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Analytic theory of an edge mode between impedance surfaces
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An eigenmode analysis is presented of the electromagnetic field which occurs between two complementary
surface impedances. The analysis is based on the generalized reflection method which is a generalization of
the Sommerfeld-Maliuzhinets technique. Numerical results are presented and validated against independent
COMSOL simulations. Also, the characteristic impedance and phase velocity are defined and calculated for further
investigation of the structure.
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I. INTRODUCTION

Edge modes can be widely found in quantum phenomena
[1,2], optics [3–6], and acoustics [7,8]. Because of the com-
plexity of such structures, it is almost impossible to obtain the
exact closed-form solutions of the edge modes. However, a
simple structure has been discovered which confines the en-
ergy along the interface between two planar surfaces recently
[9–11]. It has been shown that the line wave occurs when
the surface impedances on the two sides are complementary,
which means one is inductive while the other is capacitive.
Both numerical simulation and experimental verification have
demonstrated these line waves, but an analytical solution has
only been found for the limiting case where the two surfaces
are perfect electric and perfect magnetic conductors.

In this paper, we apply the generalized reflection method
to the eigenmode solution of a wedge with two different
impedance boundary conditions. The generalized reflection
method is developed by Vaccaro to study the scattering
from an impedance wedge excited by an obliquely incident
plane wave as shown in Fig. 1(a) [12,13]. The generalized
reflection method is the generalization of the Sommerfeld-
Maliuzhinets method, which is applied to solve the problem
of the scattering wave of a wedge with impedance surfaces
excited by a normally incident plane wave [14]. The TM and
TE polarized wave are coupled for the oblique incidence,
which makes the Maliuzhinets method no longer valid. Based
on the Sommerfeld-Maliuzhinets technique, the diffraction
of an electromagnetic skew-incident wave by a wedge with
anisotropic impedance boundary condition is solved analyt-
ically [15,16]. The scattered wave generated by a Hertzian
dipole placed over an impedance wedge can be calculated by
expanding the dipole field into plane waves and extending to
complex angles of incidence [17].
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However, to the best of the authors’ knowledge, no satis-
factory analytic solution to the eigenmode on an impedance
wedge exists. Knowing the eigenmode solution not only helps
us to understand the driven mode such as the scattered wave
of a wedge excited by plane wave or dipole, but also gives a
deeper understanding on the edge mode between impedance
surfaces.

II. THEORETICAL ANALYSIS

A. Structure description

Similar to the driven mode analysis, we have two semi-
infinite surfaces with complementary surface impedances Z1

and Z2 as shown in Fig. 1(b), which means Im(Z1)Im(Z2) < 0.
However, instead of solving for scattering by an incident
wave, we find the eigenmode solution. For simplicity, we as-
sume the surface is lossless, so Re(Z1) = Re(Z2) = 0. We also
assume the angle between two surfaces is π , which is the same
as in Ref. [9]. All the fields in the following discussion have
the e−iωt time dependence, which is suppressed. The surfaces
of the wedge satisfy the Leontovich boundary condition [18]:

�E − φ̂(φ̂ · �E ) = φ̂ × �HZ1, (1a)

�E − φ̂(φ̂ · �E ) = −φ̂ × �HZ2, (1b)

where φ̂ is the unit vector as shown in Fig. 1(a).

B. Generalized reflection method

By applying the Sommerfeld-Maliuzhinets technique, we
can transform the electromagnetic field from real space to the
spectral domain:

f̄z(ρ, φ, z) = eik0z cos β

2π i

∫
γ

F̄z

(
α + π

2
− φ

)
e−ik0ρ sin β cos αdα,

(2)

where f̄z(ρ, φ, z) = [ Ez

Z0Hz
] and Z0 is the free space intrinsic

impedance. The column vector F̄z(α) represents the spectral
function for Ez and Z0Hz. For the driven mode, β is the
angle between the incident wave and the ẑ axis, which is a
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FIG. 1. (a) Impedance wedge with obliquely incident plane
wave. The angle between impedance faces is θ . (b) Line wave
structure shown in Ref. [9] when θ = π .

given parameter. However, for the eigenmode case, β is the
eigenvalue that we need to find by solving Maxwell equations.
It is proven that for the wedge structure the z components
of the electric and magnetic fields are bounded at the edge,
|Ez(ρ = 0)| < ∞ and |Hz(ρ = 0)| < ∞, while |Eρ |, |Eφ|,
|Hρ |, and |Hφ| will tend to infinity [19]. The behavior of
f̄z(ρ, φ, z) at ρ → 0 is related to the behavior of the spectral
function F̄z(α) at |Im(α)| → ∞:

lim
|Im(α)|→∞

F̄z(α) = constant. (3)

Applying the impedance boundary condition as shown in
Eqs. (1a) and (1b) to the spectral expression Eq. (2), we can
get [18]

( ¯̄I sin α + sin ¯̄v1) ¯̄C(α)F̄z

(
α + π

2

)
= (− ¯̄I sin α + sin ¯̄v1) ¯̄C(−α)F̄z

(
−α + π

2

)
, (4a)

( ¯̄I sin α − sin ¯̄v2) ¯̄C(α)F̄z

(
α − π

2

)
= (− ¯̄I sin α − sin ¯̄v2) ¯̄C(−α)F̄z

(
−α − π

2

)
, (4b)

where

¯̄C(α) =
[

cos α − sin α cos β

sin α cos β cos α

]
, (5)

sin ¯̄v1,2 =
[

sin ve
1,2 0

0 sin vh
1,2

]
=

⎡
⎣ Y1,2

Y0 sin β
0

0 Z1,2

Z0 sin β

⎤
⎦, (6)

and ¯̄I is the 2 × 2 identity matrix. Y0 = 1/Z0 is the free-space
admittance and Y1,2 = 1/Z1,2.

As shown in Eqs. (4a) and (4b), the two components in
F̄z(α) are coupled since the matrix ¯̄C(α) is nondiagonal. In
order to solve F̄z(α) efficiently, we rewrite Eqs. (4a) and (4b)
by variable substitution:

F̄z(α) = ¯̄C−1
(
α − π

2

)
Ḡz(α). (7)

Then we have

( ¯̄I sin α + sin ¯̄v1)Ḡz

(
α + π

2

)
= (− ¯̄I sin α + sin ¯̄v1)Ḡz

(
−α + π

2

)
, (8a)

( ¯̄I sin α − sin ¯̄v2)Ḡz

(
α − π

2

)
= (− ¯̄I sin α − sin ¯̄v2)Ḡz

(
−α − π

2

)
. (8b)

For Eqs. (8a) and (8b), the two components of Ḡz are
decoupled and are solved by Maliuzhinets [14]:

Ḡz(α) =
[

e(α) 0

0 
h(α)

][
a0

1

a0
2

]
, (9)

where a0
1 and a0

2 are arbitrary constants, and


e,h(α) = ψ
(
α + ve,h

1

)
ψ

(
α + π − ve,h

1

)
×ψ

(
α + ve,h

2 − π
)
ψ

(
α − ve,h

2

)
. (10)

The Maliuzhinets function ψ (α) of wedge with angle π is
defined as

ψ (α) = exp

(
1

4π

∫ α

0

2u − π sin u

cos u
du

)
. (11)

The asymptotic behavior of ψ (α) is

lim
|Im(α)|→∞

ψ (α) = O

[
exp

( |Im(α)|
4

)]
. (12)

Combining Eqs. (9) and (7), we can get the expression for the
spectral function F̄z(α).

It was first discovered by Vaccaro that if Ḡz(α) in Eq. (9)
is the solution to Eq. (8), Ḡz(α)σ (α) where σ (α) satisfies
σ (α ± π

2 ) = σ (−α ± π
2 ) will also be the solution [12]. It is

easy to show that sinn(α), where n is an integer is a solution
of σ (α). Hence, Eq. (9) can be generalized as [18]

Ḡz(α) =
[

e(α) 0

0 
h(α)

]([
a−1

1

a−1
2

]
1

sin α − cos φ′

+
[

a0
1

a0
2

]
+

[
a1

1

a1
2

]
sin α + · · ·

)
, (13)

where φ′ is the incident angle as shown in Fig. 1(a) and an
1,2

are constants we need to figure out. From Eqs. (12) and (10),
we know that lim|Im(α)|→∞ 
e,h(α) = O(exp (|Im(α)|)) and
lim|Im(α)|→∞ ¯̄C−1(α − π

2 ) = O(exp ( − |Im(α)|)). Combining
that with Eq. (3), we can conclude that an

1,2 = 0 for n � 1.
The first-order pole caused by a−1

1,2 is produced by the incident
wave in the driven mode. For the eigenmode case, we can set
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a−1
1,2 = 0 directly. The spectral function F̄z(α) can be expressed

as

F̄z(α) = ¯̄C−1
(
α − π

2

)[

e(α) 0

0 
h(α)

][
a0

1

a0
2

]
(14)

a0
1,2 and eigenvalue β are calculated by removing the poles

introduced by ¯̄C−1(α − π
2 ), which have no physical interpre-

tation. The poles α±
0 can be defined as

cos
(
α±

0 − π

2

)
∓ i sin

(
α±

0 − π

2

)
cos β = 0. (15)

The process of removing the poles α±
0 is to find appropriate

eigenvalue β and eigenvector a0
1,2 that satisfied the equations

F̄z(α±
0 )[cos2 (α±

0 − π
2 ) + sin2 (α±

0 − π
2 ) cos2 β] = 0. It can be

further expressed as[
i
e(α+

0 ) 
h(α+
0 )

−i
e(α−
0 ) 
h(α−

0 )

][
a0

1

a0
2

]
= 0. (16)

In order to have nonzero solution of a0
1,2, it requires

det

([
i
e(α+

0 ) 
h(α+
0 )

−i
e(α−
0 ) 
h(α−

0 )

])
= 0. (17)

Keep in mind that 
e,h(α±
0 ) as defined by Eq. (10) are func-

tions of β. By solving Eq. (17), we can get the eigenvalue β.
It is shown in Ref. [9] that the energy of the electromagnetic
wave is confined near ρ = 0 and decays exponentially as ρ

grows. Hence, it is intuitive to predict that the eigenvalue β

should satisfy | cos β| > 1, which means |kz| > k0. Plugging
β into Eq. (16), we can solve a0

1,2 and finally get the spectral
function F̄z(α).

Once the spectral function F̄z(α) is achieved, we can figure
out Ez and Hz in real space by applying Eq. (2). The integral
path as shown in Fig. 2 is symmetric to the origin in the α

plane [20]. The ends of γ± are located in those regions where
Re(−ik0ρ sin β cos α) < 0 so that the factor e−ik0ρ sin β cos α de-
cays as |Im(α)| → ∞. Since | cos β| > 1 and the impedance

FIG. 2. Integration path γ .

surface is lossless, we know that sin β is purely imaginary.
Without loss of generality, we assume Im(sin β ) > 0. To
ensure the fastest decay of e−ik0ρ sin β cos α , it is assumed that the
ends of γ+ are located at π + i∞ and −π + i∞ and the ends
of γ− are at −π − i∞ and π − i∞. Although the poles intro-
duced by ¯̄C−1(α − π

2 ) which have no physical interpretation
have been removed, the poles introduced by 
e,h(α) still exist.
The poles of the Maliuzhinets function ψ (α) are all on the real
axis of the α plane. According to the definition of 
e,h(α)
given in Eq. (10), the poles are shifted to the region with
Im(α) �= 0 due to the fact that Im(ve,h

1,2) may be nonzero. In
order to ensure that no singularities of the integrand function
are located in the regions bounded by γ± above γ+ and below
γ−, the integral path should be chosen sufficiently far from
the real axis. For simplicity, we choose γ+ = (i∞ + π, id +
π ] ∪ [id + π, id − π ] ∪ [id − π, i∞ − π ), where d can be
any constant that satisfies d > |Im(ve,h

1,2)|.

III. NUMERICAL RESULTS AND DISCUSSION

Numerical results will be presented in the section to verify
the accuracy of proposed analytical representation. The two-
dimensional (2D) model in COMSOL is chosen for comparison
since we neglect the z dependence of field, which is in the
form of eik0z cos β when showing the result.

A. Eigenvalue verification

Since we assume the surface impedance Z1 and Z2 are
constants and the structure is invariant under the scaling
transform, kz/k0 should be a constant that will not vary with
k0, which means cos β should be a constant only related to Z1

and Z2. The method to figure out cos β is to solve Eq. (17). By
sweeping the value of cos β, we can easily find the correct so-
lution as shown in Fig. 3. Comparing with the result simulated
by COMSOL, we find the high accuracy of our method when
calculating the eigenvalue cos β. Here the surface impedances
Z1 and Z2 are inductive and capacitive impedance respectively.
When they are both inductive or capacitive, no eigenmode
will exist. Because of the inversion symmetry in the z axis,
if cos β is one solution for the eigenvalue, then − cos β will
also be a solution. For simplicity, we only focus on the
positive cos β. As shown in Fig. 3, | cos β| > 1 is satisfied for
different values of Z1 and Z2, which indicates the energy of the
electromagnetic field is confined near the interface between
the two surfaces. Also, larger values of | cos β| represent
better confinement of the eigenfield. Hence, the case when
Z1 = −iZ0/

√
3, Z2 = √

3iZ0 in Fig. 3(a) decays faster in the
ρ direction than the case when Z1 = −iZ0/2, Z2 = 2

√
2iZ0 in

Fig. 3(c).

B. Eigenfield verification

When Eq. (17) is satisfied, Eq. (16) will have a nonzero

solution for [
a0

1

a0
2
]. We will take [ 
h (α+

0 )
−i
e(α+

0 )] in the following

derivation. Assuming the case when Z1 = −i/2
√

2Z0 and
Z2 = 2iZ0, we can achieve the eigenvalue cos β = 1.7205
by sweeping the parameter as mentioned. Also, we can get
a0

1 = −0.1143 + 0.3244i and a0
2 = 0.1359 − 0.3858i. By

inserting the values of a0
1 and a0

2 into Eq. (14), we have
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cos β
2.47 2.472 2.474 2.476

×10-5

0

1

2

3

4

5

(a)

cos β
2.624 2.626 2.628 2.63

×10-5

0

1

2

3

4

(b)

cos β
1.718 1.72 1.722 1.724

×10-4

0

1

2

3

4

(c)

FIG. 3. Absolute value of the determinant defined in Eq. (17)
when sweeping cos β (blue line) and eigenvalue cos β calculated
by COMSOL (red line) for (a) Z1 = −iZ0/

√
3, Z2 = √

3iZ0; (b) Z1 =
−iZ0/

√
2, Z2 = 2iZ0; and (c) Z1 = −iZ0/2, Z2 = 2

√
2iZ0.

completely solved the spectral function F̄z(α). One last step
is to define the integration path γ in order to calculate Ez

and Hz in real space as shown in Eq. (2). We choose γ+ =
(i∞ + π, id + π ] ∪ [id + π, id − π ] ∪ [id − π, i∞ − π )
where d satisfies the condition d > |Im(ve,h

1,2)|. Here we
have ve

1 = π/2 − 1.3286i, vh
1 = −0.2553, ve

2 = −0.3652,
vh

2 = π/2 − 0.8955i. We set d = π and the integration
path becomes γ+ = (i∞ + π, iπ + π ] ∪ [iπ + π, iπ − π ] ∪
[iπ − π, i∞ − π ), γ− = (−i∞ − π,−iπ − π ] ∪ [−iπ −
π,−iπ + π ] ∪ [−iπ + π,−i∞ + π ).

As shown in Fig. 4, we set φ = π/3 as a constant and
sweep the value of k0ρ from 0.1 to 1.0. Both Ez and Z0Hz are
normalized by Ez(k0ρ = 0.1) so we can compare the analytic
solution with the COMSOL simulation result. Figure 4(a) shows
that both |Ez| and |Hz| decrease with the increase of k0ρ and
the analytic solution matches well with the simulation result.

k0ρ
0 0.5 1

0

0.5

1

1.5

(a)

k0ρ
0 0.5 1

-4

-3

-2

-1

0

1

(b)

FIG. 4. (a) Absolute value and (b) phase of normalized elec-
tric field Ez/Ez(k0ρ = 0.1) (blue line for analytic solution and
green dots for COMSOL simulation) and normalized magnetic field
Z0Hz/Ez(k0ρ = 0.1) (red line for analytic solution and yellow dots
for COMSOL simulation), when φ = π/3.

φ(rad)
0 1 2 3

0.5

1

1.5

2

(a)

φ(rad)
0 1 2 3

-4

-3

-2

-1

0

1

(b)

FIG. 5. (a) Absolute value and (b) phase of normalized electric
field Ez/Ez(φ = π/2) (blue line for analytic solution and green dots
for COMSOL simulation) and normalized magnetic field Z0Hz/Ez(φ =
π/2) (red line for analytic solution and yellow dots for COMSOL

simulation) when k0ρ = 0.5.

The phase of the eigenfield along the ρ axis is a constant
which can be concluded from Fig. 4(b).

Similar to Fig. 4, we set k0ρ = 0.5 as a constant and
sweep φ from 0 to π in Fig. 5. Divided by Ez(φ = π/2),
the normalized eigenfield calculated by the analytic method
shows high accuracy. From Fig. 5(a), we can conclude that
the absolute value of Ez and Hz will not vary monotonically
with the increase of φ, but instead they increase after reaching
a minimum at a particular value of φ. Figure 5(b) shows that
the phase is also a constant when k0ρ is fixed. Combined with
result in Fig. 4(b), we predict that both Ez and Hz have same
phase throughout the xy plane.

The absolute values of the normalized electric
field |Ez/Ez(k0ρ = 0)| and normalized magnetic field
|HzZ0/Ez(k0ρ = 0)| are plotted in Figs. 6 and 7 respectively.
The phases are neglected here since we can conclude
from Figs. 4(b) and 5(b) that the phases of Ez and Hz

are uniformly distributed in the xy plane. As we can
see, the field is concentrated at the interface between
two complementary surfaces where ρ = 0 and decays
exponentially as ρ grows. Both Ez and Hz are finite at ρ = 0,
which satisfies the boundary condition while Eρ , Eφ , Hρ , and
Hφ can have a singularity at the edge [9,19]. The field is not
symmetrically distributed about axis φ = π/2 since for Ez

the left part π/2 < φ < π is larger while for Hz the right
part 0 < φ < π/2 is larger. It is more clear in Fig. 8, where
the ratio of electric field and magnetic field |Ez/(HzZ0)| is
plotted. The value will increase as φ varies from 0 to π for a
constant ρ.

FIG. 6. Normalized electric field |Ez/Ez(k0ρ = 0)| calculated by
(a) analytic method and (b) COMSOL simulation.
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FIG. 7. Normalized magnetic field |HzZ0/Ez(k0ρ = 0)| calcu-
lated by (a) analytic method and (b) COMSOL simulation.

Once we figure out the value of Ez and Hz, it is easy to
get the value of transverse electric field Eρ , Eφ by applying
(similarly for transverse magnetic field)

Eρ = i

k0 sin2 β

(
cos β

∂Ez

∂ρ
+ 1

ρ

∂Z0Hz

∂φ

)
, (18a)

Eφ = i

k0 sin2 β

(
cos β

1

ρ

∂Ez

∂φ
− ∂Z0Hz

∂ρ

)
. (18b)

Alternatively, we can also solve them by the Sommerfeld-
Maliuzhinets technique and the derivative in Eq. (18) turns
into multiplication in the spectral domain through ∂/∂ρ →
−ik0 sin β cos α, ∂/∂φ → ik0ρ sin β sin α. Equation (18) can
be rewritten as

Eρ = eik0z cos β

2π i sin β

∫
γ

[cos β cos α,− sin α]F̄z

(
α + π

2
− φ

)
× e−ik0ρ sin β cos αdα, (19a)

Eφ = − eik0z cos β

2π i sin β

∫
γ

[cos β sin α, cos α]F̄z

(
α + π

2
− φ

)
× e−ik0ρ sin β cos αdα. (19b)

The spectral functions of Eρ ([cos β cos α,− sin α]
F̄z/ sin β) and Eφ (−[cos β sin α, cos α]F̄z/ sin β) tend to in-
finity when |Im(α)| → ∞, which indicates Eρ and Eφ will
tend to infinity at ρ → 0 in real space. However, the volume
integrals of |Eρ |2 and |Eφ|2 are still finite for finite volume
around ρ = 0 since the energy should be finite for any prac-
tical physical system. As shown in Fig. 9, the transverse
electric field decays when ρ increases, which also matches
the simulation results in Ref. [9].

FIG. 8. |Ez/(HzZ0 )| calculated by (a) analytic method and
(b) COMSOL simulation.

k0x
-0.5 0 0.5

k
0y

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

k0x
-0.5 0 0.5

k
0y

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

FIG. 9. Real part of the transverse electric field calculated by
(a) applying Eq. (19) and (b) COMSOL simulation is plotted.

C. Characteristic impedance and phase
velocity of the waveguide

The phase velocity of the structure shown in Fig. 1(b) can
be calculated by

vp = ω

kz
= c

cos β
, (20)

where c is the speed of light in vacuum and cos β is the
eigenvalue mentioned above.

Also, we can follow the definition given in Ref. [21] and
define the characteristic impedance as

Zc = 2P

I2
, (21)

where

P = 1

2
Re

[∫∫
(Et × H∗

t )zdxdy

]
(22)

and

I =
∫ +∞

−∞
Jzdx =

∫ +∞

−∞
−Hxdx. (23)
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FIG. 10. (a) Normalized phase velocity vp/c and (b) normalized
characteristic impedance Zc/Z0 are plotted as functions of Z1 and Z2.

The integrand in Eq. (22) is the z component of the Poynting
vector and the integral domain is the cross section above the
impedance surface. Jz in Eq. (23) is the current density on the
surface, which has the same value as −Hx on the impedance
surface.

As shown in Fig. 10, since we assume the complementary
impedance surfaces are lossless, both Z1 and Z2 are purely
imaginary with opposite sign. With the increase of Im(Z1) and
Im(Z2), the phase velocity will increase monotonically, which
means the energy will be less confined near ρ = 0 according
to the definition in Eq. (20). Besides, the phase velocities have
an upper bound since they cannot exceed the speed of light,
which is also shown in Fig. 10(a). Similarly, we can achieve
larger characteristic impedance for smaller Im(Z1) and Im(Z2)
as shown in Fig. 10(b).

IV. CONCLUSIONS

An analytic solution of the eigenmode of a wedge struc-
ture with two complementary surface impedances has been
carried out by using the generalized reflection method which
is developed from the Sommerfeld-Maliuzhinets technique.
Compared with the driven mode which can also be solved
by generalized reflection method, both spectral function F̄z(α)
and integration path γ have to be modified in order to make
the method effective. The analytic theory not only proves the
existence of an edge mode but also provides the theoretical
support for understanding the relation between edge modes
and diffraction from a wedge structure. The results are useful
because we have also calculated the waveguide properties
such as characteristic impedance and phase velocity for the
structure.
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