated
with the presence in the excitation spectrum of the peri-
odically modulated structure shown in Fig. 1, of an extra
gapless mode besides the “phonon” modes associated with
the periodic density modulations [38]. The excitation spec-
trum can be calculated by solving the corresponding BdG

FIG. 2. Upper panel: Superfluid fraction as function of εdd .
Lower panel: Excitation spectrum along the tube axis, calculated
for εdd = 1.45. The rightmost value of kx corresponds to the first
Brillouin zone boundary along the x axis, i.e., kx = π/d , d = L/11
being the length of the unit cell containing exactly one droplet in
Fig. 1.

equations for modes propagating along the axis of the tube.
The result is shown in Fig. 2, for the values εdd = 1.45
and n0 = 3.78 × 103 μm−1, from which one can see the
appearance of two gapless modes associated with symmetry
breaking. The harder mode is associated with the density
response of the system, and it corresponds to the phonon
branch. The softer mode is associated instead with the phase
response of the system, and it signals the superfluid charac-
ter of the supersolid (Nambu-Goldstone mode). The correct
mode assignment was made by looking at the calculated
local density and phase fluctuation modes [28,39], ρnk(r) =
|un,k − vn,k|2 and θnk(r) = |un,k + vn,k|2, respectively: The
phonon mode is mainly characterized by density modulations,
whereas the superfluid mode is characterized mainly by mod-
ulations in the phase. As εdd increases, the system is entering
the regime of self-bound droplets (as discussed below), and as
a result the Goldstone phase mode become softer and softer,
until it completely disappears. In this regime the droplets are
disconnected from one another and the superfluid fraction
associated with the nonclassical inertia goes to zero, while the
individual droplets are still superfluid.

From Fig. 2 (upper panel) it appears that as εdd increases,
the superfluid fraction tends to zero. When this happens,
the atomic clusters shown in the lowest panel of Fig. 1
begin to merge, forming denser isolated droplets, while the
calculated energy per particle becomes negative, as shown
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FIG. 3. Energy per particle (in atomic units) as a function of εdd .
The inset shows the array of self-bound droplets.

in Fig. 3. This happens at εdd ∼ 1.66. Above this value, the
density profile of the system takes the form of an (ordered)
one-dimensional lattice of self-bound quantum droplets (each
containing N ∼ 104 atoms), while the supersolid behavior
is completely suppressed, as shown by the disappearance of
the Nambu-Goldstone mode from the calculated excitation
spectrum.

We notice at this point that we obtained similar results
with different choices for the system density and tube length.
However, there is no special choice for such parameters which
will give supersolid properties. Rather, for a given density,
tube length, and radial confinement, there is always a range
of coupling strengths where the system shows supersolid
behavior: A different choice of parameters will only shift the
condensate-supersolid transitions towards different values of
the coupling strength, but the relevant physics will not be
affected. (The density must, however, be large enough for
the system to develop the expected modulation.) We notice,
however, that for very long tubes (much longer than the ones
investigated here) quantum phase fluctuations may destroy the
phase relationship between distant droplets.

Preliminary calculations show that the supersolid char-
acter of the system described here is robust against weak

perturbations of the external potential. In particular, small
periodic modulations of the trapping potential do not destroy
the supersolid behavior [40].

In conclusion, we have shown, by means of numerical
simulations based on the DFT-LHY approach, that in a dipolar
BEC confined in a tube at T = 0, the softening of the roton
mode, caused by a decrease in the scattering length, leads to
the formation of a modulated, periodic structure, in which
denser clusters of dipoles are immersed in a very dilute
superfluid background. This system shows the hallmarks of
supersolid behavior, i.e., a finite, nonclassical translational
inertia, and a Goldstone “superfluid” mode in the excitation
spectrum in addition to the phonon mode associated with
density periodicity. The supersolid behavior is suppressed
when the system, by further decreasing the scattering length,
enters into a regime in which the dipole clusters turn into an
ordered array of self-bound quantum droplets. The tubular
confinement is more convenient from an experimental point
of view than a 2D confinement because it likely reduces
the number of possible metastable states with comparable
energies.

The phase coherence of the supersolid phase described
here could be experimentally detected in a dipolar condensate
confined in a ring trap where, after having tuned the scattering
length across the threshold value required for the supersolid
formation, the trapping potential is switched off, allowing
the system to expand freely. By doing subsequent absorp-
tion imaging, one could detect the presence of interference
maxima associated with phase coherence [34].

Note added. Recently, a joint experimental-theoretical pa-
per appeared [41] showing that a ground-state, coherent linear
array of quantum “droplets” can be realized where, in addi-
tion to periodic density modulations, a robust phase coher-
ence across the system is maintained, similarly to what we
predicted here.
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