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Comparison of high-accuracy calculations with precision measurement of the 413-nm tune-out wavelength
of the He(2 3S1) state provides a unique test of quantum electrodynamics (QED). We perform large-scale
relativistic-configuration-interaction (RCI) calculations of the tune-out wavelength that include the mass-shift
operator and fully account for leading relativistic nuclear recoil terms in the Dirac-Coulomb-Breit (DCB)
Hamiltonian. We obtain the QED correction to the tune-out wavelength using perturbation theory, and the effect
of finite nuclear size is also evaluated. The resulting tune-out wavelengths for the 2 3S1(MJ = 0) and 2 3S1(MJ =
±1) states are 413.084 26(4) nm and 413.090 15(4) nm, respectively. When we incorporate the retardation
correction of 0.000 560 0236 nm obtained by Drake et al. [Hyperfine Interact 240, 31 (2019)] to compare results
with the only current experimental value of 413.0938(9stat )(20syst) nm for the 2 3S1(MJ = ±1) state, there is
1.4σ discrepancy between theory and experiment, which stimulates further theoretical and higher precision ex-
perimental investigations on the 413-nm tune-out wavelength. In addition, we also determine the QED correction
for the static dipole polarizability of the He(2 3S1) state to be 22.5 ppm, which may enable a new test of QED in
the future.
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Bound-state quantum electrodynamics (QED) is one of
the most successful theories in modern physics, having been
tested through precision measurement over a diverse spectrum
of experimental realisations. For example, measurement of the
bound-state g factor in the hydrogen-like 28Si13+ and 12C5+
at the sub-part-per-billion (sub-ppb) level [1–3] has provided
one of the strictest QED tests.

In order to test QED theory in many-electron systems,
calculations and measurements for helium, the simplest mul-
tielectron atom, are of great importance. Measurements of the
fine-structure splitting in the 2 3P manifold have yielded a test
of QED predictions with a precision at the sub-ppb (10−9)
level [4–7]. The Lamb shift of the 2 1S0 and 2 3S1 states has
been determined, respectively, using the 2 1S0 → 3 1D2 [8]
and 2 3S1 → 2 3D1 two-photon transitions [9]. However, four
standard deviations in the discrepancy between measurements
for the helium nuclear charge radius, which are determined by
two different methods (the 2 3S → 2 3P [10–12] and 2 3S →
2 1S [13,14] transition frequencies combined with calculations
of the QED and recoil corrections [15–17]), pose significant
challenges to QED theory.

QED tests that do not rely on energy-level determinations
can potentially provide important independent verification,
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such as the experimental and theoretical determination of
transition rates, but these are both inherently difficult and of
much lower precision [18–20]. Therefore, further experiments
probing other nonenergy properties of helium are important to
deliver an independent validation of QED, provided that the
corresponding progress in theory can be achieved.

QED contributions play an important role in the atomic
polarizability of helium. The most accurate theoretical calcu-
lation of the ground-state static dipole polarizability of helium
has now reached an accuracy of 0.2 ppm [21], which provides
a nonenergy QED test when compared with high-precision
experimental measurements [22,23]. It is difficult to further
improve this experimental accuracy, since a measurement of
polarizability depends on precisely measuring the electric
field strength.

However, the same QED effects are also reflected in the
dynamic polarizability [24,25]. The 413-nm tune-out wave-
length for the He(2 3S1) state, where the dynamic polarizabil-
ity equals to zero, provides a further nonenergy scheme to test
QED [26]. Since the position of the tune-out wavelength does
not depend on the details of the laser power or beam profile,
a measurement of the tune-out wavelength can potentially
achieve higher sensitivity to test QED calculations than a
measurement of the static dipole polarizability.

This application of the 413-nm tune-out wavelength of
metastable helium to test QED theory has sparked great inter-
est in high-precision measurement and high-accuracy calcula-
tions [27–32]. The first hybrid calculations were carried out by
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Mitroy and Tang [26]. In 2015, Henson et al. [27] performed
the first experimental measurement utilizing a highly sensitive
technique and reported a value of 413.0938(9stat)(20syst)
nm (≈5 ppm accuracy) for the 2 3S1(MJ = 1) state of 4He,
two orders of magnitude more precise than the value of
413.02(9) nm first predicted in Ref. [26]. Recently, Zhang
et al. performed an ab initio calculation of the tune-out wave-
length by extending nonrelativistic and relativistic configura-
tion interaction (NRCI and RCI) methods [28,29]. The RCI
value of 413.085 9(4) nm, which includes the finite nuclear
mass and relativistic corrections, reduced the discrepancy be-
tween the theoretical value and measurement result from 134
to 19 ppm. The remaining 19-ppm discrepancy was mainly
due to neglected QED corrections, which provides motivation
for the more detailed QED and higher order nuclear recoil
investigations in the present work.

In this paper, we improve on previous B-spline RCI method
by self-consistently taking into account the nuclear recoil
correction in the Dirac-Coulomb-Breit (DCB) framework and
perform the QED correction with perturbation calculation.
We obtain the individual contributions of the nuclear recoil
effect, QED, and finite nuclear-size corrections to the 413-nm
tune-out wavelength and static dipole polarizability of the
4He(2 3S1) state. The uncertainty in the static dipole polar-
izability has achieved an accuracy of 0.1 ppm. The present
values of the tune-out wavelength will set a benchmark for
future measurements to seriously test QED calculations at a
higher level of accuracy.

It is convenient to efficiently calculate dynamic polariz-
abilities at off-resonance frequencies using a power series
expansion, such as employed in determining the ground-
state polarizability at the He-Ne laser wavelength of helium
[24,33]. However, since the 413-nm tune-out wavelength is
located near the 2 3S1 → 3 3PJ resonance line, the power
series expansion cannot be used. In this work, we employ
the sum-over-states method [26,29] to obtain dynamic dipole
polarizablities, then extract the tune-out wavelength from
making α1(ω) = 0. Under linear polarized light with laser
frequency ω, the dynamic dipole polarizability for a state with
angular momentum J and magnetic quantum number MJ is

α1(ω) = αS
1 (ω) + 3M2

J − J (J + 1)

J (2J − 1)
αT

1 (ω) , (1)

where αS
1 (ω) and αT

1 (ω) are, respectively, the scalar and tensor
dipole polarizabilities [29].

In order to take account of the nuclear recoil correction,
the mass shift (MS) operator HMS, which explicitly includes

the nonrelativistic and leading relativistic components, HNRMS

and HRMS [34], respectively, has been added directly into the
DCB Hamiltonian,

H = HDCB + HMS = HDCB + HNRMS + HRMS, (2)

HDCB =
2∑

i=1

[
cαi · pi + βmec2 − Z

ri

]
+ 1

r12

− 1

2r12
[α1 · α2 + (α1 · r̂12)(α2 · r̂12)], (3)

HNRMS = 1

2m0

2∑
i, j

pi · p j, (4)

HRMS = − 1

2m0

2∑
i, j

αZ

ri

[
αi + (αi · ri )ri

r2
i

]
· p j, (5)

where c is the speed of light, Z is the nuclear charge, me is the
mass of the electron, αi and β are the 4 × 4 Dirac matrices, pi
is the momentum operator, ri represents the distance of the ith
electron from the nucleus, r̂12 is the unit vector of the electron-
electron distance r12, α is the fine structure constant, and m0 =
7294.2995361 me [35] is the nuclear mass of 4He.

The wave function of helium for a state is expanded as
a linear combination of the configuration-state wave func-
tions. The configuration-state wave functions |φi j (JMJ )〉 are
constructed by a+

imi
|0〉 and a+

jm j
|0〉 with the angular quantum

numbers �i and � j less than the maximum number of partial
wave �max,

|φi j (JMJ )〉 = ηi j

∑
mimj

〈 jimi; j jm j |JMJ〉a+
imi

a+
jm j

|0〉 , (6)

where ηi j is a normalization constant, 〈 jimi; j jm j |JMJ〉 rep-
resents the Clebsch-Gordan coefficient of j j coupling, |0〉 is
the vacuum state, and a+

imi
|0〉 represents the ith single-electron

wave function, which can be obtained by solving the single-
electron Dirac equation using the Notre Dame basis sets [36]
of N number of B-spline functions with order of k = 7 [37].

QED corrections to polarizability and tune-out wavelength
are obtained by the perturbation theory using accurate ener-
gies and wave functions of previous NRCI calculations [28].
According to the calculation of QED correction to static po-
larizability [38], the following expression of QED correction
to the dynamic dipole polarizability can be derived,

δα
QED
1 (ω) = 2

[∑
n

〈g|D|n〉〈n|D|g〉〈g|δHQED|g〉[(En − Eg)2 + ω2]

[(En − Eg)2 − ω2]2
− 2

∑
nm

〈g|D|n〉〈n|D|m〉〈m|δHQED|g〉(En − Eg)

[(En − Eg)2 − ω2](Em − Eg)

−
∑
nm

〈g|D|n〉〈n|δHQED|m〉〈m|D|g〉[(En − Eg)(Em − Eg) + ω2]

[(En − Eg)2 − ω2][(Em − Eg)2 − ω2]

]
, (7)

where |g〉 represents the nonrelativistic wave function of
the initial state, |n〉 and |m〉 represent nonrelativistic wave
functions of intermediate states, and D is the electric dipole

transition operator. The QED operator, δHQED = H (3)
QED +

H (4)
QED, expanded to α3 and α4 order for the He(2 3S) state are
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TABLE I. Convergence of the energy (in a.u.) for the 4He(2 3S1)
state.

(�max, N) DCB DCB+NRMS DCB+MS

(7, 40) − 2.175 344 5653 − 2.175 045 2572 − 2.175 045 3806
(8, 40) − 2.175 344 5952 − 2.175 045 2851 − 2.175 045 4098
(9, 40) − 2.175 344 6132 − 2.175 045 3011 − 2.175 045 4224
(10, 40) − 2.175 344 6157 − 2.175 045 3020 − 2.175 045 4282
(10, 50) − 2.175 344 6220 − 2.175 045 3083 − 2.175 045 4270
Extrap. − 2.175 344 64(2) − 2.175 045 31(1) − 2.175 045 43(1)
Ref. [29] − 2.175 045 3(2)
Ref. [15] − 2.175 045 451

defined respectively as [15]

H (3)
QED = 4Zα3

3

{
19

30
+ ln[(Zα)−2] − ln

(
k0

Z2

)}

× [δ3(r1) + δ3(r2)] − 14α3

3

(
1

4πr3
12

)
, (8)

H (4)
QED = α4

{[
−9ζ (3)

4π2
− 2179

648π2
+ 3 ln(2)

2
− 10

27

]
πZ

+
[

427

96
− 2 ln(2)

]
πZ2

}
[δ3(r1) + δ3(r2)] , (9)

where ln k0 is the Bethe logarithm and ζ (x) is the Riemann ζ

function.
When an atom is in the external electric field E , the Bethe

logarithm involves the electric-field dependence term ∂2
ε ln k0,

which introduces about 0.6% of the total QED correction to
the ground-state polarizability [21]. In our calculation, we use
the value of ln k0 = 4.364 036 82(1) [39] for a free atom.
The correction from the electric-field derivative of Bethe
logarithm is evaluated by indicating 1% of the α3-order QED
correction to the dynamic dipole polarizability. The α4-order
QED includes the one-loop and two-loop radiative effects.
The nonradiative component is neglected since the contribu-
tion to helium 2 3S1 ionization energy from the nonradiative
component accounts for less than 5% of total α4-order QED
correction [40]. The Araki-Sucher correction [last term in
Eq. (8)] contributes −5.6 × 10−9 a.u. to helium 2 3S1 energy
[41], which is four orders of magnitude smaller than 1.67 ×
10−5 a.u. from the first term of Eq. (8), and two orders of
magnitude smaller than the α4-order QED contribution of

2.91 × 10−7 a.u. So, we omit the Araki-Sucher correction in
the determination of the 413-nm tune-out wavelength.

The calculations of the nuclear recoil corrections on the
energies, polarizabilities, and tune-out wavelengths are per-
formed using our improved RCI method. Table I gives a
convergence test of the energy for the 2 3S1 state of 4He. The
extrapolation was done by assuming that the ratio between
two successive differences in energies stays constant as the
�max and N become infinitely large. The DCB energies in the
second column do not include the nuclear recoil correction.
The DCB+MS and DCB+NRMS columns present energies
with and without relativistic nuclear recoil effects, respec-
tively. Comparing the extrapolated results between DCB+MS
and DCB+NRMS columns, it is found that the relativistic
nuclear recoil effect of HRMS reduces 1.2 × 10−7 a.u. to the
energy of the 2 3S1 state. The present DCB+NRMS value is
in reasonable agreement with the previous RCI energy [29],
where the relativistic nuclear recoil correction is not taken into
account. Compared with the perturbation calculation [15],
which includes the leading α2-order relativistic correction, our
DCB+MS energy agrees well with the result of −2.175 045
451 a.u. of Ref. [15]. The same energy accuracy for other
n 3S1 and n 1,3PJ states with n up to 8 is maintained in our
calculations.

Table II gives a convergence test of the static dipole
polarizability and the 413-nm tune-out wavelength for the
4He(2 3S1) state. For α1(0), present RCI values have seven
convergent digits, which improves on previous RCI values
[29] by one order of magnitude. For λt , the convergence is
very smooth as �max and N increased. The tune-out wave-
lengths for the 2 3S1(MJ = 0) and 2 3S1(MJ = ±1) states
are 413.080 00(1) and 413.085 89(1) nm, respectively. The
present value of 413.085 89(1) nm is more accurate than the
previous RCI result of 413.085 9(4) nm [29] by one order of
magnitude. The relativistic nuclear recoil correction decreases
the tune-out wavelength by 0.02 picometers (pm).

Recently, Drake and Manalo carried out an indepen-
dent calculation of the tune-out wavelength by solving the
Schrödinger equation with Hylleraas basis sets, and the rel-
ativistic effects of relative O(Zα2) were obtained by per-
turbation theory. They obtained the tune-out wavelengths of
413.079 958(2) and 413.085 828(2) nm for the magnetic sub-
levels of MJ = 0 and MJ = ±1 [31,32], respectively, which
are in good agreement with our RCI values. It is worth
mentioning that the method of Hylleraas coordinates allows
accurate calculation of electron correlation effects, while

TABLE II. Convergence of the static dipole polarizability α1(0) (in a.u.) and the tune-out wavelength λt (in nm) for the 2 3S1(MJ = 0, ±1)
states of 4He.

(�max, N) α1(0)(MJ = 0) α1(0)(MJ = ±1) λt (MJ = 0) λt (MJ = ±1)

(7, 40) 315.715 818 07 315.724 122 42 413.079 716 23 413.085 585 95
(8, 40) 315.715 993 59 315.724 290 09 413.079 899 85 413.085 764 03
(9, 40) 315.716 037 70 315.724 343 39 413.079 963 29 413.085 832 75
(10, 40) 315.716 053 51 315.724 366 77 413.079 994 33 413.085 867 66
(10, 50) 315.716 050 67 315.724 377 89 413.080 000 16 413.085 882 02
Extrap. 315.716 05(1) 315.724 38(1) 413.080 00(1) 413.085 89(1)
Ref. [29] 315.716 5(4) 315.724 8(4) 413.080 1(4) 413.085 9(4)
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TABLE III. Convergence of QED correction to the static dipole polarizability α1(0) (in a.u.) and the 413-nm tune-out wavelength λt

(in nm) for the 4He(2 3S1) state. The number of B-splines N = 40 is fixed. δα
QED
1 (0)(α3) and δα

QED
1 (0)(α4) represent the α3- and α4-order

QED corrections to α1(0) respectively. δλ
QED
t (α3) = λt (NRCI + α3 QED) − λt (NRCI) and δλ

QED
t (α4) = λt (NRCI + α4 QED) − λt (NRCI)

represent the α3- and α4-order QED corrections to λt .

�max δα
QED
1 (0)(α3) δα

QED
1 (0)(α4) δλ

QED
t (α3) δλ

QED
t (α4)

7 0.006 899 132 62 0.000 119 945 10 0.004 147 699 87 0.000 072 114 31
8 0.006 899 146 48 0.000 119 945 35 0.004 147 716 05 0.000 072 114 59
9 0.006 899 152 88 0.000 119 945 46 0.004 147 723 72 0.000 072 114 72
10 0.006 899 156 22 0.000 119 945 52 0.004 147 727 74 0.000 072 114 79
Extrap. 0.006 899 158(2) 0.000 119 946(1) 0.004 147 729(2) 0.000 072 115(1)

present RCI calculations automatically include higher order
one-electron relativistic corrections and electron-electron cor-
relation of relative order Zα2.

As pointed out in our previous paper [29], the main dis-
crepancy between the earlier theory [28] and experiment [27]
for the 413-nm tune-out wavelength comes from omission of
QED contributions to the theoretical value. In Table III, we
present the convergence test for the α3- and α4-order QED
corrections to the static dipole polarizability and the 413-nm
tune-out wavelength of the 2 3S1 state. The numerical results
of δα

QED
1 (0)(α3) and δα

QED
1 (0)(α4) converge fairly smoothly

and monotonically to an extrapolated values of 0.006 899
158(2) a.u. and 0.000 119 946(1) a.u., with at least five con-
verged digits. The α3-order QED correction contributes 4.147
729(2) pm to the tune-out wavelength, which is two orders
of magnitude greater than the α4-order QED correction. The
α4-order QED correction has four significant digits, which is
more than satisfactory for our purposes.

In addition, we also evaluate the finite-nuclear-size effect
on the static dipole polarizability and the tune-out wave-
length by adopting the operator of 4π

3 r2
4He

[δ3(r1) + δ3(r2)]
[25], where r4He = 1.6755 fm is the nuclear charge radius
of 4He [42]. The corrections due to finite nuclear size on
α1(0) and λt are respectively 4.58 × 10−6 a.u. and 2.75 fm,
which are negligible in the present work. But in the future,
if a measurement of the 413-nm tune-out wavelength can
reach 10−9 level of accuracy, it would have potential for the
determination of the nuclear charge radius of helium, which is
comparable with most of the precision spectroscopy methods
[12,14,16,17].

The individual and relative contributions from the QED,
relativistic nuclear recoil, and finite-nuclear-size effects to

static dipole polarizability and the 413-nm tune-out wave-
length for the 2 3S1(MJ = ±1) state can be seen clearly from
Table IV and Fig. 1. The largest contribution to α1(0) and
λt comes from the α3-order QED correction without ∂2

ε ln k0.
The α3-QED correction from the electric-field dependence
of the Bethe logarithm is hard to compute but has been
confirmed to be relatively small (≈0.6%) to the total QED
correction in Ref. [21,25]. So in order to give a conservative
estimation of this correction, we assume a 1% of the α3-order
QED correction [25] to reflect the contribution from ∂2

ε ln k0

term, which results in 0.000 07(1) a.u. correction to α1(0).
Combined with the α3- and α4-order QED corrections, the
total QED contribution of 0.007 09(1) a.u. is added to the RCI
values of 315.716 05(1) and 315.724 38(1) a.u., which gives
315.723 14(4) and 315.731 47(4) a.u. for the 2 3S1(MJ = 0)
and 2 3S1(MJ = ±1) states, respectively. The uncertainties,
which are mainly from the ∂2

ε ln k0 term, have been doubled to
be conservative. The total QED correction on the polarizabil-
ity is 22.5 ppm. Like the ground-state polarizability, which has
a similar QED contribution (22 ppm) [38], the contribution to
the 2 3S1 state could also be measured as a test of QED.

For the 413-nm tune-out wavelength, seen from the
Table IV, the α3-order QED correction without ∂2

ε ln k0 has
about 10-ppm effect on λt , and 1% of the α3-order QED
correction is assumed to estimate the QED contribution from
∂2
ε ln k0 term. The total QED correction on the tune-out wave-

length is then 0.004 26(1) nm. Adding this correction to our
RCI values of 413.080 00(1) and 413.085 89(1) nm, we obtain
the final tune-out wavelengths of 413.084 26(4) nm for MJ =
0 and 413.090 15(4) nm for MJ = ±1 magnetic sublevel of
the 2 3S1 state, respectively. Comparison of calculations with
measurement [27] is displayed in Fig. 2. The result of 413.085

TABLE IV. Contributions to the static dipole polarizability (in a.u.) and the 413-nm tune-out wavelength (in nm) for the 2 3S1(MJ = 0, ±1)
states of 4He.

Contribution MJ α1(0)(a.u.) λt (nm)

RCI + nuclear recoil 0 315.716 05(1) 413.080 00(1)
RCI + nuclear recoil ±1 315.724 38(1) 413.085 89(1)
α3 QED without ∂2

ε ln k0 0.006 899 158(2) 0.004 147 729(2)
α4 QED 0.000 119 946(1) 0.000 072 115(1)
α3 QED from ∂2

ε ln k0 0.000 07(1) 0.000 04(1)
Finite nuclear size 0.000 004 58 0.000 002 75
Total 0 315.723 14(4) 413.084 26(4)
Total ±1 315.731 47(4) 413.090 15(4)
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FIG. 1. Relative contributions of various corrections to the static
dipole polarizability α1(0) and the tune-out wavelength λt for the
2 3S1(MJ = ±1) state of 4He.

9(4) nm [29], which does not includes the relativistic nuclear
recoil and QED corrections, agrees with the measured value
of 413.0938(9stat )(20syst) nm [27] at the level of 19 ppm.
The present result of 413.090 15(4) nm for the MJ = ±1
sublevel has included QED and relativistic nuclear recoil cor-
rections. In order to make a meaningful comparison with the
measurement [27] which probed the polarizability by using
a traveling wave, the retardation correction to the tune-out
wavelength needs to be taken into account. We incorporate
Drake et al.’s retardation correction of 0.000 560 0236 [43]
in our result of 413.090 15(4) nm to give 413.090 71(4) nm.
Therefore, a 1.4σ discrepancy still exists in the tune-out wave-
length between theory and experiment, so the present work
provides considerable motivation for future experimental im-
provements to seriously test QED calculations at a higher level
of accuracy.

In summary, we have calculated the dynamic dipole po-
larizability of the metastable helium under the DCB frame-
work with the relativistic nuclear recoil effect included. The
QED correction on the polarizability is taken into account
using perturbation theory, and the finite-nuclear-size effect is
also estimated. We precisely determine the tune-out wave-
lengths for the 4He(2 3S1) state for MJ = 0 and MJ = ±1
magnetic sublevels as 413.084 26(4) nm and 413.090 15(4)
nm, respectively. We find that the relativistic nuclear re-
coil effect decreases the tune-out wavelength by ≈0.02 pm,

FIG. 2. Comparisons of the tune-out wavelength λt (in nm) for
the 2 3S1(MJ = ±1) state of 4He.

and the QED correction increases the tune-out wavelength
by ≈4.26 pm. Our theoretical prediction for the 413-nm
tune-out wavelength can be improved by introducing larger
scale configuration calculations with higher order relativistic
nuclear recoil effects included and by calculating contribu-
tions from the field-dependent Bethe logarithm in detail. We
anticipate that this work will stimulate new high-precision
measurements of the helium 413-nm tune-out wavelength
to test QED calculations. In addition, we also obtained the
static dipole polarizabilities for the MJ = 0 and MJ = ±1
magnetic sublevels of the 4He(2 3S1) state as 315.723 14(4)
and 315.731 47(4) a.u. respectively. We determined QED cor-
rections for these polarizabilities of 22.5 ppm, which suggests
that sensitive experimental measurements of static dipole
polarizabilities of the 2 3S1 state might also be future test
of QED.
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