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Temporal coupled-mode theory has been widely used to describe the physics of resonant optical systems. In
general, an optical system can be constrained by energy conservation, time-reversal symmetry, and reciprocity.
Most previous developments of temporal coupled-mode theory made use of all three constraints. In this paper,
we consider separately the implication of each of these constraints on the parameters of temporal coupled-mode
theory. For this purpose we made extensive use of the connection between a physical system and its time-reversal
conjugate. This connection also indicates some of the nontrivial implications of the relation between the resonant
properties of a physical system and its time-reversal conjugate. We validate these implications numerically by
direct electromagnetic simulations of a guided resonance system. This work should enable the application of
temporal coupled-mode theory to a wider range of resonant systems.
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I. INTRODUCTION

The resonance phenomenon is ubiquitous in optics. In
an open resonant system, where the resonant mode interacts
with propagation waves, the temporal coupled-mode theory
(TCMT) phenomenologically describes the dynamics of the
resonant system [1–12]. The TCMT descriptions match with
rigorous numerical simulations in resonant systems quite well
[4,5,7,13] and have been widely used as a guidance in the
design of optical devices [14–17].

The formalism of TCMT is strongly constrained by various
symmetry constraints present in the optical system. The three
most commonly used ones are time-reversal symmetry [18],
energy conservation, and Lorentz reciprocity. For these three
constraints, the presence of any two constraints imply the
third [2]. Previous developments of the temporal coupled-
mode-theory formalism typically assumed the presence of all
three constraints [4,5]. On the other hand, there are a large
number of optical systems that satisfy only one of the three
constraints. As one example, systems with gain and loss do
not conserve energy and do not satisfy time-reversal symme-
try, but are usually reciprocal [19,20]. As another example,
lossless magneto-optical systems conserve energy, but break
both reciprocity and time-reversal symmetry. To provide an
intuitive understanding of these systems, it would certainly
be of interest to develop the temporal coupled-mode-theory
formalism for systems where only one of the three constraints
is present. Along this direction, Ref. [21] has recently dis-
cussed the implications of time-reversal symmetry and energy
conservation separately. In this paper, we provide a general
theoretical discussion.

For the theoretical development in this paper, we make
extensive use of the connection in terms of the physical prop-
erties between a system and its time-reversal conjugate. This
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connection has been extensively used in the discussions of
coherent perfect absorbers [22,23], and for elucidating various
consequences of parity-time symmetry [19]. Here we high-
light the use of this connection in the development of TCMT.

The paper is organized as follows. In Sec. II, we first
study the TCMT description of the time-reversal conjugate
system of a general single-mode resonator system, which can
have material loss or break Lorentz reciprocity. For simplic-
ity, we limit all of our discussions to systems supporting a
single resonance in the frequency range of interest. Equipped
with the TCMT description of the time-reversal conjugate
system, we then discuss the constraints on TCMT separately
imposed by time-reversal symmetry, energy conservation, and
Lorentz reciprocity in Secs. III–V, respectively. In Sec. VI,
we discuss some nonintuitive relations between the original
and time-reversal conjugate systems when the original system
has material loss and satisfies Lorentz reciprocity, and provide
numerical validations. We conclude in Sec. VII.

II. TCMT OF THE TIME-REVERSAL
CONJUGATE SYSTEM

We consider a general electromagnetic system (referred to
as the “original” system) as described by permittivity ε(r, ω)
and permeability μ(r, ω). In the time domain, the electro-
magnetic fields in this system are described by Maxwell’s
equations

∇ × E(r, t ) = −∂B(r, t )

∂t
, (1a)

∇ × H (r, t ) = ∂D(r, t )

∂t
, (1b)

where E, H, D, and B are electric field, magnetic field, dis-
placement field, and magnetic induction field, respectively,
and D(r, ω) = ε(r, ω)E(r, ω), B(r, ω) = μ(r, ω)H (r, ω).
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Starting from Eq. (1), we note that the fields

Ẽ(r, t ) = E(r,−t ), D̃(r, t ) = D(r,−t ),

H̃ (r, t ) = −H (r,−t ), B̃(r, t ) = −B(r,−t ), (2)

also satisfy the same Maxwell’s equations, i.e.,

∇ × Ẽ(r, t ) = −∂B̃(r, t )

∂t
, (3a)

∇ × H̃ (r, t ) = ∂D̃(r, t )

∂t
. (3b)

Therefore, in principle, these fields can be realized in a
physical system. We refer to such a system as the time-reversal
conjugate of the original system, or “conjugate system” for
brevity.

To see the permittivity and permeability distribution of
such a conjugate system, we notice the following relations:

D̃(r, t ) = D(r,−t ) =
∫ ∞

−∞
dωD(r, ω)e−iωt

=
∫ ∞

−∞
dωD∗(r, ω)eiωt

=
∫ ∞

−∞
dωε∗(r, ω)E∗(r, ω)eiωt , (4)

Ẽ(r, t ) =
∫ ∞

−∞
dωE∗(r, ω)eiωt . (5)

Thus,

D̃(r, ω) = ε∗(r, ω)Ẽ(r, ω), (6)

and similarly

B̃(r, ω) = μ∗(r, ω)H̃ (r, ω). (7)

Therefore, the conjugate system is defined by the permittivity
distribution ε∗(r, ω) and permeability distribution μ∗(r, ω).
For simplicity, we assume μ(r, ω) = μ0 in the following dis-
cussions, where μ0 is the vacuum permeability. The general-
ization to systems with a permeability different from vacuum
should be straightforward.

In the conjugate system, its time-dependent electromag-
netic field is related to those of the original system by Eq. (2),
and its frequency-domain electromagnetic field is related to
those of the original system by

Ẽ(r, ω) = E∗(r, ω), D̃(r, ω) = D∗(r, ω),

H̃ (r, ω) = − H∗(r, ω), B̃(r, ω) = −B∗(r, ω). (8)

We proceed to consider an original system consisting of
a single-mode resonator as described by a dielectric function
ε(r), coupling to input and output ports, as shown in Fig. 1(a).
We assume a total of m input or output ports. We assume that
the input and output ports are made of energy-conserving,
time-reversal invariant, and reciprocal materials. We do not,
however, constrain any aspect of ε(r) within the resonator.
This system can be described by a temporal coupled-mode-
theory equation [4]:

d

dt
a = (iω0 − γ )a + κT s+, (9a)

s− = Cs+ + da, (9b)

(a) (b)

(r) ∗(r)

FIG. 1. (a) Schematic of a resonator system described by a
dielectric function ε(r), coupling to multiple ports. (b) The time-
reversal conjugate system with respect to (a) as described by a
dielectric function ε∗(r).

where a represents the amplitude of the resonant mode. s+ and
s− are both m-dimensional column vectors, the components
of which are respectively the amplitudes of the incoming
and outgoing waves in the ports. κ (d) is also an m vector,
the components of which are the coupling rates between the
resonator and the incoming (outgoing) waves in the ports. C
is an m × m scattering matrix that describes the background
scattering process, i.e., the scattering of the system in the
absence of the resonance. ω0 and γ are the resonant frequency
and decay rate of the resonant mode, respectively. Generally,
the decay rate γ consists of two parts, i.e., γ = γr + γi, where
γr = d†d/2 is the radiative decay rate of the resonant mode,
and γi is the intrinsic decay rate due to the material loss.

The system conjugate to the original single-mode resonator
system is described by a dielectric function ε∗(r). This system
can generally also be described by a temporal coupled-mode-
theory equation:

d

dt
ã = (iω̃0 − γ̃ )ã + κ̃T s̃+, (10a)

s̃− = C̃s̃+ + d̃ã, (10b)

where every quantity in Eq. (10) has the same physical mean-
ing with the corresponding quantity without the ∼ in Eq. (9).
The mode amplitude and the amplitudes of the incoming and
outgoing waves in the conjugate system are related to those in
the original system through

ã(t ) = a∗(−t ), (11)

s̃+(t ) = s∗
−(−t ), (12)

s̃−(t ) = s∗
+(−t ). (13)

On the other hand, directly from Eq. (9), we have

d

dt
a∗(−t ) = (iω0 + γ )a∗(−t ) − κ†s∗

+(−t ), (14a)

s∗
−(−t ) = C∗s∗

+(−t ) + d∗a∗(−t ). (14b)

Substituting Eqs. (11)–(13) into Eq. (14), we get

d

dt
ã(t ) = (iω0 + γ + κ†C∗−1d∗)ã(t ) − κ†C∗−1s̃+(t ),

(15a)

s̃−(t ) = C∗−1s̃+(t ) − C∗−1d∗ã(t ). (15b)

Comparing Eqs. (15) and (10), we obtain the relationship
between the TCMT descriptions of the original and conjugate
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systems:

C̃ = C∗−1, (16)

d̃ = −C∗−1d∗, (17)

κ̃ = −C†−1κ∗, (18)

ω̃0 = ω0 + Im(κ†C∗−1d∗), (19)

γ̃ = −γ − Re(κ†C∗−1d∗). (20)

Equations (16)–(20) represent one of the main results of the
paper. We note the consistency of Eqs. (16)–(20) obtained
from the TCMT description above and the scattering matrix
descriptions of the original and conjugate systems. The scat-
tering matrix of a system describes the relationship between
the amplitudes of the outgoing and incoming waves. For the
original system, we have

s− = Ss+. (21)

From Eq. (21), we get

s∗
+ = S∗−1s∗

−. (22)

On the other hand, from Eqs. (12) and (13), we see that s∗
+

and s∗
− correspond to outgoing and incoming waves in the

conjugate system. Thus, the scattering matrix of the conjugate
system S̃ is

S̃ = S∗−1. (23)

The scattering matrix of the original system can be ob-
tained from the TCMT [Eq. (9)]:

S = C + dκT

i(ω − ω0) + γ
. (24)

Similarly, the scattering matrix of the conjugate system is
obtained from Eq. (10):

S̃ = C̃ + d̃κ̃T

i(ω − ω̃0) + γ̃
. (25)

With the relations in Eqs. (16)–(20), it is easy to show that[
C̃ + d̃κ̃T

i(ω − ω̃0) + γ̃

][
C∗ + d∗κ†

−i(ω − ω0) + γ

]
= I, (26)

where I is the identity matrix. Thus, Eqs. (16)–(20) are
consistent with Eq. (23).

In the above derivation, the frequency ω is assumed to
be real. However, Eq. (23) can be easily extended to the
complex frequencies. If we assume the incoming waves are
at a complex frequency ω in the original scattering process in
the original system, the frequency of the incoming waves in
the time-reversed scattering process in the conjugate system
is ω∗. Thus, Eq. (23) becomes

S̃(ω∗) = [S(ω)]∗−1, (27)

From Eq. (27), we find that the poles (zeros) of S̃ in the
complex frequency plane are complex conjugate of the zeros
(poles) of S. This is consistent with the previous study of the
scattering matrices in [24].

In Secs. III–V, we will apply the general TCMT relations
between the original and conjugate systems to establish some
of the general constraints in TCMT for systems that satisfy

time-reversal symmetry, energy conservation, or Lorentz reci-
procity.

III. CONSTRAINTS ON THE TCMT IN SYSTEMS WITH
TIME-REVERSAL SYMMETRY

In a system with time-reversal symmetry, its permittivity
distribution satisfies ε(r) = ε∗(r), and hence its conjugate is
the same system. Equations (16)–(20) become:

C = C∗−1, (28)

d = −C∗−1d∗, (29)

κ = −C†−1κ∗, (30)

ω0 = ω0 + Im(κ†C∗−1d∗), (31)

γ = −γ − Re(κ†C∗−1d∗). (32)

Thus, we can get the following constraints on the TCMT
description for systems with time-reversal symmetry.

CC∗ = I, (33)

Cd∗ + d = 0, (34)

CT κ∗ + κ = 0, (35)

κ†d = 2γ . (36)

Equations (33)–(36) can also be derived from the properties
of the scattering matrix, which can be found in Appendix A.

IV. CONSTRAINTS ON THE TCMT IN SYSTEMS WITH
ENERGY CONSERVATION

In an energy-conserving system, the permittivity of the
material is a Hermitian tensor, i.e., ε = ε†. Its scattering
matrix S is a unitary matrix:

S†S = I. (37)

The permittivity of the time-reversed conjugate system is ε∗ =
εT . The conjugate system also satisfies energy conservation.
Hence, the scattering matrix of the time-reversal conjugate
system is [25]

S̃ = S∗−1 = ST . (38)

Based on Eqs. (24), (25), and (38), we get

C̃ + d̃κ̃T

i(ω − ω̃0) + γ̃
= CT + κdT

i(ω − ω0) + γ
. (39)

Since Eq. (39) holds for all frequencies near the resonance,
the following relations must hold:

C̃ = CT , (40)

d̃κ̃T = κdT , (41)

ω̃0 = ω0, (42)

γ̃ = γ . (43)

Substituting Eqs. (40), (42), and (43) into Eqs. (16), (19), and
(20), one can obtain

C†C = I, (44)

κ†C∗−1d∗ = −2γ . (45)
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Combining Eqs. (18), (17), and (45), we have

κ̃T d∗ = 2γ , (46)

κ†d̃ = 2γ . (47)

Moreover, energy conservation leads to [4]

d†d = 2γ . (48)

Thus, we can multiply both sides of Eq. (41) by d∗ and apply
Eqs. (46) and (48) to get

d̃ = κ, (49)

κ̃ = d. (50)

From Eqs. (47) and (49), we have

κ†κ = 2γ . (51)

We can substitute Eqs. (49) and (50) back to Eqs. (17) and
(18) and use the unitary property of C to obtain

CT d∗ + κ = 0, (52)

Cκ∗ + d = 0, (53)

which are the same as the results derived in [21].

V. CONSTRAINTS ON THE TCMT IN SYSTEMS WITH
LORENTZ RECIPROCITY

We now discuss the case of systems satisfying Lorentz
reciprocity, where the dielectric tensors of the materials in the
system are symmetric, i.e., ε(r) = εT (r). The total scattering
matrix is symmetric (S = ST ) and consequently,

C + dκT

i(ω − ω0) + γ
= CT + κdT

i(ω − ω0) + γ
. (54)

The background scattering matrix C is also symmetric and
dκT = κdT . Furthermore, we prove, in Appendix B, the fol-
lowing relation based on Lorentz reciprocity:

κ = d. (55)

To summarize the results presented in Secs. III–V, we
have derived the constraints on the TCMT imposed separately
by time-reversal symmetry, energy conservation, and Lorentz
reciprocity. The results are summarized in Table I.

VI. RELATION BETWEEN THE ORIGINAL AND
TIME-REVERSAL CONJUGATE SYSTEM WITH

LORENTZ RECIPROCITY

In this section we provide a numerical validation of our
theory, by exploring some of the nontrivial consequences
of Eqs. (16)–(20). For a closed system, where κ = d = 0,
Eqs. (16)–(20) indicate that

ω̃0 = ω0, (56)

γ̃ = −γ . (57)

In other words, the complex resonant frequencies of the
original and the conjugate systems are complex conjugate of
each other. In contrast, for an open system, Eqs. (56) and (57)
no longer hold.

TABLE I. Summary of the constraints on the TCMT imposed
separately by time-reversal symmetry, energy conservation, and
Lorentz reciprocity.

Scattering
System property matrix TCMT constraints

Time-reversal SS∗ = I CC∗ = I
symmetry κ†d = 2γ

ε = ε∗ Cd∗ + d = 0
CT κ∗ + κ = 0

Energy S†S = I C†C = I
conservation d†d = κ†κ = 2γ

ε = ε† Cκ∗ + d = 0
CT d∗ + κ = 0

Lorentz S = ST C = CT

reciprocity κ = d
ε = εT

Specifically, we consider a reciprocal system with loss or
gain in this section. The radiative decay rate is determined by
the coupling coefficients:

γr = d†d/2. (58)

The intrinsic decay rate is thus

γi = γ − γr . (59)

In our convention, positive decay rate represents loss, while
negative decay rate represents gain. From Eqs. (17) and (20)
as well as κ = d, which arises from reciprocity [Eq. (55)], we
can find the relation between the intrinsic rates of the original
and conjugate systems:

γ̃i + γi = −γ̃r − γr + Re(d†d̃ )

= −1

2
[d̃

†
d̃ + d†d − d†d̃ − d̃

†
d]

= −1

2
(d̃ − d )†(d̃ − d ) � 0. (60)

The equality holds for closed system where d = d̃ = 0.
Suppose the original system has material loss. Its conjugate

system hence has material gain. Equation (60) suggests that
the intrinsic gain rate of the resonance in the time-reversal
conjugate system should be larger than the intrinsic loss rate
of the resonance in the original system. On the other hand, the
nonresonant channels in the original system with material loss
cannot amplify the input power. As a result, the eigenvalues
of C lie either within or on the unit circle of the complex
plane. In this situation, the radiative rate of the resonance in
the conjugate system should be no less than the radiative rate
of the resonance in the original system, which can be proven
as follows:

γ̃r − γr = 1

2
[d̃

†
d̃ − d†d]

= 1

2
d†[(CC†)−1 − I]d � 0.

(61)

Equations (60) and (61) are nontrivial consequences of our
temporal coupled-mode theory and arise due to the openness
of the system. These relations are not intuitively obvious. We
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FIG. 2. (a) Schematic of a unit cell of a dielectric grating that
supports guided resonances. The relative permittivity of the grating
(in blue) is 12. The relative permittivity of the bottom slab (in grey)
is 2 − iεi, where the imaginary part is varied. The periodicity is l ,
the grating total thickness t = 0.5l , the thickness of top grating ridge
s = 0.1l , and the bottom slab thickness b = 0.2l . To sample different
resonant modes, the gap between the grating and the bottom slab g
is varied within 0–0.2l , and the width of the top grating ridge w is
varied within 0.2l–0.8l . Only TM modes at � points are studied. For
example, with parameters εi = 0.5, g = 0, and w = 0.2l , the electric
field of a resonance near ω = 0.52 × 2πc/l is shown in (b), and the
transmission spectrum is shown in (c). (d) and (e) respectively show
γ̃r − γr and γ̃i + γi as functions of εi for different resonant modes.

now proceed to provide a numerical check of these predic-
tions, as a validation of the TCMT formalism discussed in the
paper. As a concrete physical example, we study the guided
resonance [3,13] in a one-dimensional grating as shown in
Fig. 2(a), which consists of a dielectric grating and a bottom
slab. The relative permittivity of the grating is 12. The relative
permittivity of the bottom slab is 2 − iεi. In the simulation,
we vary εi, as well as the spacing between the grating and
the bottom slab (g) and the width of the top grating ridge (w)
to study the resonances in this system. An exemplary trans-
mission spectrum for TM polarization is shown in Fig. 2(c),
with εi = 0.5, g = 0, and w = 0.2l , where l is the periodicity
of the grating. The spectrum exhibits multiple resonances.
The electric field distribution of one of these resonances near
the frequency of 0.52c/l is shown in Fig. 2(b). The field
shows strong concentration in the dielectric grating region,
as an indication of its guided resonance nature. Around each
resonant mode, we numerically calculate the transmission and
reflection spectrum using rigorous coupled-wave analysis [26]

and fit them with the TCMT to extract the TCMT parameters,
i.e., C, d, ω0, and γ . To simulate the time-reversed conjugate
system, we simply change the relative permittivity of the
bottom slab to 2 + iεi and repeat the same procedure as
discussed above.

The numerically obtained γ̃r − γr and γ̃i + γi are plotted
in Figs. 2(d) and 2(e) respectively. Each point represents
one particular resonant mode. Figure 2(d) clearly shows that
all the points are above zero, which provides validation for
Eq. (61) numerically. In Fig. 2(e), most of the points lie below
zero, with some exceptions for small εi. This results from
the numerical error, since γi is obtained by subtracting two
relatively large numbers [Eq. (59)]. In spite of some small
numerical errors, the numerical results provide evidence for
the validity of Eq. (60).

VII. CONCLUSION

In conclusion, we establish a connection in the temporal
coupled-mode-theory formalism for a resonant optical system
and its time-reversal counterpart. We make use of this con-
nection to establish the constraints of time-reversal symmetry,
energy conservation, and Lorentz reciprocity separately on
the parameters of the temporal coupled-mode theory. This
connection also indicates some of the nontrivial implications
on the relation between the resonant properties of a physical
system and its time-reversal conjugate. Our work should
deepen the understanding of the temporal coupled-mode-
theory formalism, and also broaden the potential scope of ap-
plication of such theory to a wider range of resonant systems.
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APPENDIX A: DERIVATION OF THE CONSTRAINTS ON
TCMT FROM THE SCATTERING MATRIX

In Secs. III and IV, we derive the constraints on TCMT
using the time-reversal conjugate system as an auxiliary. In
this Appendix, we start from the properties of the scattering
matrix to derive the constraints on TCMT. A similar procedure
is adopted in [21], and we re-derive some of the results in [21]
for completeness.

In a system satisfying time-reversal symmetry, the scatter-
ing matrix satisfies SS∗ = I , where the form of the scattering
matrix as determined by the TCMT description is given in
Eq. (24). Thus, the following relations hold over the frequency
range around the resonance:[

C + dκT

i(ω − ω0) + γ

][
C∗ + d∗κ†

−i(ω − ω0) + γ

]
= I. (A1)

Since the background channel also satisfies the time-reversal
symmetry, we have CC∗ = I . Thus, Eq. (A1) leads to

(Cd∗)κ† − d(CT κ∗)† = 0, (A2)

γ [(Cd∗)κ† + d(CT κ∗)†] + κT d∗dκ† = 0. (A3)
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Consider a process where the resonant mode has nonzero
amplitude at t = 0, and decays with no incident waves [4].
From Eq. (9), the outgoing waves are

s− = da. (A4)

In the time-reversed process, the amplitude of the resonance is
a∗, and the incoming and outgoing waves are s+ = d∗a∗ and
s− = 0 respectively. The time-reversed process is described
by the TCMT with the same parameters, since the system has
time-reversal symmetry. Thus, 0 = Cd∗a∗ + da∗, and we get

Cd∗ + d = 0. (A5)

Substituting Eq. (A5) into Eqs. (A2) and (A3), we obtain

CT κ∗ + κ = 0, (A6)

κ†d = 2γ . (A7)

Therefore, we reproduce the first row in Table I.
We proceed to apply the same procedure to study systems

satisfying energy conservation. The scattering matrix is uni-
tary, i.e., S†S = I , and so is the background scattering matrix
C†C = I . With the form of the scattering matrix presented in
Eq. (24), we have[

C† + κ∗d†

−i(ω − ω0) + γ

][
C + dκT

i(ω − ω0) + γ

]
= I, (A8)

which holds over the frequency range around the resonance.
Thus,

κ∗(C†d )† − (C†d )κT = 0, (A9)

γ [κ∗(C†d )† + (C†d )κT ] + d†dκ∗κT = 0. (A10)

From Eq. (A9), we can get

C†d = ακ∗, (A11)

where α is a real number.
Similar to the derivation for the time-reversal symmetry

case, here we consider again the process that the resonance
has a nonzero amplitude at t = 0, and decays at t > 0 with no
incident waves [4]:

d

dt
a = (iω0 − γ )a, (A12)

s− = da. (A13)

Since energy is conserved, the decay per unit time for the
energy in the resonance should be equal to the power carried
by the outgoing waves, i.e., d

dt |a|2 = −s†
−s−. So we get

d†d = 2γ . (A14)

Substituting Eqs. (A11) and (A14) into Eq. (A10), we find that
α = −1 and

C†d + κ∗ = 0. (A15)

Based on the unitarity of C, Eqs. (A14) and (A15) lead to

κ†κ = 2γ , (A16)

Cκ∗ + d = 0. (A17)

We have therefore re-derived the second row of Table I based
on the scattering matrix.

APPENDIX B: DERIVATION OF κ = d IN A LORENTZ
RECIPROCAL SYSTEM

In this Appendix, we derive κ = d in a Lorentz recipro-
cal system. We construct two field solutions to Maxwell’s
equations. In the first case, the electromagnetic fields (E and
H) are excited by a current density distribution J, which
excites a waveguide mode in port l . In the second case, the
electromagnetic fields (Ē and H̄) are excited by a current
density distribution J̄, which is a dipole source located within
the resonator.

We can assume that each port coupling to the resonator
is tapered to be a weakly guided waveguide far away from
the resonator. Thus, the guided mode resembles a plane wave
locally and satisfies the approximation hi ≈ ni × ei/ηi, where
ηi is the impedance of the weakly guided waveguide connect-
ing port i, ni is the unit vector normal to the waveguide cross
section, and ei, hi are the normalized waveguide mode, such
that

1

2
Re

∫
Ai

ei × h∗
i · dS = 1. (B1)

With the approximation that hi ≈ ni × ei/ηi and proper
choice of the phase such that ei is real, the normalization
equation becomes

1

2ηi

∫
Ai

eT
i eidS = 1. (B2)

In the first case, the current density amplitude is J =
−2el/ηl × δ(z − z1), lying on one cross section at z1 of the
waveguide connecting to port l , with frequency ω, where z
parametrizes the distance along the waveguide. The incident
power from port l has amplitude unity, i.e., s+i = δil . Thus,
the amplitude of the resonant mode in the first case is

a1 = κl

i(ω − ω0) + γ
. (B3)

We can further set the current oscillation frequency equal to
the resonant frequency of the single-mode resonator. Then,
a1 = κl/γ . Suppose the electric field distribution of the res-
onant mode is E0(r). The field E excited by the current J is
approximately

E(r) = ξa1E0(r), (B4)

where ξ = { 1
2

∫
E†

0(r)Re[ε(r)]E0(r)dr}−1/2
is a coefficient

for energy normalization.
In the second case, the field is excited by a dipole located

at r2 oscillating at the resonant frequency ω0, as described
by a current density J̄ = J2δ(r − r2). Suppose that the dipole
mainly excites the resonant mode. The field Ē(r) is propor-
tional to E0(r), i.e., Ē(r) = ζE0(r) [27,28], where ζ is a
coefficient. The amplitude of the resonant mode in this case
is a2 = ζ/ξ . The total energy decay rate is equal to the power
radiated from the dipole source. Thus,

−1

2
Re[ζ ∗E†

0(r2)J2] = 2γ |ζ |2ξ−2, (B5)

where γ is the total decay rate and ξ is the energy normaliza-
tion coefficient. We can choose the global phase for the field
distribution of the resonant mode such that E0(r2) is real and
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positive along the direction of the dipole current J2. Then we
can find ζ = −(ξ 2/4γ )ET

0 (r2)J2 from Eq. (B5). The field in
this case is

Ē(r) = − 1

4γ
ξ 2ET

0 (r2)J2E0(r). (B6)

Comparing Eqs. (B4) and (B6), we can find that the amplitude
of the resonant mode in the second case is

a2 = − 1

4γ
ξET

0 (r2)J2. (B7)

Consequently, the amplitudes of the outgoing waves are

s−i = dia2 = − 1

4γ
ξET

0 (r2)J2di. (B8)

And the field in the waveguide connecting port l is s−iel .

In a system satisfying Lorentz reciprocity, the two sets of
field solutions (E, H) and (Ē, H̄), respectively, excited by
current J and J̄, satisfy the following relation [29].∫

∂V
(E × H̄ − Ē × H ) · dS =

∫
dV (Ē · J − E · J̄). (B9)

By putting reciprocal absorption materials far away from the
resonator and waveguides, the left-hand side of Eq. (B9)
vanishes. Substitute the fields and currents in the first and the
second cases into Eq. (B9),∫

Al

[
− ξ

4γ
ET

0 (r2)J2dleT
l

][
− 2

ηl
el

]
= ξ

κl

γ
ET

0 (r2)J2. (B10)

With the normalization condition [Eq. (B2)], we find that

dl = κl , (B11)

where l can be any one of the ports. Consequently, we show
that d = κ.
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