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Attaining the quantum limit of superresolution in imaging an object’s length
via predetection spatial-mode sorting
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We consider estimating the length of an incoherently radiating quasimonochromatic extended object of length
much smaller than the traditional diffraction limit, the Rayleigh length. This is the simplest abstraction of
the problems of estimating the diameter of a star in astronomical imaging or the dimensions of a cellular
feature in biological imaging. We find, as expected by the Rayleigh criterion, that the Fisher information (FI)
of the object’s length, per integrated photon, vanishes in the limit of small sub-Rayleigh length for an ideal
image-plane direct-detection receiver. With an image-plane Hermite-Gaussian (HG) mode sorter followed by
direct detection, we show that this normalized FI does not diminish with decreasing object length. The FI per
photon of both detection strategies gradually decreases as the object length greatly exceeds the Rayleigh limit,
due to the relative inefficiency of information provided by photons emanating from near the center of the object
about its length. We evaluate the quantum Fisher information per unit integrated photon and find that the HG
mode sorter exactly achieves this limit at all values of the object length. Further, a simple binary mode sorter
maintains the advantage of the full mode sorter at highly sub-Rayleigh lengths. In addition to this FI analysis,
we quantify improvement in terms of the actual mean-square error of the length estimate using predetection
mode sorting. We consider the effect of imperfect mode sorting and show that the performance improvement
over direct detection is robust over a range of sub-Rayleigh lengths.
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I. INTRODUCTION

In optical imaging, Rayleigh’s criterion [1] asserts that it
is impossible to resolve features of the scene whose angu-
lar extent is smaller than λ/D, where λ is the wavelength
of light and D is the length of the receiver pupil. This
is often known as the diffraction limit. Subsequently more
accurate treatments found that estimating the angular sepa-
ration between two closely spaced point objects is possible
even as the separation falls below the diffraction limit, by
collecting a growing number of photons (by increasing the
integration time) and thereby improving the signal-to-noise
ratio as the separation decreases towards zero [2]. However,
the Fisher information (FI), which governs the resolvability
(the inverse of the FI is a lower bound to the variance of
any unbiased estimator of the separation), normalized by the
total collected mean photon number over the integration time,
degrades as the separation falls below the diffraction limit,
vanishing to zero at zero separation. Very recently, however,
it was found that the aforesaid degradation of FI per unit
collected photons to zero at zero angular separation is a mere
artifact of image-plane (intensity) detection. Remarkably, the
quantum Fisher information (QFI), the highest FI achievable
with any physically permissible optical detection scheme, per
unit collected photons, remains constant as the separation
between the objects shrinks to zero [3]. Calculating the QFI
only requires us to specify the quantum state of the (in
this case, classical thermal) light collected over the camera’s
integration time. However, for all single-parameter estimation
problems, there must always exist an actual detection scheme

whose FI exactly matches the QFI. Tsang et al. also found
that for this problem, the QFI can be explicitly achieved by
photon detection of the image-plane Hermite-Gaussian (HG)
modes, when imaging with a Gaussian point spread function
(PSF) [3]. When a standard hard aperture pupil is employed,
the QFI is attained by spatial-mode-resolved photon detection
on the image-plane sinc-Bessel modes [4].

A linear mode transformation on an optical field is in prin-
ciple a reversible operation. Hence, a mode transformation
does not alter the amount of information in the field. On the
other hand, optical detection, conversion of the optical signal
into an electrical signal, such as a photocurrent, is inherently
noisy. The primary intuition behind the result of [3] and ours
in this paper is that there is a minimum inevitable detection
noise because of the laws of physics, and an optical-domain
mode transformation can predispose the information-bearing
optical field in a more information favorable way to the
detection noise that is yet to come. In fact, with shifted
PSFs from sub-Rayleigh-separated point sources in the image
plane, intensity detection is one of the worst choices of optical
detection to resolve the sources.

There have been several recent works looking into prac-
tical realizations of this improved resolution. For example,
while the optimal QFI could be achieved by implementing
a spatial-mode demultiplexer (SPADE), it was shown that
by implementing a simpler binary SPADE receiver, in which
only the zeroth or the first HG mode is separately detected
from its orthogonal complement (i.e., employing just two
detectors), one can achieve nearly the same quantum-optimal
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FIG. 1. Schematic of an incoherently emitting linear object,
modeled as a collection of M equal-intensity equally separated
point sources, with M → ∞, onto a detector array (top) versus
a SPADE which manipulates the image-plane optical field before
photon counting, i.e., detecting intensity in a different spatial mode
basis (bottom).

performance in the regime of sub-Rayleigh separations. Other
proposals for beating the direct imaging limit have included
superlocalization by image inversion interferometry [5], in
which even and odd components of the image are interfero-
metrically separated and detected, and methods to utilize the
freedom in the local oscillator mode of homodyne and het-
erodyne detection to selectively image specific modes [6,7].
Several experimental realizations have also been recently
reported [8,9].

Realizing spatial and temporal domain linear multimode
transformations alone has been a field of rich history. Various
techniques have been explored, including converting one set
of modes to another using cylindrical lenses [10], stratified
propagation using multiple phase masks [11–13], holographic
methods [14,15], and various interferometric methods [16].
This is by no means an exhaustive list of papers. However,
even to this day, given the mathematical prescription of a
unitary mode transformation on a set of orthogonal spatial
modes, there is no fully prescriptive method to convert that
mathematical prescription to a fully structured optical system
that could even in principle realize that transformation with
100% efficiency.

II. IMAGING AN EXTENDED OBJECT

The goal of this paper is to extend this concept of pre-
detection mode sorting for attaining the fundamental limit
of superresolution imaging to the more general scenario of
imaging extended objects that can be thought of as a contin-
uum limit of many point sources radiating incoherently over
the extent of the object. The specific problem we consider
here is that of estimating the (angular) length θ of an on-axis
line-of-sight one-dimensional (1D) object that is incoherently
emitting quasimonochromatic light uniformly along its length
(see Fig. 1). Our technique is in principle simply to extend
the estimation to more complex object shapes. We assume
a Gaussian amplitude PSF A(x) = (2πσ 2)−1/4exp(−x2/4σ 2)
and let N be the mean photon number of the field collected
over the integration time.

A. Summary of main results

In Fig. 2 we plot FI normalized by N/σ 2, as a function
of θ/σ . In analogy to the two-point-source scenario [3], we

FIG. 2. Fisher information per photon for estimating the length θ

of an extended 1D object. (a) Comparison between ideal continuum
image-plane direct detection (blue solid line), infinite HG mode
sorter (red dashed line), and the quantum limit (black dash-dotted
line). (b) Fisher information per photon when the line object is
approximated as M equally spaced equal-intensity point sources
along its length. As M increases, the FI per photon decreases,
since the photons, spread across the length of the object, are less
efficient in carrying information about the object’s length. Here M =
2 corresponds to the two-point-source problem, where half of the
photons are concentrated at one end of the object and the other half
at the other end. In (a), M = 56 was used to compute the red-dashed
line, which explains why it is slightly above the quantum limit FI
plot. With HG-sorter performance calculated with M → ∞, the red
dashed and black dash-dotted plots in (a) would coincide.

find that (a) FI attained by ideal image-plane detection sharply
decreases towards zero as θ goes below the diffraction length
(σ ∼ 1) towards zero, (b) the QFI remains approximately
constant as a function of θ , and (c) image-plane HG-mode-
resolved photon detection attains the quantum optimal per-
formance. However, unlike the two-source case, all three
normalized FI plots show a steady decline as θ increases
beyond approximately 4σ . This happens because as the ob-
ject’s length θ grows large, a growing fraction of the photons
collected by the camera comes from the inner regions of the
object, which carry less information about θ compared to the
photons emitted from the two end points of the object, thereby
diminishing the information per collected photon as θ grows
large.

To understand the performance of more practical imple-
mentations, we analyze the performance of binary SPADE
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FIG. 3. Fisher information per photon for estimating the angular
length θ of the object when all the photon energy is assumed to
be emitted from a single point at a fixed angular location φ ∈
[−θ/2, θ/2] that is assumed to be a priori known.

receivers. In analogy to the results for the two-point-source
problem [4], we find that a binary SPADE, based on separating
either the HG0 mode or the HG1 mode from the respective
orthogonal complement, attains the QFI as θ → 0. So most
of the advantage of the infinite HG mode sorter is maintained
using just a binary mode sorter for θ much below the diffrac-
tion length, and this advantage is reasonably robust to photon
leakage across desired modes in an imperfect mode-sorter
implementation (see Fig. 3). We also analyze mean-square er-
ror (MSE) estimates via numerical simulations and show that
the performance advantage of a mode-sorter-based receiver
over image-plane direct detection increases as the total optical
energy collected increases. This is in analogy to a recent result
studying homodyne-mode-selective receiver implementations
for estimating two-point-source separation [7].

B. Derivations of receiver Fisher information and QFI

For simplicity, we will assume a Gaussian PSF throughout
this paper. However, we expect our results to readily general-
ize to other PSFs [4]. We will also assume that the position
(e.g., of the centroid) of the line object is a priori known.

Let us first consider ideal image-plane direct detection to
serve as the baseline. In other words, we consider a unity fill
factor focal plane array with infinitesimally small pixels of
unity detection efficiency filling the entire (infinite) extent of
the camera’s image plane. We can express the FI as [3]

Idirect = N

σ 2
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We evaluated the integral in (1) using Mathematica to
compute Idirect. In Fig. 2, the solid blue curve is a plot of
Idirect/(N/σ 2) vs θ/σ . We see that the FI per photon degrades
as θ becomes smaller than the Rayleigh length (θ/σ ≈ 1) and
vanishes as θ → 0. In the two-point-source case, the FI per
photon at high θ asymptotically approaches a constant [3].
Here, by contrast, the light emitting from the center of the
object communicates less information per photon compared
to the light emitted from the edges, resulting in the FI per
photon to diminish as θ increases beyond a certain threshold
(σ ≈ 4.26).

We now consider the performance of the HG mode sorter.
It is straightforward to evaluate the fraction of the N photons
collected during the integral time that appears in the qth
image-plane HG mode as

P (q; θ ) = 2γ
(
q + 1

2 , z
)

θq!
, (4)

where z = θ2/16 and γ (a, z) = ∫ z

0 ta−1e−t dt is the unnor-
malized incomplete gamma function. We define

Q(q; θ ) = ∂

∂θ
ln P (q; θ ) = 1

P (q; θ )

∂

∂θ
P (q; θ )

= 1

P (q; θ )

e−zzq−1/2

4q!
− 1

θ
. (5)

A receiver which then detects photons (with shot-noise-
limited precision) on each of those modes would yield FI
given by

IHG = N

σ 2

∞∑
q=0

P (q; θ )Q(q; θ )2. (6)

The black dash-dotted curve in Fig. 2 plots IHG/(N/σ 2).
We see that for small (sub-Rayleigh) θ , the HG basis mea-
surement performs far better than ideal direct imaging and
the FI per photon does not degrade as θ becomes small. At
high θ the FI per photon is seen to asymptotically converge
to that of ideal image-plane detection. We can prove that
limθ→0 IHG = N/12σ 2.

Finally, we wish to calculate the quantum Fisher infor-
mation (QFI), the optimal performance attainable by any
receiver. We follow a procedure similar to that in [3], but
model the extended object as a collection of M equally
spaced point emitters spanning the total angular length θ ,
each radiating incoherently but within a narrow band of
W Hz around a center wavelength λ, and then take the
limit of M → ∞. Over the integration time T , there are
roughly K ≈ WT orthogonal temporal modes. At optical
frequencies, the mean photon number per mode n̄ � 1 and
hence one can express the density operator of the en-
tire collected optical field as ω = ρ⊗K , where ρ, the state
of each mode, can be written as ρ = (1 − n̄)ρ0 + n̄ρ1 +
O(n̄2), where ρ0 = |vac〉〈vac| is the multiple-spatiotemporal-
mode vacuum state and ρ1 is a single-photon mixed state
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ρ1 = 1
θ

∫ θ/2
−θ/2 |ψx〉〈ψx |dx, where the pure state |ψx〉 is that of a

single photon in a shifted image-plane amplitude-PSF spatial
mode centered at x. The total photon number N = n̄K . In
the above model, n̄ can also be interpreted as the probability
that a temporal mode of the collected light (over all spatial
modes) has one photon. The QFI IQ(ω) = KIQ(ρ) and we
use the approximation IQ(ρ) ≈ n̄IQ(ρ1) [3], where IQ(ρ1) =
Tr(ρ1L2). The symmetric logarithmic derivative L is given
by the implicit relation ∂ρ1/∂θ = 1

2 [ρ1L + Lρ1] and can
be expressed as L = ∑

j,k;Dj +Dk �=0
2

Dj +Dk
〈ej | ∂ρ

∂θ
|ek〉|ej 〉〈ek|,

where Dj and |ej 〉 are the eigenvalues and eigenvectors of
ρ, i.e., ρ = ∑

j Dj |ej 〉〈ej |. Next we observe that the single-
photon state in the shifted amplitude PSF mode centered at
x, |ψx〉 = ∑∞

k=0 e−|α|2/2 αk√
k!

|φk〉, where |φk〉 is the state of
a single photon in the kth image-plane HG mode and α =
x/2σ . For M > 2 point sources, an analytical calculation of
the QFI becomes involved. We calculate the QFI numerically
by first expressing ρ1 in the {|φk〉} basis and then calculate
the eigenbasis of ρ1 and the eigenvectors which span ∂ρ1/∂θ ,
then L, and finally the QFI as IQ(ω) = Kn̄IQ(ρ1).

As expected, the M = 2 case reproduces the constant QFI
IQ/(N/σ 2) = 1/4, as obtained in Ref. [3]. The QFI for M =
2, 3, . . . , 8 sources are plotted in the inset of Fig. 2. Increasing
M introduces a slow degradation with higher θ as well as
a suppression of the normalized QFI across all θ . As we
increased M we eventually converged to a constant curve.
We found that M = 56 was sufficient to obtain a reliable plot
that was independent of M , which we interpret as the QFI for
the continuum object. Although we do not have an analytical
proof that IQ = IHG ∀θ , our numerical results shown in Fig. 2
suggest that it is true, confirming that HG-mode-resolved
photon detection is the optimal receiver for this problem. The
reason the plot of IQ is slightly above that of IHG is that the
M value we use to evaluate (an approximation of) IQ is finite
and exact convergence would happen in the continuum limit
M → ∞.

III. DISCUSSION

A. Relative information contribution of photons emitted
from different parts of the object

In order to quantify the contribution to the FI from light
emanating from the angular location φ ∈ [−θ/2, θ/2] of the
object, we do the following thought experiment. Instead of
uniformly distributing emitters along the entire object, we
concentrate all M emitters at one given (point) location φ. We
assume φ is known. Calculating the QFI for estimating θ as
we vary φ produces the plot in Fig. 3. Here we can see the
relative information inefficiency of light coming from near the
center of the object (φ = 0). It is the sum of this information
distribution across the length of the object that results in the
slow degradation of the total FI per photon for large θ as seen
in all the plots in Fig. 2.

B. Modal distribution of information

To better understand the modal information composition,
we plot in Fig. 4 the Fisher information contributed by each of
the first few individual terms in the expression IHG/(N/σ 2).

FIG. 4. (a) Individual FI contributions from the q = 0, 1, 2, and
3 modes and the total FI from all HG modes (which equals the QFI)
and (b) fraction of image-plane photons in the qth HG mode. Most of
the information is contained in the q = 1 (first antisymmetric) mode,
but most of the photons are contained in the q = 0 (PSF) mode, for
small θ/σ .

Just as in the two-point-source case [4], the HG1 mode carries
almost all the information at low θ . Fisher information plots
for each mode has a node at which the information content
vanishes. A binary SPADE receiver separates all the collected
light into one spatial mode and its orthogonal complement.
In Fig. 5 we plot the performance of this receiver where the
separated mode is either the q = 0 mode (green curves) or
the q = 1 mode (red curves). The two perform similarly and
approach the QFI at low θ , but differ significantly once we
approach the aforesaid nodes in the individual information
plots in Fig. 4 associated with q = 1.

C. Effect of imperfections in the mode sorter

Next we evaluate the sensitivity of these binary SPADE
receivers to leakage in the mode-sorter implementation and
define ε to be the fractional power in the intended mode that
leaks into the output corresponding to the orthogonal com-
plement (and vice versa). These are plotted as dashed curves
for ε = 0.01 in Fig. 5. The performance of both receivers
degrades near θ = 0 but is insensitive to leakage away from
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FIG. 5. Fisher information attained by a binary SPADE receiver,
based on separating either the q = 0 (green) or the q = 1 (red) HG
mode. The FI attained by the infinite HG mode sorter (which equals
the QFI) and that of continuum direct detection are reproduced.
Finally, the green and red dashed curves show the performance of the
q = 0 and q = 1 binary SPADE detectors but with the leakage pa-
rameter ε = 0.01. Photon leakage is seen to degrade the performance
as θ approaches zero, but still outperforms ideal direct detection for
ε = 0.01.

this point. Finite leakage essentially returns the binary SPADE
to a condition where the FI once again vanishes at θ → 0, but
the region where it is suppressed is a function of ε. To quantify
this over a range, we plot in Fig. 6 (blue curve) the θ where
the performance of the q = 0 binary SPADE dips to 6 dB
below the ideal HG mode sorter’s θ = 0 performance. One
sees that this increases roughly linearly with ε but maintains
its advantage over direct detection until ε � 0.08.

D. Mean-square error performance

So far, we have quantified receiver performance in terms
of the FI, the inverse of which, the Cramér-Rao (CR)
bound, gives a lower bound on the MSE, i.e., the variance

FIG. 6. Plots of the θ at which the FI reaches the threshold of
6 dB below the ideal QFI at θ = 0. The burgundy curve show the
direct-detection case (θ = 1.4σ ), while the q = 0 blue curve shows
the degradation of this 6-dB point for the binary SPADE as the
leakage ε is increased.

FIG. 7. Comparison of RMSE (solid lines) with CR bounds
(dashed lines): (a) RMSE and (b) normalized RMSE, where the
RMSE in estimating θ is expressed as a fraction of the true value of
θ itself. The lighter shade plots correspond to the image-plane direct
measurement and the darker shade plots to a q = 0 binary SPADE.
The blue plots are for N = 50 and the red plots N = 10 000.

Var(θ̂ ) = E[(θ̂ − θ )2|θ ], where θ̂ is an unbiased estimator of
θ given the detector output. In this section we report compar-
isons of the CR bound to the numerically evaluated root mean-
squared error (RMSE) based on a maximum-likelihood esti-
mator (MLE) with the detected random photon count events,
an indicator of the practical performance attained by these
receivers. The results are plotted for two different total photon
numbers N in Fig. 7(a): N = 50 (blue plots) and N = 10 000
(red plots). Cramér-Rao bounds are plotted with dashed lines,
while the RMSE is plotted with solid lines, with the lighter
shades corresponding to image-plane direct detection and the
darker ones corresponding to the q = 0 binary SPADE. One
can see the nearly constant CR bound (corresponding to the
nearly constant FI) for the q = 0 binary SPADE. The RMSE
agrees with the CR bound closely, showing that the bound is
quite tight. Interestingly, the RMSE actually beats the CR at
very small θ , which is possible here because the MLE is a
biased estimator in this regime. Direct measurement is seen
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to perform much worse at sub-Rayleigh lengths, as expected.
Note that the relatively smaller advantage over direct detection
corresponds to the degradation due to the binary SPADE (as
opposed to using the full HG mode sorter), as is also seen in
the FI curves in Figs. 4 and 5. For the blue (N = 50 photon)
curves, it is evident that the CR bound is less tight and,
interestingly, the advantage of the binary SPADE is also less
dramatic. This is consistent with a similar trend seen in [7] for
a homodyne-based mode-sorting detector for the two-source
problem. Finally, in Fig. 7(b) we show the same results as
in Fig. 7(a) but now normalizing the RMSE to the actual
object length θ . Plotted in this way, it becomes clearer that the
relative precision of the length estimate is, quite intuitively,
always degrading as θ shrinks to zero. However, the relative
performance of the various cases is of course retained.

E. Generalization to an arbitrary PSF

In analogy to the results in [4], we conjecture that the
following holds for a general amplitude PSF A(x/σ )/

√
σ ,

with
∫ ∞
−∞ |A(x)|2dx = 1. Let us consider the autocorrelation

function of A(x),

�A(x ′) =
∫ ∞

−∞
A∗(x)A(x + x ′)dx. (7)

Assuming �A(x) admits a Taylor series expansion near θ =
0, as �A(x) = 1 + iβx − α

2 x2 + O(x3), α � 0, the QFI, as
θ → 0, would converge to

lim
θ→0

IQ(θ ) = N

3σ 2
(α − β2). (8)

For a real-valued A(x), β = 0. For a Gaussian PSF (the case
considered in this paper), it is simple to verify that α = 1/4
and β = 0, whereas for a hard rectangular aperture, α = π2/3
and β = 0. We have shown that, for any amplitude PSF
A(x), the Fisher information (normalized to N/σ 2) for object
length estimation is exactly three times lower than that for
the estimation of two-point-source separation, as θ/σ → 0
(see Appendix A).

Further, the evaluation of the FI per photon for the width
estimation problem can be generalized to objects having any
arbitrary irradiance profile by calculating its second-order
moment. This holds for any amplitude PSF A(x) as shown in
Appendix B with the example of a triangular intensity profile.

Finally, we believe that all the qualitative conclusions
drawn in this paper will hold for most well-behaved aperture
functions, with the optimal modes (that attain the QFI) being
the orthonormal mode set constructed using the qth deriva-
tives of A(x), as explained in [4]. A formal proof of this and
extensions of the idea to more complex scenes are left open
for future work.

IV. CONCLUSION

We have expanded on recent results examining how non-
standard imaging techniques based on predetection spatial
mode sorting and related techniques can outperform standard
focal-plane intensity-based imaging, for estimation problems
involving resolving object features smaller than the diffraction
limit. We calculated the quantum limit of estimating the length
of an incoherently radiating 1D extended object and found

that a receiver based on sorting HG modes attains the quan-
tum limit. We found that a binary SPADE technique, based
on separating one mode from its orthogonal complement,
still outperforms infinite-resolution infinite-pixelated direct
imaging and maintains near-quantum optimality when the
object length is in the highly sub-Rayleigh regime. We have
investigated how leakage in the mode-sorter implementation
degrades the performance of a binary SPADE and found that
its advantage over direct imaging is somewhat robust to that
leakage. We have also investigated with numerical evaluation
how the Fisher-information-based advantage translates to an
advantage in the actual RMSE attained by the mode-sorting
receivers.

Two important directions of future work are to investigate
(i) optimal joint estimation of multiple scene parameters in
more complex scenes and (ii) single-parameter estimation
while treating unknown (nuisance) parameters. It is important
to do a fair comparison with standard image-plane detection
where both schemes are given the same integration time and
the same initial priors over all scene parameters of interest
and nuisance parameters. This is particularly important since
all the scene information is inferred in electronic-domain
postprocessing in image-plane detection, due to which, as an
example, it does not need to estimate the center of an object
to estimate its length. On the other hand, our scheme would
require the estimate of the center of the object, a nuisance
parameter, to point the mode sorter accurately, in order to
estimate the object’s length.
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APPENDIX A: RATIO OF FISHER INFORMATION PER
PHOTON: LINE OBJECT VERSUS TWO-POINT SOURCE

In this appendix we will prove that for any amplitude
PSF, the Fisher information (normalized to N/σ 2) for object
length estimation is exactly three times lower than that for the
estimation of two point-source separation, as θ/σ → 0. Let
us consider an imaging system casting an arbitrary (possibly
complex-valued) amplitude PSF A(x/σ )/

√
σ that is infinitely

differentiable, where σ is a positive scaling factor and such
that the profile is normalized in energy, i.e.,

∫ ∞
−∞ |A(x)|2 dx =

1. We have shown in [4] that an ad hoc mode sorter can be
devised upon the successive spatial derivatives of A(x).

In this particular case, we have expressed the output
functions or mode projections [mA,q (θ )] regarding the mea-
surement of the separation between two incoherent and
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indistinguishable point sources located, respectively, at
−θ/2σ and +θ/2σ from the autocorrelation function �A of
the PSF: �A(x ′) = ∫ +∞

−∞ A(x)A(x + x ′)dx. Furthermore, if
this autocorrelation function �A admits a Taylor expansion
near θ = 0 in the form of

�A(x) =
θ→0

1 + iβx − α

2
x2 + o(x2), (A1)

where α � 0 and β ∈ R, then the Fisher-information score
for narrow separation, i.e., small values of θ , obtained by
the second mode measurement mA,1 tends toward I1(θ ) →
N (α − β2)/σ 2. In addition, we have the following expansion
of the measurement function for the same second mode, which
corresponds to the first spatial derivative of the PSF:

mA,1(θ ) =
θ→0

(α − β2)
θ2

σ 2
+ o

(
θ2

σ 2

)
. (A2)

If we now consider an incoherent one-dimensional line object
spanning from −�/2σ to +�/2σ , the equivalent measure-
ment functions for the width Mq (�) can be directly derived
from the previous [mA,q (θ )] functions

MA,q (�) = 2

�

∫ �/2

0
mA,q (θ )dθ, (A3)

where the prefactor 2/� ensures that the energy collected
from the object in the image plane of the device is constant and
equal to one. By employing the previous expansion again, we
can write, for the measurement function of the second mode
(q = 1),

MA,1(�) =
�→0

α − β2

12

�2

σ 2
+ o

(
�2

σ 2

)
. (A4)

The Fisher information Iq (�) for the mode q is given by

Iq (�) = N
M

(1)
A,q (�)2

MA,q (�)
, (A5)

with M
(1)
A,q being the first derivative of the measurement func-

tion for mode q with respect to � and N the total number of
photons collected. Finally, all the Fisher information is col-
lected solely by the second mode when � → 0 (as discussed
in [4]) and approaches

I1(�) →
�→0

N

3σ 2
(α − β2), (A6)

which is exactly three times lower than that for the two-point-
source separation estimation problem regardless of the PSF
spatial profile A(x).

APPENDIX B: FISHER INFORMATION PER PHOTON:
ARBITRARY INCOHERENT OBJECT

In this appendix we will further generalize the expres-
sion of the mode measurements for any arbitrary PSF A(x)
subject to the same constraints as before and knowing the
mode-measurement functions mA,q for the estimation of the
separation of two point sources. Here we consider a generic
extended and incoherent object described by a unidimensional
profile V (x) of overall width 1, |x| > 1/2 ⇒ V (x) = 0, and
such that

∫ 1/2
−1/2 V (x)dx = 1. One can note that the intensity

profile V (x) can be expanded into the unique sum of an odd
and an even profile denoted, respectively, by O(x) and E(x)
and the even term is always positive.

The generalized mode-measurement function can then be
expressed as

MA,q (�) =
∫ �/2

−�/2
V

(
θ

�

)
mA,q (|θ |)dθ

/∫ +�/2

−�/2
V

(
x

�

)
dx

(B1)

= 2

�

∫ �/2

0
E

(
θ

�

)
mA,q (θ )dθ. (B2)

The expansion of the second mode measurement MA,1(�) in
the vicinity of � → 0 is then relatable to the second-order
moment of the even portion of the intensity profile

MA,1(�) =
�→0

2(α − β2)

(∫ 1/2

0
θ2E(θ )dθ

)
�2

σ 2
+ o

(
�2

σ 2

)

(B3)

and the corresponding Fisher information has the following
limit as the width of the object tends to zero:

I1(�) →
�→0

8N

σ 2
(α − β2)

∫ 1/2

0
θ2E(θ )dθ. (B4)

One can verify that for a uniform rectangular object we
have E(θ ) = 1, the second-order moment over [0; 1/2] is
equal to 1/24, and we find the previous value of the Fisher
information. In the case of a triangular intensity profile,
the even function is E(θ ) = 2 − 4θ when 0 � θ � 1/2 and
E(θ ) = 2 + 4θ when −1/2 � θ < 0, the second-order mo-
ment over [0; 1/2] is equal to 1/48, and the corresponding
Fisher information is N (α − β2)/6σ 2, i.e., two times smaller
than for the uniform object and six times smaller than for the
two-point-source separation.
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