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In the mass-polariton (MP) theory of light formulated by us recently [Phys. Rev. A 95, 063850 (2017)], light
in a medium is described as a coupled state of the field and matter. The key result of the MP theory is that the
optical force of light propagating in a transparent material drives forward an atomic mass density wave (MDW).
In previous theories, it has been well understood that the medium carries part of the momentum of light. The MP
theory is fundamentally different since it shows that this momentum is associated with the MDW that carries
a substantial atomic mass density and the related rest energy with light. In this work, we prove the Lorentz
covariance of the MP theory and show how the stress-energy-momentum (SEM) tensor of the MP transforms
between arbitrary inertial frames. We also compare the MP SEM tensor with the conventional Minkowski SEM
tensor and show how the well-known fundamental problems of the Minkowski SEM tensor become solved
by the SEM tensor based on the MP theory. We have particularly written our work for nonexpert readers by
pointing out how the Lorentz transformation and various conservation laws and symmetries of the special theory
of relativity are fulfilled in the MP theory.

DOI: 10.1103/PhysRevA.99.033852

I. INTRODUCTION

We have recently introduced the mass-polariton (MP) the-
ory of light [1–4], which differs from all previous theories
of light by describing light as a coupled state of the field
and an atomic mass density wave (MDW), which is driven
forward by the optical force. Although many previous theories
acknowledge the presence of the momentum of the medium
[5–12], they all neglect the transfer of mass and the related
rest energy by the MDW. Neglecting this transfer of mass
and rest energy leads to an unavoidable contradiction with
the conservation laws of nature and breaks the covariance
principle of the special theory of relativity (STR). The shift
of atoms with the MDW predicted by the MP theory of
light is experimentally verifiable. It provides a complementary
approach to discover the momentum of light in different
media, and thus may revive the experimental studies of the
Abraham-Minkowski controversy [13–24].

In our previous work [1], the stress-energy-momentum
(SEM) tensor formulation of the MP theory was discussed
only briefly in the Appendix B and mainly in the rest frame of
the medium. In this work, we discuss in detail how the SEM
tensor of the MP theory transforms between arbitrary inertial
frames. Thus, the present work complements our resolution
of the Abraham-Minkowski controversy [1,25–31] by giving
detailed space-time considerations of the MP theory within
the framework of the STR. We also compare the SEM tensor
of the MP theory with the conventional Minkowski SEM
tensor. In particular, we will show how excluding the atomic
MDW part from the SEM tensor leads to inconsistencies
in fulfilling the covariance properties and the conservation
laws that are built-in in the correctly formulated SEM tensor
in the STR. Throughout this work, we make direct trans-
parent reference to the fundamental definitions of concepts
in the STR: Lorentz transformation, four-vector, SEM ten-
sor, and the covariance principle as they are described, for

instance, in the well-known textbook of Landau and Lifshitz
in Ref. [32].

This paper is organized as follows: Section II describes
the SEM tensor formulation of the MP theory of light. The
relation of the SEM tensor of the MP theory to the con-
servation laws is discussed in Sec. III. Section IV describes
the covariance properties of the MP theory, including the
Lorentz transformation of the SEM tensor components and the
covariant form of the field and the MDW equations. Section V
presents the comparison of the MP theory of light with the
conventional Minkowski SEM tensor formulation and collects
the key results in a table. Finally, conclusions are drawn in
Sec. VI. This paper is not aimed to be a balanced review of
the SEM tensor formalisms of light, but it introduces the SEM
tensor of the MP theory of light and proves its covariance
properties. Comparison to other theoretical approaches is
limited to the Minkowski SEM tensor.

II. SEM TENSOR IN THE LABORATORY FRAME

A. Concepts and approximations

For simplicity, in this work, we assume that the medium
is nondispersive, linear, and isotropic. Even with these restric-
tions, the theory covers a broad area of optical phenomena and
applications in photonics technologies in solids, liquids, and
gases. Our concepts can also be extended in a slightly more
complex form to more general media.

It is well known that any SEM tensor that conserves angu-
lar momentum must be symmetric [32–34]. The conventional
general form of a symmetric SEM tensor in the Minkowski
space-time is given by [32]

T =
[

W cGT

cG T

]
=

⎡
⎢⎢⎣

W cGx cGy cGz

cGx T xx T xy T xz

cGy T yx T yy T yz

cGz T zx T zy T zz

⎤
⎥⎥⎦, (1)
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where W is the energy density, G = (Gx, Gy, Gz ) is the mo-
mentum density, and T is the stress tensor with components
T jk , where j, k ∈ {x, y, z}.

The SEM tensor of the MP and its electromagnetic field
and the atomic MDW parts were originally presented in
Appendix B of Ref. [1] in the laboratory frame (L frame),
where the medium atoms are at rest (excluding possible
thermal motion) before the optical force starts to accelerate
them. We start with a brief introduction to these tensors in
the L frame before investigating how these tensors transform
between arbitrary inertial frames in Sec. IV.

B. Elastic energy and relaxation

In this work, we consider the SEM tensor of light in the
infinite-medium limit where the vacuum-medium interfaces
are not accounted for. We also assume that the dynamical
variables of the medium do not appear in the field part of the
SEM tensor. We know from the computer simulations based
on the optoelastic continuum dynamics (OCD) [1] that the loss
of the field energy caused by the field-driven MDW dynamics
is very small, although not exactly zero.

Thus, propagation of light in a medium is described with
good accuracy, even if we neglect any strain energies that are
left in the medium after a light wave. These strain energies are
important in the description of the relaxation dynamics of the
medium [1,2,4], but they are negligible in comparison with
the field energy. It is obvious that the density of elastic energy
that is generated in the medium by light could be added to
the SEM tensor description below, but it is left as a topic for
future work.

In the present work, we do not focus on the dynamical
equation of the medium that has been described earlier for
solid dielectrics [1–4]. Instead, from the perspective of the
medium dynamics, we only account for the atomic MDW
effect, which is driven forward by the optical force density
and is essentially independent of other terms in the dynamical
equation of the medium.

Using these assumptions, the total SEM tensor of the MP
is a sum of the SEM tensor Tfield of the electromagnetic field,
which includes the energy related to the polarization of the
material, and the SEM tensor TMDW of the field-driven atomic
MDW as [1]

TMP = Tfield + TMDW. (2)

C. SEM tensor of the electromagnetic field

In the SEM tensor of the electromagnetic field, we use
the well-known electromagnetic energy density Wfield, the
momentum density Gfield, and the stress tensor T field, given
in terms of the electric field E, magnetic field H, electric flux
density D, and magnetic flux density B by [33,35]

Wfield = 1
2 (E · D + H · B), (3)

Gfield = E × H
c2

, (4)

T field = 1
2 (E · D + H · B)I − E ⊗ D − H ⊗ B. (5)

Here, ⊗ denotes the outer product and I is the 3 × 3 unit
matrix. Note that T field is generally asymmetric in an arbitrary
inertial frame. However, this is not a problem since the total
SEM tensor of the MP, which is a sum of the field and the
MDW parts in Eq. (2), will be symmetric in all inertial frames
as described in Sec. IV.

Note that, in the present work, we use the conventional con-
stitutive relations D = εE and B = μH in the L frame, where
ε and μ are the permittivity and permeability of the medium.
In any other inertial frames, the relations between the field
quantities are more complicated, but they are unambiguously
tied to the relations in the L frame by the well-known Lorentz
transformations of the fields described in Sec. IV B.

By substituting the energy density, momentum density, and
the stress tensor from Eqs. (3)–(5) into the general form of
a SEM tensor in Eq. (1), we obtain the SEM tensor of the
electromagnetic field, given by

Tfield =
[

1
2 (E · D + H · B) 1

c (E × H)T

1
c E × H 1

2 (E · D + H · B)I − E ⊗ D − H ⊗ B

]
. (6)

This is conventionally known as the Abraham SEM tensor [9].
We also note that the trace of the energy momentum tensor of
the field in Eq. (6) is zero, which is related to the masslessness
of the electromagnetic field [33].

D. SEM tensor of the atomic MDW

In the MP theory of light, we apply the SEM tensor
given in Eq. (6) for the electromagnetic field. Due to the
Abraham force density fA = ∂

∂t (D × B − E × H/c2), light
propagating in a medium drives forward an atomic MDW,
which essentially disturbs the SEM tensor of the matter from
its equilibrium value. The SEM tensor TMDW of the atomic
MDW is obtained as the difference of the actual SEM tensor

Tmat,a of the matter and the SEM tensor Tmat,0 of the matter in
the absence of light.

Using the well-known expression of the SEM tensor of the
mass density of the matter [34,36], the SEM tensor of the
MDW is given in the L frame by [1]

TMDW = Tmat,a − Tmat,0

=
[

ρac2 ρavT
a c

ρavac ρava ⊗ va

]
−

[
ρ0c2 0

0 0

]

=
[

ρMDWc2 ρMDWvT
l c

ρMDWvlc ρMDWva ⊗ vl

]
, (7)

where va is the local atomic velocity in the MDW, vl is the
local velocity of light in the medium, ρ0 is the atomic mass
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density in the absence of the MDW, and ρa is the actual
mass density of atoms. Note that ρa differs from ρ0 due to the
density variations of atoms caused by the Abraham force. The
excess mass density of atoms in the MDW is then given by
ρMDW = ρa − ρ0 and it also satisfies ρMDWvl = ρava, which
one can show analytically in the case of an electromagnetic
plane wave and by computer simulations for a general light
pulse [1].

From the relation ρMDWvl = ρava, one can see that the
momentum density of the MDW is the classical momentum
density of the medium. From Eq. (7), we then obtain the
energy and momentum densities and the stress tensor of the
MDW, given by [1]

WMDW = ρac2 − ρ0c2 = ρMDWc2, (8)

GMDW = ρava = ρMDWvl, (9)

T MDW = ρava ⊗ va = ρMDWva ⊗ vl. (10)

In a moving reference frame, one must subtract from the
actual atomic momentum, the momentum of ρ0, which is no
longer at rest.

Note that the last form of Eq. (7) and the right-hand sides
of Eqs. (8)–(10) are the general expressions of the MDW
quantities, which extend to arbitrary inertial frames as de-
scribed in Sec. IV. In the special case of the L frame, where
the velocity of the MDW atoms is negligible, the rest energy
density of the MDW can be expressed in terms of the field
quantities as [1]

W (L)
MDW ≈ n2 − 1

2
(E · D + H · B), (11)

where n is the refractive index. The MDW momentum density
in the L frame can be written as [1]

G(L)
MDW ≈ D × B − E × H

c2
= n2 − 1

c2
E × H. (12)

The kinetic energy terms in the MDW stress tensor in Eq. (10)
are negligibly small in the L frame due to the second-order
dependence on the small atomic velocity va [1]. Thus, we have

T (L)
MDW ≈ 0. (13)

However, the MDW stress tensor generally becomes essential
in moving reference frames as described in Sec. IV. It
is found to maintain the total stress tensor of the field
and the MDW symmetric in all inertial frames. Note that
Eqs. (11)–(13) have been made possible by the assumption
that the back-action of the field-driven medium dynamics on
the field is negligible [1].

E. Mass-energy equivalence in the STR

It is obvious that the absence of the rest energy of the atoms
in the MDW moving with light is a fundamental problem
in earlier SEM tensor formulations of light. Therefore, we
briefly summarize how the total energy of particles is treated
in the STR. The general expression for the total energy of a
particle is given by γ m0c2, where m0 is the rest mass and γ =
1/

√
1 − v2/c2 is the Lorentz factor. The particle energy can

be split into the rest energy equal to m0c2 and kinetic energy
equal to (γ − 1)m0c2. The particle velocity, the velocity of
the medium atoms in our case, is va � c, and the kinetic
energy can be written in the nonrelativistic form 1

2 m0v
2
a . In

the L frame, we correspondingly have the rest energy density
ρac2, the kinetic energy density 1

2ρav
2
a , and the corresponding

energy fluxes. Thus, atoms moving in a medium driven by
the optical force of the field carry both their kinetic energy
and rest energy, and the corresponding energy fluxes must be
added to the energy flux of the field to obtain the total energy
flux. The same energy flux consideration also proves that the
rest energy density of the MDW must be included in the total
SEM tensor of light.

F. SEM tensor of the coupled MP state

By substituting the SEM tensor of the electromagnetic field
in Eq. (6) and the SEM tensor of the atomic MDW in Eq. (7)
into Eq. (2), we then obtain the total SEM tensor of the MP as

TMP =
[

1
2 (E · D + H · B) + ρMDWc2 1

c (E × H)T + ρMDWvT
l c

1
c E × H + ρMDWvlc T MP

]
, (14)

where the MP stress tensor T MP = T field + T MDW is
given by

T MP = 1
2 (E · D + H · B)I − E ⊗ D − H ⊗ B

+ ρMDWva ⊗ vl. (15)

The MP SEM tensor in Eq. (14) is the total SEM tensor
of light in the MP theory. In Sec. IV, we will show that
this expression of the MP SEM tensor is form-invariant and
it transforms according to the Lorentz transformation for
second-rank tensors between arbitrary inertial frames.

G. Angular momentum tensor

The SEM tensor can also be used to describe angular
momentum. In this section, we will review for completeness
the description of the angular momentum density (AMD)
tensor and the related angular momentum (AM) tensor. Using
the index notation, where the indices α, β, and γ range over
all four components (ct, x, y, z) of the Minkowski space-time,
the angular momentum density with respect to the origin is
given by the third-rank AMD tensor [32–34]

Mαβγ = xαT βγ − xβT αγ , (16)
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which is antisymmetric with respect to the indices α and β.
The integral of the AMD tensor in Eq. (16) over the boundary
∂� of a four-dimensional space-time region � (i.e., ∂� is a
three-dimensional space-time hypersurface) gives the second-
rank AM tensor as [34]

Mαβ = 1

c

∮
∂�

Mαβγ d	γ . (17)

Here the differential volume element d	γ is proportional to
a four-dimensional unit vector that is normal to the three-
dimensional space-time hypersurface. The integral is taken
over the coordinates x. By choosing the hypersurface to be
a spacelike surface of constant time, i.e., γ = 0 and d	0 =
dxdydz = d3r, and assuming that the AMD tensor of an
isolated system becomes zero at infinity, we obtain the total
AM tensor of the system as [34]

Mαβ = 1

c

∫
Mαβ0d3r. (18)

We denote x = (ct, r), where r is a three-dimensional vector,
and define in the conventional way the three-dimensional
angular momentum density J as [32,33,35,37–39]

J = r × G. (19)

It is also convenient to define the related quantity N ,
which is, in the recent optics literature [40–42], called boost
momentum by

N = W

c2
r + Gt . (20)

Conservation of the boost momentum ensures the rectilinear
motion of the energy centroid of light in a homogeneous
medium. In terms of the quantities J and N , the AM tensor
in Eq. (18) can be expressed as a matrix [43]

M =
∫ [

0 −cN T

cN r ∧ G

]
d3r

=
∫ ⎡

⎢⎢⎣
0 −cN x −cN y −cN z

cN x 0 J z −J y

cN y −J z 0 J x

cN z J y −J x 0

⎤
⎥⎥⎦d3r, (21)

where ∧ denotes the exterior product. Like the SEM tensor,
the consistent AM tensor of an isolated system must be form-
invariant and transform according to the Lorentz transforma-
tion for second-rank tensors as described in Sec. IV.

III. CONSERVATION LAWS AND THE SEM TENSOR

A. Conservation laws and the continuity equation
of the atomic MDW

Since the coupled state of the field and the MDW is
an isolated system, its four-momentum is conserved. The
conservation law of four-momentum is well known and given,
e.g., in Refs. [31,33,35]. In the case of a diagonally symmetric
SEM tensor, this conservation law must be written as

1

c2

∂W

∂t
+ ∇ · G = − φ

c2
, (22)

∂G
∂t

+ ∇ · T = −f, (23)

where f is the force density and φ is the power-conversion
density, both of which can be set to zero for an isolated
system. Then, Eq. (22) describes the conservation of energy
and Eq. (23) describes the conservation of momentum.

It is also important to note that the atomic MDW obeys the
continuity equation

1

c2

∂

∂t
(ρMDWc2) + ∇ · (ρMDWvl ) = 0. (24)

Therefore, the MDW terms can be subtracted from the
left-hand side of Eq. (22) without changing the right-hand
side of this equation. In previous theoretical works, the
MDW terms have not been included in Eq. (22) [27,31].
This corresponds to writing this equation with substitutions
G → G − ρMDWvl = Gfield and W → W − ρMDWc2 = Wfield

as 1
c2

∂
∂t Wfield + ∇ · Gfield = − φ

c2 [31,33,35].
Even if the MDW terms could be neglected from Eq. (22),

these terms are of fundamental importance for the consistency
of the total energy momentum tensor; see Sec. V. The MDW
terms also play an important role in the form invariance of the
SEM tensor in the Lorentz transformation as will be described
in Sec. IV.

Using the index notation and the Einstein summation con-
vention, the conservation law of angular momentum can be
written in terms of the AMD tensor in Eq. (16) as

∂γMαβγ = 0. (25)

It can be shown that this is linked to the diagonal symmetry
of the SEM tensor [32–34]. Thus, all the conservation laws of
energy, momentum, and angular momentum can be compactly
written in terms of the SEM tensor as [33]

∂αT αβ = 0, T αβ = T βα. (26)

The first equation here corresponds to Eqs. (22) and (23) for
an isolated system like the coupled MP state of the field and
the MDW. For an isolated system, the four-force is zero. The
second equation describes the diagonal symmetry needed to
fulfill the conservation law of angular momentum in Eq. (25).
This equation must also be fulfilled for an isolated system.

The SEM tensor of the MP in Eq. (14) obeys the conser-
vation laws of energy, momentum, and angular momentum.
Verifying that these conservation laws in Eq. (26) are satisfied
for a field propagating in a medium with constant refractive in-
dex n is straightforward using the MP SEM tensor in Eq. (14)
together with Eqs. (11)–(13), which apply in the L frame. The
fulfillment of the conservation laws is also evident from the
relations of Sec. III C below. The conservation laws become
automatically fulfilled for the MP SEM tensor in any other
inertial frame since the MP SEM tensor transforms accord-
ing to the Lorentz transformation as described in Sec. IV.
This is a strong argument for the consistency of the MP
theory of light since none of the other commonly used SEM
tensors of light reproduce the conservation laws in all inertial
frames of the space-time without introducing any artificial
concepts such as artificial curved metrics [44–46].

B. Notes on the four-force in lossy media

For the case of a lossy medium, we make two notes on
Eqs. (22) and (23): (1) In the general nonisolated case, the
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four-force (φ/c, f ) is the force experienced by the coupled
MP state of the field and the atomic MDW. Therefore, f is not
the force experienced by atoms, but the actual force on atoms
is given by fatoms = f + d

dt GMDW, where the second term
describes the rate of change of the MDW momentum density
and it is equal to the Abraham force described in Sec. III C
below. (2) In a lossy medium, the power-conversion density φ

is related to the conversion of electromagnetic energy, since
the atomic mass energy of the MDW coming from the rest
energies of particles cannot be reduced and the kinetic energy
of atoms was already assumed to be negligible. We do not
consider the lossy medium case further.

C. Abraham force

It is important to note that neither the field nor the MDW
part of the total MP SEM tensor satisfies the conservation laws
in Eq. (26). This follows from the fact that the field and the
atomic MDW parts of the total SEM tensor of the MP state
are coupled by the Abraham force density

fA = −∂Gfield

∂t
− ∇ · T field = ∂

∂t

(
D × B − E × H

c2

)

= ∂GMDW

∂t
+ ∇ · T MDW = ∂

∂t
(ρMDWvl − ρMDWva )

= d

dt
(ρMDWvl ). (27)

The first line gives the Abraham force in terms of the field
quantities, and the second and third lines give the Abraham
force in terms of the MDW quantities.

D. Law of action and counteraction
between the field and the MDW

Since the coupled state of the field and the MDW is an
isolated system, the external forces are absent, and the field
and the matter parts of the total MP SEM tensor satisfy the
dynamical equations of motion, given by

∂β (Tfield )αβ = −( fA)α, (28)

∂β (TMDW)αβ = ( fA)α. (29)

Thus, it immediately follows that the four-divergence of the
total SEM tensor of the MP theory is zero since the Abraham
force terms in Eqs. (28) and (29) cancel each other due to their
opposite signs in the field and the MDW parts.

To summarize the properties of the SEM tensor presenta-
tion of the MP theory of light, we conclude that this tensor
gives the dynamical equations of motion and all conservation
laws in a consistent and transparent way. This makes it su-
perior to all previously presented SEM tensor formalisms of
light, which break in fulfilling all these key physical properties
of a consistent physical theory. In the next section, we will
show that the MP SEM tensor is form-invariant in a Lorentz
transformation to an arbitrary inertial frame when the field and
medium variables are transformed according to the Lorentz
transformation. This will prove the Lorentz covariance of the
MP theory.

IV. LORENTZ COVARIANCE OF THE MP THEORY

It is the fundamental requirement of the theory of relativity
that any SEM tensor must be Lorentz-covariant. This require-
ment has two meanings, which are intimately linked to each
other: (1) The components of the SEM tensors in different
inertial frames must be unambiguously related to each other
by the Lorentz transformation. (2) The SEM tensor must be
written in terms of the Lorentz-covariant quantities, which
hold the same form in all inertial frames. In other words, this
means that the laws of physics must be the same for all inertial
observers.

A. Lorentz transformation of the SEM tensor

We assume that an arbitrary general inertial frame (G′
frame) is moving with respect to another arbitrary general
inertial frame (G frame) with a constant velocity v. In this
general case, the Lorentz boost can be written in the matrix
form as

� =
[

γ −γ v
c nT

−γ v
c n I + (γ − 1)n ⊗ n

]
, (30)

where v = |v| is the magnitude of v, γ = 1/
√

1 − v2/c2 is the
Lorentz factor, and n = v/v is the unit vector parallel to v.

A second-rank tensor T in space-time transforms according
to the Lorentz transformation as

T′ = �T�. (31)

This condition unambiguously relates the tensor components
in the G′ frame to those in the G frame. However, this con-
dition alone does not make the SEM tensor Lorentz-covariant
as the tensor components must also be written in terms of the
Lorentz-covariant quantities to ensure the invariant form of
the laws of physics in all inertial frames. This requirement in
the case of the MP theory of light will be described in detail
in Sec. IV B.

B. Lorentz covariance of the field and the MDW equations

Next, we show that the total SEM tensor of the coupled
MP state of the field and the MDW transforms in a Lorentz-
covariant way from the G frame to the G′ frame. We utilize
the Lorentz transformation of the electric and magnetic fields
of the Minkowski form, given by [27,31]

E′ = E‖ + γ (E⊥ + v × B), (32)

H′ = H‖ + γ (H⊥ − v × D), (33)

D′ = D‖ + γ

(
D⊥ + 1

c2
v × H

)
, (34)

B′ = B‖ + γ

(
B⊥ − 1

c2
v × E

)
. (35)

The subscripts ‖ and ⊥ denote parallel and perpendicular
components to the velocity v. In addition, the MDW mass
density, the velocity of light in the medium, and the atomic
velocity in the MDW transform from the G frame to the G′
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frame as

ρ ′
MDW = c2 − vl · v

c2 − (v � va ) · v
ρMDW, (36)

v′
l = −(v � vl ), (37)

v′
a = −(v � va ), (38)

where � denotes the relativistic velocity subtraction, defined
for v and an arbitrary velocity vector u by the conventional
relation [33]

v � u = 1

1 − v·u
c2

(
v − u⊥

γ
− u‖

)
. (39)

Equations (36)–(38) essentially separate the MP formula-
tion of electrodynamics from the conventional Minkowski
SEM theory. The MP formulation is also different from any
other known formulation of electrodynamics, none of which
presents the atomic MDW as an integral part of the total
coupled state of light in a medium.

It is a straightforward technical task to check that the
application of the field and the MDW transformation laws
in Eqs. (32)–(38) to the MP SEM tensor in Eq. (14) leads
to the same MP SEM tensor in the G′ frame as the direct
application of the Lorentz transformation in Eq. (31) to the
MP SEM tensor in the G frame. The relative magnitudes of
the field and the MDW contributions change between different
inertial frames. To compare the magnitudes of the field and
the MDW quantities, one must note that in the L frame,
the MDW energy and momentum densities and the stress
tensor can be expressed in terms of the field quantities as
given in Eqs. (11)–(13). Therefore, the transformation laws
in Eqs. (32)–(38) allow comparing the field and the MDW
quantities also in an arbitrary inertial frame.

Correspondingly, one can also verify that the application
of the transformations of the field and the MDW quantities in
Eqs. (32)–(38) to the MP AM tensor defined through Eq. (21)
leads to the same MP AM tensor in the G′ frame as the
direct application of the Lorentz transformation in Eq. (31)
to the MP AM tensor in the G frame. In the latter case, if the
Lorentz transformation in Eq. (31) is applied to the matrix in
the integrand of Eq. (21), one must additionally transform the
differential volume element.

We also note that neither the SEM tensor of the electro-
magnetic field in Eq. (6) nor the SEM tensor of the MDW
in Eq. (7) alone satisfies the two requirements of the Lorentz
covariance simultaneously. However, their sum, which is the
total MP SEM tensor, satisfies the two requirements. This is
an additional strong argument for considering the field and the
MDW tensors as inseparable parts of the complete MP SEM
tensor. The same discussion applies to the MP AM tensor.

C. Lorentz transformation of the total energy,
momentum, and angular momentum of light

In summary, the Lorentz-covariant expressions for the
total energy, momentum, angular momentum, and boost

momentum densities of light are given by

WMP = 1
2 (E · D + H · B) + ρMDWc2, (40)

GMP = E × H
c2

+ ρMDWvl, (41)

J MP = r × GMP, (42)

NMP = WMP

c2
r + GMPt . (43)

The first terms of Eqs. (40) and (41) are the contributions
of the electromagnetic field and the second terms are the
contributions of the atomic MDW. Due to the linearity of
Eqs. (42) and (43), also the angular and boost momenta can
be split into the field and the MDW contributions.

Therefore, the total energy, momentum, angular momen-
tum, and boost momentum of light are given by

EMP =
∫

WMPd3r, pMP =
∫

GMPd3r, (44)

JMP =
∫

J MPd3r, NMP =
∫

NMPd3r. (45)

The Lorentz transformation of the MP energy-momentum
four-vector is given by

E ′
MP = γ (EMP − v · pMP), (46)

p′
MP = pMP,⊥ + γ

(
pMP,‖ − 1

c2
EMPv

)
. (47)

The Lorentz transformation of JMP and NMP, given by

J′
MP = JMP,‖ + γ (JMP,⊥ + v × NMP), (48)

N′
MP = NMP,‖ + γ

(
NMP,⊥ − 1

c2
v × JMP

)
, (49)

is similar to the transformation of the fields E and B in
Eqs. (32) and (35).

V. COMPARISON OF THE MP AND MINKOWSKI
SEM TENSORS

Next, we compare the MP theory of light with the con-
ventional Minkowski SEM tensor formulation, which has
previously been claimed to be the correct canonical formu-
lation of the field and material responses in nondispersive
media [5,6,11,27,29,30]. In particular, we concentrate on a
few selected points related to the SEM tensor to illustrate
weaknesses of the Minkowski SEM theory, and to describe
how these weaknesses are not present in the MP theory of
light. A summary of the comparison of the MP SEM tensor
and the Minkowski SEM tensor can be found in Table I.

A. Minkowski SEM tensor

The SEM tensor in the conventional Minkowski SEM
theory is given by [9]

TM = Tfield +
[

0 0

cD × B − 1
c E × H 0

]
=

[
1
2 (E · D + H · B) 1

c (E × H)T

cD × B 1
2 (E · D + H · B)I − E ⊗ D − H ⊗ B

]
. (50)
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TABLE I. Comparison of the Minkowski SEM tensor and the MP SEM tensor formalisms.

Required physical property, symmetry, or
invariance Minkowski SEM tensora Mass-polariton SEM tensorb

Form-invariance between inertial frames Fulfilled for the SEM tensor. Not
applicable for the related AM tensor,
which violates the conservation law of
angular momentum.

Fulfilled for the SEM tensor and for the
related AM tensor.

Lorentz transformation of the tensor
components

Fulfilled for the SEM tensor. Not
applicable for the related AM tensor.

Fulfilled for the SEM tensor and for the
related AM tensor. Not fulfilled for the
field and the MDW parts that are not
isolated due to their coupling through
the Abraham force.

Conservation of angular momentum The Minkowski SEM tensor cannot be
used to write an AMD tensor whose
four-divergence is zero. Thus, angular
momentum is not conserved.

One can write an AMD tensor whose
four-divergence is zero. Thus, angular
momentum is conserved.

Emergence of the dynamical equations
from the SEM tensor

Field dynamics obtained from the SEM
tensor, but no dynamics at all for the
medium.

Fully consistent dynamics both for the field
and the medium.

The law of action and counteraction
(Newton’s third law) between the field
and the medium

The law of action and counteraction not
applicable since there is no force-based
coupling between the field and the
medium.

The law of action and counteraction
fulfilled: ∂β (TMDW )αβ = −∂β (Tfield )αβ .

Need of an artificial curved metric to make
the SEM tensor symmetric

One must introduce an artificial curved
metric [44]. Due to the equivalence
principle of the general relativity, this is
equivalent to introducing artificial
gravitational fields.

No artificial curved metric and equivalent
artificial gravitational fields needed.

Total energy, momentum, and rest mass in
the R frame

E (R)
M = 0, p(R)

M = √
n2 − 1 E (L)

field/c,
m0 = i

√
n2 − 1 E (L)

field/c2. An object with
zero energy, nonzero momentum, and
imaginary rest mass is against our
fundamental understanding of physics
and is not to be found in nature.

E (R)
MP = n

√
n2 − 1 E (L)

field, p(R)
MP = 0,

m0 = n
√

n2 − 1 E (L)
field/c2. In accordance

with the STR, the minimum of the total
energy of a light pulse is obtained in the
R frame, where the field energy and the
total momentum are zero. The origin of
the positive rest mass well understood.

Constant CEV of a light pulse (Newton’s
first law) at material interfaces

Accounting for the recoil force, the
momentum is conserved. The constant
CEV law violated at material interfaces.

Accounting for the recoil force, the
momentum is conserved. The constant
CEV law fulfilled at material interfaces.

aSome works [9] add a material counterpart to the Minkowski SEM tensor, which is neglected here.
bIn this work, we neglect the losses related to the strain energies that are left in the medium due to the displacement of atoms by the optical
force [1]. Therefore, the MP SEM tensor, as defined in the present work, does not describe the elastic relaxation of the medium after a light
pulse.

We can see that the difference of the Minkowski momentum
density GM = D × B and the Abraham momentum density
GA = E × H/c2 has been added to the SEM tensor of the field
in an asymmetric way in the left column. In the L frame, this
difference is equal to the momentum density of the MDW [1].
The importance of including the momentum of the medium
in the theory has been understood widely in the literature and
the Minkowski SEM tensor has been presented as a tool to
account for the medium part of the momentum [10].

Also, note that in the L frame, the Minkowski SEM tensor
can be formed from the MP SEM tensor in Eq. (14) by
using the substitutions GMP → GMP − ρMDWvl = Gfield and
WMP → WMP − ρMDWc2 = Wfield in the first row. To obtain
equal expressions, one must also use Eqs. (12) and (13), which

present the MDW momentum density and the MDW stress
tensor in terms of the field quantities in the L frame.

B. Fulfillment of the conservation laws

The Minkowski SEM tensor can be shown to satisfy the
Lorentz transformation in Eq. (31) when the fields transform
according to the relations in Eqs. (32)–(35) [27]. One can also
note that the Minkowski SEM tensor in Eq. (50) satisfies the
conservation laws of energy and momentum in Eqs. (22) and
(23) if the four-divergences are taken from its row vectors.
However, due to the asymmetry, the Minkowski SEM tensor
cannot be used to write a consistent AMD tensor through its
definition in Eq. (16). Consequently, the conservation law of
angular momentum in Eq. (25) is not satisfied.
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FIG. 1. (a) The momentum of the coupled MP state of the field and the atomic MDW and the momentum of light in the Minkowski SEM
theory as a function of the relative velocity of the observer parallel to the propagation velocity of light. (b) The electromagnetic energy, MDW
mass energy, and the total MP energy as a function of the relative velocity of the observer parallel to the propagation velocity of light. The
momenta and energies have been normalized by p0 and E0, the momentum and energy of a light pulse in vacuum in the L frame, and the
observer velocity is relative to the L frame. The refractive index in this example is n = 2 in the L frame where v/c = 0. The vertical dashed
lines correspond to the velocity of light in the medium.

In contrast, the MP formulation of light is expected to be
the correct covariant formulation of electrodynamics since, in
addition to the Lorentz covariance, it fulfills the conservation
laws in Eq. (26) in the full form including also the diagonal
symmetry related to the conservation law of angular momen-
tum in Eq. (25).

C. Expression of the momentum of light

Comparing the right-hand sides of the first two lines of
Eq. (27), we find the following expression for the total MP
momentum density, given by

GMP = E × H
c2

+ ρMDWvl = D × B + ρMDWva. (51)

From this equation, it is evident that the MP momentum den-
sity GMP = E × H/c2 + ρMDWvl is equal to the Minkowski
momentum density GM = D × B only in the L frame, where
we can set ρMDWva ≈ 0 due to the second-order total depen-
dence of this term on the small atomic velocity va in the L
frame.

In moving reference frames, one has GM = GMP as il-
lustrated in Fig. 1(a), where the MP and Minkowski mo-
menta, i.e., volume integrals of the momentum densities, are
presented as a function of the relative velocity between the
observer and the L frame when the observer is moving parallel
to light. In particular, the Minkowski momentum obtains a
nonzero minimum value in the frame that propagates with the
velocity of light in the medium. Thus, the Minkowski momen-
tum is always pointing to the positive direction independently
of the velocity of the observer. This applies even in the case
in which the observer velocity exceeds the velocity of light
in the medium so that light is propagating backward in the
inertial frame of the observer. Therefore, this result seems to
be against all known measurements of the total momentum of
any systems of particles and fields. One should ask why light
in a medium would behave in this kind of an odd way.

In contrast, the MP momentum in Fig. 1(a) is seen to
become zero in the frame that propagates with the velocity
of light in the medium (R frame) and, at larger velocities, it

points backward just as expected for any particle or quasi-
particle with a positive rest mass. Essentially, this is the
natural result supported by all previous direct momentum
measurements of any systems of particles and fields.

The nonequivalence of the MP and Minkowski momenta
strongly suggests that the Minkowski momentum does not
have any universal physical meaning as the total momentum
of light. In particular, in contrast to previous discussions
[5,6,27–30], the Minkowski momentum is not the correct
momentum of light in moving media as it deviates from the
total momentum of the field and the MDW, which is the
conserved momentum corresponding to the full relativistically
consistent SEM tensor of the MP in Eq. (14).

D. Doppler shift and the rest frame of light

Using the Lorentz transformation in Eqs. (32)–(35) for the
field energy in Eq. (3), one obtains the conventional Doppler
shift of the electromagnetic energy. As a special case, the
electromagnetic energy of light becomes zero in the R frame,
which propagates with the velocity of light in the medium.
Both the conventional Minkowski SEM theory and the MP
theory of light lead to this result as they use the same con-
ventional expression for the electromagnetic energy density
given in Eq. (3). The Doppler-shifted electromagnetic energy
is presented in Fig. 1(b) as a function of the relative velocity
between the observer and the L frame when the observer is
moving parallel to light.

By comparing Figs. 1(a) and 1(b), we observe yet another
fundamental unphysical property of the Minkowski SEM
tensor. For the Minkowski SEM tensor, the coexistence of the
nonzero momentum in Fig. 1(a) with the zero electromagnetic
energy in Fig. 1(b) in the R frame raises a natural question
what carries this nonzero momentum. That the Minkowski
SEM tensor predicts the existence of an object, which has zero
energy but nonzero momentum, is in striking contradiction
with our present understanding of physics.

In contrast, in the MP theory of light, the total momentum
of the MP is zero and the total energy of the MP obtains its
minimum value in the R frame, which is also the rest frame
of the coupled system of the field and the MDW. This is in
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full agreement with the STR where a coupled system has zero
momentum and minimum energy in its rest frame.

In Fig. 1(b), one can also see an interesting effect that the
electromagnetic energy becomes negative when the observer
is moving faster than the velocity of light in the medium.
This effect that is also present in the classical Doppler shift
of sound means that wave fronts are moving in opposite
directions in the frame of the observer. In the case of light, this
is only possible as a part of the coupled MP state whose total
energy is positive and larger than the atomic rest mass energy
of the MDW. However, for the conventional Minkowski SEM
theory, this is problematic since there is no positive energy
contribution of the MDW present, and thus the total energy
of light is negative, which is unphysical. Effective negative
energy would be possible for a quasiparticle that corresponds
to a hole in the surrounding energy density, but this is not the
case with the conventional Minkowski SEM theory, where the
mass density of the medium is not disturbed.

E. Relativistic energy-momentum relation and the rest mass

According to the STR, the relativistic energy-momentum
relation of a particle or any system of particles and fields
with total energy E , momentum p, and rest mass m0 reads
E2 − p2c2 = (m0c2)2. This equation is fundamentally related
to the four-vector property of the energy and momentum
and applies without exceptions to particles and fields with or
without a rest mass. In the Minkowski SEM theory, a classical
light pulse has, in the L frame, momentum pM = nEfield/c
corresponding to the electromagnetic energy Efield. This cor-
responds to an imaginary rest mass m0 = i

√
n2 − 1 Efield/c2.

Particles or fields with imaginary rest mass are not known
to exist in nature. Thus, the Minkowski SEM theory is in
contradiction with the fundamental principles of the STR.

In contrast, in the MP theory of light, the total energy of
the MP is the sum of the electromagnetic energy Efield and
the MDW mass energy δMc2. In the L frame, δMc2 = (n2 −
1)Efield and the total momentum of the field and the MDW is
correspondingly pMP = nEfield/c. Thus, we obtain a positive
rest mass m0 = n

√
n2 − 1 Efield/c2 for the coupled MP state of

light in a medium. This rest mass is obtained by the Lorentz
transformation from the MDW mass δM and it is consistent
with the classical OCD simulations of the propagation of light
in a medium as detailed in Ref. [1]. Figure 1(b) shows that
the minimum value of the MP energy is obtained in the R
frame. This minimum value corresponds to the MP rest energy
EMP,0 = m0c2.

F. Constant center of energy velocity law of an isolated system

As detailed in Ref. [1], the mass transfer of the MDW is
necessary for the fulfillment of the constant center of energy
velocity (CEV) law of an isolated system, which is commonly
known as Newton’s first law. This law is violated in the
conventional Minkowski SEM theory having no atomic mass
transfer.

G. Comment on the use of a curved metric
in some previous works

In some previous works [44–47], the problems of the
conventional Minkowski SEM theory have been artificially

solved by introducing the Gordon metric, which depends
on the permittivity and permeability of materials. Using the
equivalence principle of the general theory of relativity, this
metric corresponds to artificial gravitational fields that are
not physically true in the sense of the general theory of
relativity. Therefore, these works do not solve the problem
of formulating the covariant theory of electrodynamics in the
space-time whose metric is only modified by true gravita-
tional fields. In contrast, the MP theory of light gives the
covariant behavior of the SEM tensor, the correct symmetry
properties, the correct conservation laws, and the dynamical
equations of the field and the matter without artificial curved
metrics.

H. Comment on accounting for the SEM tensor
of the medium in previous works

In many previous works, it has been concluded that the
SEM tensor of the medium must be used together with the
SEM tensor of the electromagnetic field to describe the prop-
agation of light in a medium [9,48,49]. These works typically
lead to a complicated form for the total SEM tensor of the
field and matter; see, e.g., Eq. (34) of Ref. [9]. The conven-
tional Minkowski SEM tensor and its material counterpart
are obtained only in the nonrelativistic limit in Refs. [9,48];
see, e.g., Eqs. (42)–(43) of Ref. [9]. Thus, the division of the
total SEM tensor into the field and the medium parts in these
works does not seem to be both unique and form-invariant
between different inertial frames. This reported separation is
even argued to be arbitrary in Ref. [9].

In contrast, in the MP theory, the division of the energy
and momentum between the field and the atomic MDW is
accurately described in a unique, form-invariant, and phys-
ically transparent way in any inertial frame. In the classi-
cal MP theory of light discussed in this work, the separate
field and the MDW parts of the coupled MP state of light
are unambiguously defined and independently experimentally
measurable. Thus, there cannot be any arbitrariness in the
sharing of energy, momentum, or angular momentum between
these classical objects.

VI. CONCLUSIONS

In conclusion, we have proved the Lorentz covariance
of the MP theory of light. In contrast to the conventional
Minkowski SEM theory, the MP theory accounts for the
field-driven atomic MDW mass, momentum, and stress terms.
Consequently, the MP SEM tensor is diagonally symmetric
in contrast to the conventional Minkowski SEM tensor. We
have also discussed how accounting for the MDW terms
solves several weaknesses that are present in the conventional
Minkowski SEM theory. Remarkably, in contrast to previous
suggestions [5,6,27–30], our results strongly suggest that the
Minkowski momentum is not the universally correct momen-
tum of light as it is found to be equal to the total momentum
of the field and the MDW only in the L frame. This result also
has far-reaching consequences in the theory of optical angular
momentum, where the atomic MDW plays a substantial
role [3].
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