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Stochastic and deterministic switches in a bistable polariton micropillar under short optical pulses
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Optical bistability of exciton polaritons in semiconductor microcavities is a promising platform for digital
optical devices. Steady states of coherently driven polaritons can be toggled back and forth in tens of picoseconds
under short external pulses of appropriate amplitude and phase. We have analyzed the switching behavior
depending on the pulse amplitude, phase, and duration. The switches are found to change dramatically when the
inverse pulse duration becomes comparable to the frequency detuning between the driving field and polariton
resonance. If the detuning is large compared to the polariton linewidth, the system becomes extremely sensitive
to initial conditions and thus responds unpredictably.
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I. INTRODUCTION

This study is devoted to the transient processes that accom-
pany nonequilibrium transitions in bistable cavity-polariton
systems. Cavity polaritons are short-lived composite bosons
originating due to the strong coupling of two-dimensional
excitons and photons confined in a planar semiconductor mi-
crocavity [1]. At low temperatures they form a Bose-Einstein
condensate in equilibrium with excitonic reservoir [2,3]. On
the other hand, macroscopically coherent polariton states
can be immediately created and maintained by resonant and
coherent optical driving [4,5]. These two types of polariton
condensates are similar in the sense of quantum statistics, yet
they have different origins and thus behave differently with
respect to changing environment, temperature, or pumping
parameters.

Repulsive interaction of polaritons with parallel spins
brings about a variety of collective effects: self-organized
parametric oscillations [6–9], spin rings [10–13], and bright
solitons propagating without dissipation in spite of a very
small lifetime of individual particles [14–17]. All these phe-
nomena take place under resonant driving and imply optical
multistability of macroscopic polariton states. In contrast
to conventional lasers in which the multistable behavior is
caused by nonlinear gain or decay rate of light [18], polariton
multistability stems from a blueshift of eigenfrequencies with
growing amplitude (in analogy to Bose-Einstein condensates
of cold atoms [19]). If the pump frequency is initially set
above resonance, then increasing power beyond a certain
threshold enables switching the system into the high-intensity
state in which the frequency detuning is effectively compen-
sated by the polariton blueshift, resulting in a pronounced
hysteresis behavior [20–28].

Similar to a simple damped pendulum, the switching time
of the driven polariton mode is comparable to its lifetime (or
inverse decay rate) and is of the order of 10 ps in GaAs-based
microcavities. This duration is much shorter than in lasers or

cavities without the strong light-matter interaction (see, e.g.,
[29–33]). As a consequence, polariton systems have attracted
much attention in view of fast optical switches and logic
gates [34]; for instance, an all-optical implementation of a
polariton transistor has been demonstrated [35]. To create a
conventional switch, one usually needs a two-beam excitation
scheme in which one beam is a plane wave maintaining
multistability and the other is a short pulse that acts as a trigger
of transitions between steady states. One such scheme was
implemented based on the spin anisotropy of the polariton-
polariton interaction so that different transitions occur in
response to pulses with different optical polarizations [36,37].
The other proposed way to implement switches relies upon
ultrafast acoustic rather than optical pulses which disturb the
resonance energy [38,39]. In a spatially distributed system,
short pulses result in bright solitons or a neuronlike propaga-
tion [40,41] of the high-intensity state.

In this work we investigate the possibility to toggle
a bistable polariton system back and forth by short op-
tical pulses which are co-polarized with the background
continuous-wave (cw) laser beam; in other words, we do not
employ the spin degrees of freedom. Similar to Refs. [36,37],
we focus our attention on a micron-sized pillar which is
known to behave like an isolated nonlinear oscillator due to
the size quantization effect. In the general case, the relative
phase of the incident pulse is the key parameter which is
hard to control. We have found, however, that in a certain
parameter range the transitions can also be phase insensitive.
In particular, within an interval of comparatively great pulse
amplitudes the upward transitions turn out to be forbidden
irrespective of the pulse phase. Surprisingly enough, such
transitions are prevented even when the continuous wave
and the pulse interfere positively. This finding allows one
to perform a backward transition under a sequence of short
pulses with random phases.

In a different interval of pulse amplitudes, the basins of
attraction of two steady states are, by contrast, interlaced very
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tightly and the outcome of each particular pulse becomes
unpredictable at small decay rates. Thus, we show that a
micropillar disturbed by short optical pulses can exhibit a
nondeterministic regime of operation, in addition to the usual
deterministic switching regime.

The paper is organized as follows. In Sec. II we introduce
the model based on the Gross-Pitaevskii equation and its
single-mode approximation suitable for describing polariton
states in a micropillar. Section III describes typical phase
trajectories under short optical pulses. In Sec. IV we consider
two qualitatively different regimes of evolution which are well
separated in the phase space. In Sec. V we summarize.

II. MODEL

A. Gross-Pitaevskii equation

Polaritons in semiconductor microcavities are mixed states
of cavity photons and two-dimensional excitons confined
in quantum wells. The polariton spectrum is split into two
dispersion curves, lower and upper polariton branches

ωLP,UP = 1
2 [ωcav(k) + ωexc(k)]

∓ 1
2

√
[ωcav(k) − ωexc(k)]2 + �2

R, (1)

where �R is the Rabi splitting (the rate of the exciton-photon
interactions).

In order to localize polaritons at a certain place, the cavity
mirrors can be etched out except for the micropillar of a
particular size; in so doing polaritons retain a high-Q factor
[22,36]. When the pillar has a radius of several microns,
the continuous polariton spectrum turns into a set of discrete
energy levels due to size quantization. In planar cavities, the
dynamics of the macroscopic wave function ψ (r, t ) obeys the
Gross-Pitaevskii equation (GPE) with the free term represent-
ing external driving [8,42] and a sharp change in energy U (r)
simulating the pillar boundary

i
∂ψ

∂t
= [ωLP(−i∇) − iγ + U (r) + Va|ψ |2]ψ

+ fa(r, t )e−iωpt , (2)

where Va is the polariton repulsion energy per unit area,
ωp and fa are the pump frequency and amplitude per unit
area, respectively, and γ is the polariton decay rate (damping
coefficient). The units of ψ are chosen in such a way that
Va = 1. We assume that the pump is circularly polarized and
neglect the spin degree of freedom.

This model is rather simplified, as we dropped the upper
polariton branch and neglected the dependence of Va on the
wave vectors of the interacting waves. However, this sim-
plification does not invalidate our conclusions because the
pump frequency is supposed to be close to the lowermost
eigenstate and consequently (i) the upper polariton branch is
too far to have any significant influence and (ii) the lowest
eigenmode of the pillar contains most of the wave-function
density and lies in the k-space area where the discrepancy
caused by the simplification of Va is minimal. Hence, the error
appears mostly in other modes, which should not affect the
results qualitatively. Nonetheless, one should keep in mind
that such simplification effectively enhances the polariton-

polariton interaction and therefore it only gives the upper
estimate of the impact of remote wave vectors.

The polariton system is known to exhibit bistable behavior
if the pumping amplitude f is constant and the frequency de-
tuning D = ωp − ωLP is larger than

√
3γ [4,20]. The switch-

ing between such states is realized by adding a short pulse to
the constant driving field

fa = f0 + f1 × 2−(t−t0 )2/2τ 2
. (3)

Here f1 is complex valued, so it contains information about
the phase difference of cw pumping and the pulse: f1 =
| f1| exp(−iφ). The full width at half maximum (FWHM) of
the pulse equals 2τ .

B. Single-mode approximation of a micropillar

The core assumption underlying the single-mode approx-
imation is that all other modes are sufficiently far from the
pump frequency so they do not affect the system behav-
ior. Keeping that in mind and assuming that the pump is
monochromatic (i.e., the time dependence of f is much slower
than the oscillations at the pump frequency), we introduce an
ansatz

ψ (r, t ) = 	(t )u0(r)e−iωpt + χ (r, t ), (4)

where u0 is the normalized wave function of the ground state
in a circular potential well and χ is the deviation of the
solution shape from that of the ground state. This deviation is
small compared to ‖	u0‖ = |	| when the pumping is weak
and the nonlinear term of the GPE is negligible. Substituting
(4) into (2) and projecting it on u0 yields a single-mode
equation for 	,

i
∂	

∂t
= (−D − iγ )	 + V |	|2	 + f , (5)

where D = ωp − ωLP(k = 0), V = Va
∫ |u0|4dS, and f =∫

u∗
0 fadS.
Equation (5) resembles the famous Duffing equation for a

nonlinear oscillator with an amplitude-dependent resonance
frequency. Note, however, that the nonlinear term in Eq. (5)
represents a pure blueshift of the resonance; it is a particular
case of the real-valued cubic term in the Duffing model
(	 + 	∗)3, which is also responsible for new oscillation har-
monics arising under plane-wave excitation and eventually for
dynamical chaos. Models (5) and (2) exhibit no self-pulsing
or chaos unless they are modified taking into account two
spin components [43–45] or have the self-focusing type of
nonlinearity (V < 0) [46–49]. A spatially extended model (2)
with V > 0 is known to have nontrivial evolution scenarios
such as dynamics with blowup [50,51]. If the model is single
mode, the evolution is comparatively trivial and always ends
up in one of two steady states. Our goal is to investigate
transitions between these states under short optical pulses.

III. PHASE TRAJECTORIES

In the absence of short-term pulses, Eq. (5) is autonomous.
Its typical phase portrait is depicted in Fig. 1. The high-
and low-amplitude steady states (labeled, respectively, “ON”
and “OFF”) are stable foci, while the unstable state is a
saddle point (S). The phase picture contains the trajectories
resulting in one of two steady states and thus shows the two
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FIG. 1. Phase trajectories representing solutions of Eq. (5)
with time-independent pump amplitude. Trajectories shown by red
(bright) and blue (dark) curves are attracted to the ON and OFF
states, respectively. Points highlight the stationary solutions: ON,
OFF, and saddle point S. Here and in all other figures, unless stated
otherwise, h̄D = 0.6 meV, h̄γ = 0.014 meV, and V = 1.

basins of attraction. With increasing pump amplitude f0 [see
Figs. 1(a)–1(d)] the area of the 	 plane attracted to the ON
state gradually grows. The ON state and the saddle point are
drifting apart and in the limit of high amplitude they approach
the real axis (Im 	 = 0).

Let us consider the system excited with a short pulse
and then relaxing to one of two steady states. Naturally, the
resulting state depends on the pulse parameters. The evolution
has three characteristic timescales: the decay time γ −1, the
pulse duration τ , and the inverse frequency of rotation in the
phase space T = |V |	̄|2 − D|−1, where 	̄ denotes a charac-
teristic value of 	. The solution changes the most noticeably
upon varying the ratio between the last pair of characteristic
times, whereas γ −1 is assumed to largely exceed both of
them. The smaller the pulse duration, the greater the pulse
amplitude f1 that is necessary to produce a pronounced effect
on the system. However, the overall approach is no longer
self-consistent when τ � T . Indeed, if the pulse is short, its
spectral width is high and thus the pulse will necessarily affect
the eigenstates beyond the first one which are excluded from
our consideration.

If, by contrast, τ � T , then the driving field and phase
plane change slowly, while 	 evolves relatively rapidly. If,
in addition, τ is comparable to γ −1, the solution follows the
equilibrium state adiabatically. In this case, the final state
depends on how the system leaves the bistability region during
the pulse. If the pump power is beyond the bistability turning
point, the OFF state merely vanishes and thus the system
can be reliably delivered to the ON state. The only exception
occurs when the phase difference between the background cw
pump and the pulse approximately amounts to π . In the latter

case the two pump sources cancel each other and the overall
intensity drops down to quite a low value before it is restored
to the normal cw intensity. As a result, the system is delivered
to the OFF state. This regime is consistent with the switching
mechanism discussed in Ref. [37].

Let us now turn to the intermediate regime lying in between
the above limiting cases, namely, τ ∼ T . During the switching
pulse, one can imagine an instant phase plane with instant
steady states and their basins of attraction. The absolute value
of the ON point moves rapidly at the leading and trailing
fronts of the pulse and slows down near the pulse maximum.
Due to the strong blueshift of the resonance at high powers,
|	ON| grows as a cubic root of the pumping amplitude. As a
result, during the pulse the solution exhibits a rotation around
the slowly drifting ON state in accord with the instantaneous
magnitude of the total external field. After the switching pulse
has turned off, 	 gradually returns to one of the stationary
states following the flow lines of the stationary phase plane.

This intermediate switching regime can be illustrated by
the example of a pulse with amplitude f1 turned on during a
certain time τ (Fig. 2). The solution exhibits rotations around
	ON with a negligible decay, and after the pulse has turned off
the system goes along stable phase trajectories.

Given that the angle spanning around the ON point is the
same up to 2π for two pairs ( f1, τ ), the following trajectories
are the same also and these pairs can be considered equivalent.
The angular velocity of such rotation can be estimated by
considering a perturbed solution near the ON state: 	 =
	ON + δ	. If we substitute this expression into (5) and hold
only the terms no smaller than δ	, we get

i∂t (δ	) = (−D − iγ )δ	 + 2V
(|	ON|2δ	 + 	2

ONδ	∗). (6)

Let δ	 = reiθ ; then, after separating the real and imaginary
parts of the equation, we obtain

ṙ = V Im
(
	2

ONe−2iθ
)
r − γ r, (7)

θ̇ = (D − 2V |	ON|2) + V Re
(
	2

ONe−2iθ
)
. (8)

Equation (8) suggests that in the case of a very strong
pumping the solution rotates clockwise (that is, θ̇ < 0)
and −3V |	ON|2 < θ̇ < −V |	ON|2. Taking into account that,
asymptotically, |	ON|2 ∼ f 2/3

1 , we have |θ̇ | ∼ | f1|2/3. If the
solution has made a full circle around the 	ON point, i.e.,
2πn = τ θ̇ ∼ τ f 2/3

1 , the corresponding trajectories are equiv-
alent. Thus, to estimate the amplitudes of the equivalent
switching pulses in the phase space, one should solve this
equation for f1, which eventually yields f (n)

1 ∼ n3/2.

IV. STOCHASTIC AND DETERMINISTIC REGIMES

A. Response of the OFF state

We simulated the response of the single-mode system
to the pulses in a wide parameter area. Each set of pulse
amplitudes (Re f1, Im f1) and other parameters such as pulse
duration τ or decay rate γ results in one of two states, ON or
OFF, which can be indicated by different colors on the phase
plane. An example of such mapping is seen in Fig. 3. In the se-
ries shown, τ increases from left to right. In the case of strong
but very short pulses (with a duration much smaller than the
inverse detuning) the value of 	 immediately after the pulse
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FIG. 2. (a)–(d) Four different trajectories that leave the system
in the OFF state. (e) Explicit time dependences for f1 = 0.9 (blue
dashed line) and f1 = 3.3 (orange solid line). In spite of making
several loops with high |	| during the switching pulse, all these tra-
jectories converge to the OFF state. Note as well that the central point
of such rotations changes slowly compared to the pulse amplitude f1.
The FWHM of the pulses (τ ) is 2 ps.

is proportional to f1. Indeed, all terms on the right-hand side
of Eq. (5) except the last one can be neglected in the course
of the pulse action and the solution is thus approximated by
an integral over the δ function. Consequently, the switching
pattern seen in the f1 plane resembles the 	 plane (Fig. 1)
drawn in accordance with the basins of attraction.

Figure 3(c) represents the opposite limiting case. Here
different basins almost do not intermix, because the sys-
tem adiabatically follows the “equilibrium” state determined
by the pulse amplitude at each time moment. When f1 is
aligned in phase with the cw pump, the OFF state becomes
unavailable and the solution sticks with the ON state. If,
by contrast, f1 counteracts the cw pump, there is a region
where the ON state is unavailable, so the system returns to
the OFF state after a number of oscillations. The fact that the
system is not perfectly adiabatic manifests itself in the serrate
border between the two regions: The transient oscillations do

FIG. 3. Final states of evolution depending on the pulse ampli-
tude for time (a) τ = 0.2 ps, (b) τ = 1 ps, and (c) τ = 20 ps. The
starting state is OFF. Yellow (bright) color means that the final state
is ON, blue (dark) means that the final state is OFF. The background
pump amplitude is f 2

0 = 5 × 10−4. All other parameters are fixed and
equal to those in Fig. 1.

not smooth out completely during the pulse. The longer the
lifetime, the more pronounced the serrate area of the phase
space, which is illustrated in Fig. 4.

Figure 3(b) shows the final states for the intermediate pulse
length. This picture exhibits a region where the characteristic
spiral unwinds counterclockwise and then back in the opposite
direction. This behavior is consistent with the explanation
suggested above. With increasing | f1|, the system initially
reaches higher values of |	|, but such states are highly un-
stable and after the pulse the amplitude decreases drastically.
The appearance of the dark ring-shaped area corresponding to
the OFF-state basin means that the result does not depend on
the relative phase of the pulse. However, with increasing the
background cw pump, the OFF-state basin shrinks and shifts
away from the center. The ring gradually disappears, which is
specifically illustrated in Fig. 5.

Thus, it turns out that both OFF and ON states can be
reached irrespective of the pulse phase. The deterministic, i.e.,
phase-independent, upward transition is ensured by a stronger
cw pump, which is quite expected. However, the deterministic
choice of the lower state under strong short-term pulses in
a wide interval of their amplitudes and irrespective of their
phases might seem surprising.

The smaller the decay rate is, the greater the number of
oscillations the system makes before arriving at the saddle
point and falling into the vicinity of one of two focal points.

FIG. 4. Final states for τ = 20 ps and two different values
of decay rate γ : (a) γ = 0.014 and (b) γ = 0.007. The serrate
boundary between the two regions becomes more pronounced with
increasing γ .
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FIG. 5. Transformation of Fig. 3(b) with increasing amplitude
f0 of the background cw pump. Expectedly, the transition to the
upper steady state becomes more probable with increasing pump
amplitude.

In terms of the phase portraits seen in Figs. 3–5, this means
an increased number of coils around the center. However, the
outer part of the diagram stays more or less stable, including
the ends of the spirals, the ring with the guaranteed OFF
state, etc. In the limit of γ → 0, there is a certain region
where the density of the coils tends to infinity, which is
specifically illustrated in Fig. 6. In this case the system shows
a nondeterministic regime of response unless the pulse phase
is known with infinite accuracy. In general, the system is
biased to one of the two states depending on the background
pump parameters, which opens up a way to manipulate the
relative probability of the outcomes. Note that this regime
coexists in the (Re f1, Im f1) phase space with the completely
deterministic regime.

B. Response of the ON state

The considered approach can also be applied to the
single-mode system whose evolution starts in the ON state.
For clarity, the results are shown in Fig. 7(b) side by side
with the already discussed case of the evolution starting in
the OFF state. Now the pulse can drive the system down
or leave in the ON state, depending on both amplitude and
phase. Notice that the ON state is substantially off-center in
the phase diagram (in accord with Fig. 1) and consequently

FIG. 6. (a) Final states in the case when 1/γ is much greater than
other characteristic times of the system. Panels (b) and (c) magnify
the area highlighted with the black square at different values of the
decay rate. The parameters are τ = 1 ps and f 2

0 = 5 × 10−4. With
decreasing γ , the parameter areas resulting in the ON and OFF states
are interlaced extremely tightly.

FIG. 7. Final states of the system in the cases when the starting
state is (a) OFF and (b) ON. Notice the absence of the ring in
latter case, which means that the outcome of a single pulse with
unknown phase is not determined. The parameters are f 2

0 = 5 ×
10−4 meV ps−2 and τ = 2 ps.

there is no analog of the phase-independent ring-shaped area
that would guarantee the backward transition after a single
pulse with unknown phase. In order to perform the backward
transition to the OFF state, one could apply a series of pulses
with random phases, given that their amplitude lies within the
ring seen in Fig. 7(a). Indeed, each of such pulses can drive
the system down or leave unchanged, but definitely cannot
drive it up from the OFF state. Thus, if one cannot control
the pulse phases, it is still possible to perform a backward
transition using a series of short-term pulses.

V. CONCLUSION

We have studied the driven polariton mode under the joint
action of cw and pulsed pumping when the system is bistable
and the short pulse acts as a trigger of transitions between
steady states. The result is shown to be a nontrivial function
of the pulse duration and amplitude. Depending on these
parameters, several dynamical scenarios can be distinguished.

First, the pulse intensities resulting in the ON and OFF
states can be tightly interlaced in the phase space. The in-
tensity variation which is sufficient for altering the eventual
steady state tends to zero with decreasing decay rate. Thus, for
a pulsed laser with a finite accuracy of repetition, the response
is essentially stochastic. The relative probabilities of the two
outcomes depend on the cw pump intensity. The second type
of solutions is, by contrast, deterministic. Within another area
of the phase space, the system is guaranteed to stay in the
OFF state after the pulse has gone, whereas the downward
transition from the ON state can be ensured by a series of
short-term pulses. The two types of solutions coexist for the
same set of the microcavity parameters. With increasing pulse
power, stochastic and deterministic regions are well separated
in the phase space, which opens up the possibility of robust
external control of the evolution scenario.
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