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The recently introduced concept of Stokes fluctuations generalizes both the Hanbury Brown–Twiss effect and
the notion of scintillation. Here we apply this new framework to the specific example of a Gaussian Schell-model
(GSM) beam. We derive formulas for Stokes scintillations and Stokes fluctuation correlations, which explicitly
express the dependence of these quantities on the GSM source parameters. It is found that the normalized Stokes
scintillations vary significantly with position. Also, they can be either positively or negatively correlated.
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I. INTRODUCTION

Recent work on intensity correlations has attempted to
extend the study of the Hanbury Brown–Twiss (HBT) effect
[1–3], as customarily applied to fields of research such as
astronomy and quantum optics, to the case of vector electro-
magnetic beams. One avenue of investigation on this topic
is to explore the possible relationship between the state of
polarization of the beam and the behavior of the observable
HBT coefficient. Such calculations have been presented in
Refs. [4–9]. In considering the polarization-resolved HBT
effect it seems natural to employ the traditional Stokes param-
eters to describe the state of polarization of the beam. In fact,
it is trivial to observe that the HBT coefficient itself can also
be expressed in terms of the first Stokes parameter, denoted by
S0. The correlation of the intensity fluctuations can therefore
be thought of as a quantity that is directly related to the po-
larization state. Recently this observation was generalized by
defining the complete class of Stokes fluctuation correlations
[10]. Similarly, the scintillation coefficient, which is nothing
but the local variance of S0, can be generalized to a class of
one-point correlations between the various Stokes parameters.
We refer to these generalized quantities as Stokes fluctuation
correlations and Stokes scintillations, respectively. Under the
assumption of Gaussian statistics, a single expression for all
these quantities can be derived. In this paper we apply the
formalism that describes a generalized HBT experiment to a
broad class of partially coherent beams, namely those of the
Gaussian Schell-model type. We study how the Stokes fluctu-
ation correlations and Stokes scintillations in the far zone are
affected by the source parameters. Both these quantities are
found to display a rich behavior. For example, the normalized
Stokes scintillations vary strongly with position, and their
correlations can either be positive or negative.

A sketch for a generalized, polarization-resolved HBT
experiment that could be used to measure the quantities of
interest described in this paper is shown in Fig. 1. The field
that is incident on the two detectors is spectrally filtered and
passed through polarizing elements. The elements are chosen
such that each detector measures a particular spectral Stokes
parameter. In a traditional HBT experiment these filters and
polarizers would be absent.

II. STOKES FLUCTUATION CORRELATIONS AND
STOKES SCINTILLATIONS

The second-order statistical properties of a partially coher-
ent electromagnetic beam are described by its cross-spectral
density matrix, which is defined as [11]

W(r1, r2, ω) =
(

Wxx Wxy

Wyx Wyy

)
. (1)

All the matrix elements are functions of the same three
variables, and given by the expression

Wi j (r1, r2, ω) = 〈E∗
i (r1, ω)Ej (r2, ω)〉, (i, j = x, y), (2)

where r1 and r2 are two points of observation, ω is the angular
frequency, and the angular brackets indicate an average taken
over an ensemble of beam realizations.

The state of polarization of the beam is described by the
four Stokes parameters [12]. Their average value can be ex-
pressed in terms of the cross-spectral density matrix evaluated
at r1 = r2 = r as

〈S0(r, ω)〉 = Wxx(r, r, ω) + Wyy(r, r, ω), (3a)

〈S1(r, ω)〉 = Wxx(r, r, ω) − Wyy(r, r, ω), (3b)
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FIG. 1. A polarization-resolved HBT experiment. The far-zone
radiation of a source is passed through a narrow-band spectral filter
(SF) and polarizing elements (P) that cover two intensity detectors
D1 and D2. The output of the detectors is correlated and sent to a
computer (pc).

〈S2(r, ω)〉 = Wxy(r, r, ω) + Wyx(r, r, ω), (3c)

〈S3(r, ω)〉 = i[Wyx(r, r, ω) − Wxy(r, r, ω)]. (3d)

All preceding equations have an explicit frequency depen-
dence, indicating that they are defined for a specific frequency
component of the optical field. For brevity, we will no longer
display this ω dependence from now on.

For the case of a stochastic beam the Stokes parameters are
not deterministic, but they are random quantities. The fluctua-
tions around their average value (i.e., the Stokes fluctuations)
are defined as

�Sn(r) = Sn(r) − 〈Sn(r)〉 (n = 0, 1, 2, 3), (4)

where Sn(r) is the Stokes parameter pertaining to a single
realization of the beam, and 〈Sn(r)〉 denotes its ensemble av-
erage. We can now examine how these Stokes fluctuations are
correlated. All possible pairs of their two-point correlations
can be captured by introducing a 4 × 4 Stokes fluctuation
correlation matrix C(r1, r2), whose elements are

Cnm(r1, r2) ≡ 〈�Sn(r1)�Sm(r2)〉 (n, m = 0, 1, 2, 3). (5)

We recently showed, under the assumption that the source that
generates the beam is governed by Gaussian statistics, that
these elements can be expressed as [10]

Cnm(r1, r2) =
∑
a,b

∑
c,d

σ n
abσ

m
cdWad (r1, r2)W ∗

bc(r1, r2),

(a, b, c, d = x, y), (6)

where σ0 denotes the 2 × 2 identity matrix, and the Pauli spin
matrices are defined as

σ1 =
(

1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
, (7)

respectively. We remind the reader that, in contrast to the
Stokes fluctuations whose correlations are described by
Eq. (6), the Stokes parameters themselves are related by the
inequality [12]〈

S2
0 (r)

〉
�

〈
S2

1 (r)
〉 + 〈

S2
2 (r)

〉 + 〈
S2

3 (r)
〉
, (8)

with the equal sign holding only for a fully polarized beam.
Working out Eq. (6) for all sixteen elements results in

C00(r1, r2) = |Wxx|2 + |Wxy|2 + |Wyx|2 + |Wyy|2, (9a)

C01(r1, r2) = |Wxx|2 − |Wxy|2 + |Wyx|2 − |Wyy|2, (9b)

C02(r1, r2) = 2 Re [WxxW
∗

xy + WyyW
∗

yx], (9c)

C03(r1, r2) = 2 Im [WyyW
∗

yx − WxxW
∗

xy], (9d)

C10(r1, r2) = |Wxx|2 + |Wxy|2 − |Wyx|2 − |Wyy|2, (9e)

C11(r1, r2) = |Wxx|2 − |Wxy|2 − |Wyx|2 + |Wyy|2, (9f)

C12(r1, r2) = 2 Re [WxxW
∗

xy − WyyW
∗

yx], (9g)

C13(r1, r2) = 2 Im [WxyW
∗

xx + WyxW
∗

yy], (9h)

C20(r1, r2) = 2 Re [WxxW
∗

yx + WyyW
∗

xy], (9i)

C21(r1, r2) = 2 Re [WxxW
∗

yx − WyyW
∗

xy], (9j)

C22(r1, r2) = 2 Re [WxxW
∗

yy + WxyW
∗

yx], (9k)

C23(r1, r2) = 2 Im [WxyW
∗

yx + W ∗
xxWyy], (9l)

C30(r1, r2) = 2 Im [WxxW
∗

yx − WyyW
∗

xy], (9m)

C31(r1, r2) = 2 Im [WxxW
∗

yx + WyyW
∗

xy], (9n)

C32(r1, r2) = 2 Im [WxyW
∗

yx + WxxW
∗

yy], (9o)

C33(r1, r2) = 2 Re [WxxW
∗

yy − WxyW
∗

yx], (9p)

where on the right-hand side the (r1, r2) dependence of the
cross-spectral density matrix elements Wi j has been sup-
pressed for brevity. It is seen that, in the general case,
all elements Cnm(r1, r2) are nonzero. This means that the
fluctuations of any Stokes parameter at a position r1 are
correlated with the fluctuations of all four Stokes parameters
at another position r2. As a partial check it can be verified
that the expression for the first matrix element, C00(r1, r2), is
indeed equivalent to that of the usual Hanbury Brown–Twiss
coefficient [4].

When the two spatial arguments of Cnm(r1, r2) coincide, it
reduces to the Stokes scintillation matrix Dnm(r), i.e.,

Dnm(r) ≡ Cnm(r, r). (10)

We note that the D00(r) element represents the usual scintilla-
tion coefficient. It can be derived that [10]

D00(r) = 1
2 [〈S0(r)〉2 + 〈S1(r)〉2 + 〈S2(r)〉2 + 〈S3(r)〉2],

(11a)

D11(r) = 1
2 [(〈S0(r)〉2 + 〈S1(r)〉2 − 〈S2(r)〉2 − 〈S3(r)〉2],

(11b)

D22(r) = 1
2 [〈S0(r)〉2 − 〈S1(r)〉2 + 〈S2(r)〉2 − 〈S3(r)〉2],

(11c)

D33(r) = 1
2 [〈S0(r)〉2 − 〈S1(r)〉2 − 〈S2(r)〉2 + 〈S3(r)〉2].

(11d)

From these expressions it is seen that D00(r) is greater than
or equal to the other three diagonal elements. The twelve off-
diagonal elements are given by the expressions

Dpq(r) = 〈Sp(r)〉〈Sq(r)〉, (p �= q; and p, q = 0, 1, 2, 3).
(12)

It is useful to introduce a normalized version of the
two correlation matrices, indicated by the superscript N , by
defining

CN
nm(r1, r2) = Cnm(r1, r2)

〈S0(r1)〉〈S0(r2)〉 , (13)
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and

DN
nm(r) = Dnm(r)

〈S0(r)〉2 . (14)

The sum of the four diagonal elements of the CN (r1, r2)
matrix has a distinct physical meaning [10], namely

3∑
m=0

CN
mm(r1, r2) = 2|η(r1, r2)|2. (15)

Here η(r1, r2) denotes the spectral degree of coherence [11],
the magnitude of which indicates the visibility of the interfer-
ence pattern produced in Young’s experiment with pinholes
located at r1 and r2. Similarly, the sum of the four normalized
diagonal Stokes scintillations satisfies the relation

3∑
m=0

DN
mm(r) = 2. (16)

The element DN
00(r) is equal to the square of the scintillation

index [13], and is bounded, namely [14]

1

2
� DN

00(r) � 1. (17)

It follows from Eqs. (12) and (14) that the off-diagonal
elements of the DN (r) matrix are also not independent.
For example, DN

23(r) = DN
02(r)DN

03(r). In the next section we
calculate the Stokes fluctuation correlations and the Stokes
scintillations that occur in a specific type of beam.

III. GAUSSIAN SCHELL-MODEL BEAMS

The cross-spectral density matrix elements of an electro-
magnetic Gaussian Schell-model (GSM) beam in its source
plane, indicated by the superscript (0), are [11]

W (0)
i j (ρ1, ρ2) = AiAjBi j exp

[
− ρ2

1

4σ 2
i

− ρ2
2

4σ 2
j

− (ρ1 − ρ2)2

2δ2
i j

]
,

(i, j = x, y). (18)

The parameters Ai, Bi j , σi, δi j are independent of position, but
may depend on frequency. They can not be chosen freely, but
have to satisfy several constraints, i.e.,

Bxx = Byy = 1, (19)

Bxy = B∗
yx, (20)

Bxy = |Bxy|eiφ, with |Bxy| � 1, and φ ∈ R, (21)

δxy = δyx. (22)

Furthermore, the so-called realizability conditions are [15]√
δ2

xx + δ2
yy

2
� δxy �

√
δxxδyy

|Bxy| . (23)

For the case σx = σy = σ , the source will generate a beamlike
field if [16]

1

4σ 2
+ 1

δ2
xx

� 2π2

λ2
, and

1

4σ 2
+ 1

δ2
yy

� 2π2

λ2
, (24)

where λ denotes the wavelength. On propagation to a trans-
verse plane z the matrix elements evolve into [11]

Wi j (ρ1, ρ2, z) = AiAjBi j

�2
i j (z)

exp

[
− (ρ1 + ρ2)2

8σ 2�2
i j (z)

]

× exp

[
− (ρ1 − ρ2)2

2�2
i j�

2
i j (z)

+ ik
(
ρ2

2 − ρ2
1

)
2Ri j (z)

]
, (25)

where

�2
i j (z) = 1 + (z/σk�i j )

2, (26)

1

�2
i j

= 1

4σ 2
+ 1

δ2
i j

, (27)

Ri j (z) = [1 + (σk�i j/z)2]z. (28)

When z tends to infinity we have

�2
i j (z) ∼ z2

(σk�i j )
2 , (29)

Ri j (z) ∼ z. (30)

We thus get for the far-zone elements, denoted by the super-
script (∞), the expressions

W (∞)
i j (ρ1, ρ2, z)

= AiAjBi j (kσ�i j )
2

z2
exp

[
− (ρ1 + ρ2)2(k�i j )

2

8z2

]

× exp

[
− (ρ1 − ρ2)2(kσ )2

2z2
+ ik

(
ρ2

2 − ρ2
1

)
2z

]
. (31)

Let us assume, for simplicity, that the amplitude of the two
spectral densities and the two autocorrelation radii are the
same, i.e.,

Ax = Ay = A, (32)

δxx = δyy = δ. (33)

This implies that

�xx = �yy = �. (34)

In the far zone the observation points are given by the polar
angle θ ≈ tan θ = ρ/z, the azimuthal angle is not needed.
Hence we can write

W (∞)
i j (θ, θ, z) = K2Bi j�

2
i je

−θ2k2�2
i j/2, (35)

W (∞)
i j (0, θ, z) = K2Bi j�

2
i je

−θ2k2�2
i j/8e−θ2k2σ 2/2eikθ2z/2, (36)

where

K2 =
(

Akσ

z

)2

. (37)

We will use these two expressions to study the far-zone
scintillations and the far-zone fluctuation correlations.
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FIG. 2. The four diagonal Stokes scintillations on the far-zone
axis (θ = 0) as a function of the argument φ of the coefficient Bxy. In
this example λ = 632.8 nm, σ = 1 cm, δ = 4 mm, δxy = 5 mm, and
|Bxy| = 0.5. The upper straight curve is for DN

00(φ, 0), the lower one
is for DN

11(φ, 0). Of the two oscillating curves the upper one at φ = 0
corresponds to DN

22(φ, 0), the lower one to DN
33(φ, 0).

IV. STOKES SCINTILLATIONS

On substituting from Eq. (35) into Eq. (14), while making
use of Eqs. (9a)–(9p), we find for the four diagonal far-zone
normalized Stokes scintillations that

DN
00(θ ) = 1

2 [1 + α4|Bxy|2e−θ2k2(�2
xy−�2 )], (38a)

DN
11(θ ) = 1

2 [1 − α4|Bxy|2e−θ2k2(�2
xy−�2 )], (38b)

DN
22(θ ) = 1

2 [1 + α4|Bxy|2 cos(2φ)e−θ2k2(�2
xy−�2 )], (38c)

DN
33(θ ) = 1

2 [1 − α4|Bxy|2 cos(2φ)e−θ2k2(�2
xy−�2 )], (38d)

where α ≡ �xy/� � 1. This inequality is a direct conse-
quence of the realizability conditions Eq. (23). It implies that
the exponential functions in Eqs. (38a)–(38d) all decrease
with increasing θ . An example of how the on-axis Stokes
scintillations may behave is presented in Fig. 2. There the
four diagonal scintillation coefficients are plotted as a function
of φ, the argument of the complex coefficient Bxy which is
defined in Eq. (18). Note that φ is the expectation value of the
phase difference between Ex and Ey. The first two coefficients,
D00 (which is the usual scintillation coefficient) and D11, are
independent of φ whereas the other two coefficients display
a harmonic behavior. This can be understood as follows: the
scintillations of S0 and S1 are, according to their definitions,
only dependent on the fluctuations of |Ex|2 and |Ey|2 and
are therefore independent of the angle φ. Since the other
two Stokes parameters, S2 and S3, contain cross terms of
Ex and Ey, their scintillations do depend on φ. Notice that
although the individual Stokes scintillations may vary, their
sum remains constant at two, in agreement with Eq. (16).

The off-diagonal scintillations can be expressed in terms of
the average of the Stokes parameters, as indicated by Eq. (12).
Using Eqs. (3a)–(3d) and (35) we find that

S(∞)
0 (θ ) = 2K2�2 exp

(
−k2�2θ2

2

)
. (39a)

S(∞)
1 (θ ) = 0, (39b)

Dnm

/2 3 /2 2

N

D02
N

D03
N

D23
N

FIG. 3. The nonzero off-diagonal Stokes scintillations on the far-
zone axis as a function of the argument φ of the coefficient Bxy. The
parameters are the same as in Fig. 2.

S(∞)
2 (θ ) = 2K2�2

xy|Bxy| cos φ exp

(
−k2�2

xyθ
2

2

)
, (39c)

S(∞)
3 (θ ) = 2K2�2

xy|Bxy| sin φ exp

(
−k2�2

xyθ
2

2

)
. (39d)

Hence the six nonzero off-diagonal scintillation coeffi-
cients are

DN
02(θ ) = DN

20(θ ) = α2|Bxy| cos φ exp

[
−θ2k2

2

(
�2

xy − �2
)]

,

(40a)

DN
03(θ ) = DN

30(θ ) = α2|Bxy| sin φ exp

[
−θ2k2

2

(
�2

xy − �2)],

(40b)

DN
23(θ ) = DN

32(θ )

= α4|Bxy|2 cos φ sin φ exp
[− θ2k2

(
�2

xy− �2
)]
. (40c)

An example is shown in Fig. 3. The behavior is quite
distinct from that of the diagonal scintillation coefficients.
Whereas for our model choice the diagonal elements are
always positive, the off-diagonal scintillation coefficients can
also attain negative values.

It is seen from Eqs. (40a)–(40c) that the off-diagonal
Stokes scintillations, unlike their diagonal counterparts, do
not all have the same exponential dependence on the angle of
observation θ . This is illustrated in Fig. 4. When θ gets larger,
all scintillation coefficients tend to zero, but they do so from
different initial, on-axis values.

V. STOKES FLUCTUATION CORRELATIONS

For the far-zone field we can use Eqs. (35) and (36) to
derive the diagonal correlations of the Stokes fluctuations. The
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Dnm
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D03
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D23
N

N

FIG. 4. Off-diagonal Stokes scintillations in the far zone as a
function of the angle of observation θ . In this example φ = −1.0 rad.
The other parameters are the same as in Fig. 2.

results are

CN
00(0, θ ) = 1

2
exp[−k2θ2(σ 2 − �2/2)]

[
exp

(
−k2�2θ2

4

)

+α4|Bxy|2 exp

(
−k2�2

xyθ
2

4

)]
, (41a)

CN
11(0, θ ) = 1

2
exp[−k2θ2(σ 2 − �2/2)]

[
exp

(
−k2�2θ2

4

)

−α4|Bxy|2 exp

(
−k2�2

xyθ
2

4

)]
, (41b)

CN
22(0, θ ) = 1

2
exp[−k2θ2(σ 2 − �2/2)]

[
exp

(
−k2�2θ2

4

)

+α4|Bxy|2 cos(2φ) exp

(
−k2�2

xyθ
2

4

)]
, (41c)

CN
33(0, θ ) = 1

2
exp[−k2θ2(σ 2 − �2/2)]

[
exp

(
−k2�2θ2

4

)

−α4|Bxy|2 cos(2φ) exp

(
−k2�2

xyθ
2

4

)]
. (41d)

It is easy to show, given the constraints on the source
parameters as outlined in Sec. III, that these coefficients
all decay exponentially as a function of the angle θ . The
angular dependence of the four diagonal Stokes fluctuations
coefficients is plotted in Fig. 5. The first coefficient, CN

00(0, θ ),
represents the usual HBT effect (blue curve). Clearly, as can
be seen from Eqs. (41a)–(41d), for our particular choice of
a GSM beam, this coefficient is larger than the other three
diagonal Stokes fluctuation correlations. As described above
in Eq. (15), the sum of the these four coefficients is directly
related to the modulus of the spectral degree of coherence
η(0, θ ). This quantity is therefore also plotted. It is seen
that its angular half-width exceeds that of the four Stokes
fluctuation correlations.

Cnn
N

C00
N

C11
N

C22
N

C33
N

FIG. 5. The far-zone diagonal Stokes fluctuation coefficients
CN

nn(0, θ ) as a function of the angle θ . The argument of the coefficient
Bxy is taken to be φ = −1.0 and the other parameters are the same
as in Fig. 2. The dashed black curve indicates the modulus of the
spectral degree of coherence η(0, θ ). The curves at θ = 0 represent,
in descending order, CN

00(0, θ ), CN
33(0, θ ), CN

22(0, θ ), and CN
11(0, θ ).

A direct calculation shows that only six off-diagonal ele-
ments of the C matrix are nonzero, with only three of them
being independent, namely

CN
02(0, θ ) = CN

20(0, θ )

= α2 exp[−k2θ2(σ 2 − �2/2)]

× exp
[ − k2θ2

(
�2 + �2

xy

)
/8

]|Bxy| cos φ, (42a)

CN
03(0, θ ) = CN

30(0, θ )

= α2 exp[−k2θ2(σ 2 − �2/2)]

× exp
[ − k2θ2

(
�2 + �2

xy

)
/8

]|Bxy| sin φ, (42b)

CN
23(0, θ ) = CN

32(0, θ )

= 1

2
α4 exp[−k2θ2(σ 2 − �2/2)]

× exp
[ − k2θ2�2

xy/4
]|Bxy|2 sin(2φ). (42c)

Not coincidentally, the nonzero off-diagonal elements of
CN

nm occur for the same values of n and m as those of the DN
nm

matrix. They also express the same functional dependence on
the modulus of Bxy and its angle φ.

VI. CONCLUSIONS

Studies of the polarization properties of random electro-
magnetic beams, such as Refs. [14,17–19], have typically con-
centrated on the degree of polarization, the Hanbury Brown–
Twiss effect, and scintillation. Recently the two concepts of
the HBT effect and scintillation were generalized to so-called
Stokes fluctuation correlations and Stokes scintillations. We
examined the behavior of these 16 new quantities in the far
zone of a random beam that is generated by a Gaussian
Schell-model source. It was found that the different corre-
lations and scintillations have varying spatial distributions,
and that their dependence on the source parameters differs
significantly. Our results also illustrate that these quantities
may nontrivially depend on the average phase difference φ
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between the two electric field components of the beam. For the
specific model chosen here, for example, DN

22(r) and DN
33(r)

vary sinusoidally with respect to φ, and the off-diagonal
scintillation coefficients may be negative. Furthermore, the
classical HBT coefficient is larger than the other three Stokes
fluctuation correlation coefficients.

Our work shows that the HBT effect is just one of many
correlations that occur in a random electromagnetic beam.
These generalized HBT correlations can all be determined
from intensity measurements and their values can then be used

to characterize a beam in more detail than was previously
done based on a single classical HBT measurement. They
may also find application in inverse problems in which source
parameters are reconstructed from far-zone observations.
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