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Variational generalized rotating-wave approximation in the two-qubit quantum Rabi model
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We present an analytical method for the two-qubit quantum Rabi model. While still operating in the frame
of the generalized rotating-wave approximation (GRWA), our method further embraces the idea of introducing
variational parameters. The optimal value of the variational parameter is determined by minimizing the energy
function of the ground state. Comparing with numerically exact results, we show that our method evidently
improves the accuracy of the conventional GRWA in calculating fundamental physical quantities, such as energy
spectra, mean photon number, and dynamics. Interestingly, the accuracy of our method allows us to reproduce
the asymptotic behavior of a mean photon number in a large frequency ratio for the ground state and investigate
the quasiperiodical structure of the time evolution, which the GRWA is incapable of predicting. The applicable
parameter ranges cover the ultrastrong-coupling regime, which will be helpful to recent experiments.
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I. INTRODUCTION

The quantum Rabi model [1,2] describes a two-level sys-
tem linearly interacting with a single-mode bosonic field. It
plays a fundamental role in many areas of physics, such as
quantum optics [3], quantum information [4], and condensed
matter physics [5]. The history of the quantum Rabi model
can be traced back to more than 80 years ago, when the
original version of the semiclassical Rabi model was intro-
duced. Recently, the model has attracted much attention due to
the fact that the so-called ultrastrong-coupling regime [6–12]
and even the deep-strong-coupling regime [13–17] have been
experimentally achieved. When the qubit-oscillator coupling
strength is strong enough, the counter-rotating terms in the
model can no longer be ignored. For example, the experi-
mental observation of the Bloch-Siegert shift [18] emphasizes
the importance of the counter-rotating term. To this end,
a series of fascinating phenomena have been explored in
the model without the rotating-wave approximation (RWA)
[19,20], e.g., generation of photons [21], entanglement from
the zero-excitation initial state [22], bifurcation in the phase
space [23], and a fine structure in the optical Stern-Gerlach
effect [24]. In particular, it has recently been noted that, in
the frequency ratio limit, the model undergoes a super-radiant
phase transition [25,26]. These experimental and theoretical
progresses are fascinating and prompt one to further explore
the quantum Rabi model and the related issues.

*liumaoxin@bupt.edu.cn
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The theoretical starting point to study the quantum Rabi
model is to solve the eigenvalues of the model Hamiltonian.
Despite the simple form of the model, it’s integrability was
not obtained until the year 2011 by Braak [27]. In compar-
ison to the great achievement of the exact solution in the
mathematical aspect, extracting the physical information of
the model by this solution is still a nontrivial task. Thus,
people have still been trying to develop a variety of analytical
approximations such as adiabatic approximation [28–30], the
RWA [19,20,30], the generalized rotating-wave approxima-
tion (GRWA) [31], the extended coherent-state method [32],
the continued fraction [33], and the perturbation method [34].
These methods are widely and fruitfully used in calculating
the single-qubit quantum Rabi model. In parallel, some efforts
have been devoted to its multiqubit counterpart. In fact, the
multiqubit version of the quantum Rabi model is of great
value in both theoretical studies and practical applications.
The N-qubit version of the quantum Rabi model is well known
as the Dicke model, in which a famous super-radiant phase
transition occurs [35]. In an application sense, one needs
multiqubit setups to do quantum computing. For example,
implementing quantum gate operations requires at least two
qubits [36,37]. There are also many interesting issues involved
in a multiqubit scenario, i.e., genuine multipartite entangle-
ment [38–43], quantum simulation of dynamical maps [44],
and holonomic quantum computation [45]. Therefore, in this
work, to explore the multiqubit effects, we focus on the two-
qubit quantum Rabi model, which has been relatively less
studied.

An adiabatic approximation has been proposed for the two-
qubit quantum Rabi model [29]. It plays well when the qubit
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frequency is much smaller than the oscillator frequency and
has been improved by the GRWA when the two frequencies
are comparable [46]. However, recently, another frequency
ratio regime, i.e., the qubit frequency is larger than the os-
cillator frequency, has attracted much interest because the
quantum phase transition occurs in this frequency ratio limit
[25,26]. In such a case, we find that the GRWA still has space
to be improved. For example, the physical observable in the
ultrastrong-coupling regime predicted by the GRWA is not
accurate enough, and the dynamic process calculated by the
GRWA misses the quasiperiodical structures. The variational
method in Ref. [47] performs well in improving the GRWA.
However, it is only limited to the ground state. Therefore, in
this work, we try to improve the GRWA in the variational
scheme and consider both the ground state and low excited
states. The main idea is to introduce a variational parameter
which is optimized by minimizing the energy function for the
ground state. To show the advantage of our method, all of the
results calculated by the GRWA are compared with the exact
diagonalization results as a benchmark.

The paper is organized as follows. In Sec. II, the two-
qubit quantum Rabi model is introduced. We then show
the detail of our analytical method to obtain the eigenval-
ues and eigenstates of the two-qubit quantum Rabi model.
In Sec. III, we calculate several physical quantities and
compare those obtained by the GRWA with those ob-
tained by exact diagonalization. Section IV gives a brief
summary.

II. MODEL AND ANALYTICAL SOLUTION

The Hamiltonian of the two-qubit quantum Rabi model
reads as

Ĥ = ωâ†â + �Ĵx + gĴz(â† + â), (1)

where â† (â) is the creation (annihilation) operator of the
harmonic oscillator with frequency ω, � is the atomic tran-
sition frequency, and g denotes the coupling strength between
qubits and the oscillator. The angular momentum operators
can be assembled by the Pauli matrix of two identical qubits
as Ĵx = 1

2 (σ̂ 1
x + σ̂ 2

x ), Ĵy = 1
2 (σ̂ 1

y + σ̂ 2
y ), and Ĵz = 1

2 (σ̂ 1
z + σ̂ 2

z ),
and 1 and 2 represent each of two qubits. Note that the
total spin operator Ĵ2 commutates with the Hamiltonian in
Eq. (1), and the spin-singlet state (J = 0) is decoupled from
the bosonic mode. Thus we only consider the spin-triplet
states (J = 1) in this work. In the following calculations,
we take ω = 1 as an energy scale. Despite the fact of
still working in the frame of the GRWA, the key idea of
our method is to choose an optimal variational parameter,
which minimizes the energy function of the ground state.
In the following we exhibit our variational scenario step by
step. During such a procedure, the adiabatic approximation
and the GRWA are explicitly recovered as leading-order
approximations.

To start, we make a unitary transformation onto the Hamil-
tonian, i.e., ˆ̃H = Û ĤÛ †. Similar to the GRWA [31,46], we
choose Û = eλĴz (â†−â). The difference is that λ is undeter-
mined here rather than fixed to be g/ω as in the GRWA. More

explicitly, there is

ˆ̃H = Û ĤÛ † = ωâ†â + (λ2ω − 2gλ)Ĵ2
z + (g − λω)Ĵz(â† + â)

+�Ĵxcosh[λ(â† − â)] + i�Jysinh[λ(â† − â)], (2)

where the hyperbolic sine and cosine terms can be further
expanded as

sinh[λ(â† − â)]

=
∞∑

k=0

[(â†)2k+1F2k+1(â†â) + F2k+1(â†â)â2k+1] (3)

and

cosh[λ(â† − â)]

= F0(â
†â)+

∞∑
k=1

[(â†)2kF2k (â†â)+F2k (â†â)â2k], (4)

respectively. The function Fm is defined as

Fm(n) = e−λ2/2λm n!

(n + m)!
Lm

n (λ2), (5)

where m and n are integers and Lm
n (x) =∑n

i=0 (−x)i (n+m)!
(m+i)!(n−i)!i! is the associated Laguerre polynomial.

Although the Hamiltonian in Eq. (2) is still hard to solve, one
can further employ some approximations.

A zero-order approximation of Eq. (2) is made in the
so-called adiabatic approximation, where the spin and the
oscillator are decoupled. That is,

ˆ̃H0 = ωâ†â + �ĴxF0(â†â) + (λ2ω − 2gλ)Ĵ2
z . (6)

Taking the direct product basis | jx〉 ⊗ |n〉, where | jx〉 is the
eigenstate of Ĵx and |n〉 is the Fock state of the oscillator,
the Hamiltonian can be written in each isolate n-dependent
subspace in terms of a 3 × 3 matrix as

ˆ̃H0(n, λ) =

⎛
⎜⎝

ξ−
n 0 ελ

0 ξ 0
n 0

ελ 0 ξ+
n

⎞
⎟⎠, (7)

where ξ±
n = εn + ελ ± f 0

n , ξ 0
n = εn + 2ελ, εn = ωn, ελ =

(λ2ω − 2gλ)/2, and f 0
n = �F0(n). The Hamiltonian block in

Eq. (7) can be analytically solved (see Appendix A).
If λ = g/ω is assumed, the solution of Eq. (7) will retrieve

the result in Ref. [29]. We note that our general adiabatic
approximation can perform better than that of Ref. [29], since
λ can be further optimized by minimizing the ground-state
energy (see Appendix A). Before discussing how to choose
an optimal value of λ, we consider higher-order terms in the
Hamiltonian for a more accurate approximation.

In the spirit of the GRWA, we consider the Hamiltonian up
to single-excitation terms, so that we write

ˆ̃H1 = ˆ̃H0 + ˆ̃HGRW + ˆ̃HGCRW, (8)

where

ˆ̃HGRW = 1
2 (g − λω)(Ĵ+â + Ĵ−â†)

+ 1
2�[Ĵ+F1(â†â)â + Ĵ−â†F1(â†â)] (9)
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is the generalized rotating-wave term, which conserves the
total excitation, and

ˆ̃HGCRW = 1
2 (g − λω)(Ĵ−â + Ĵ+â†)

− 1
2�[Ĵ−F1(â†â)â + Ĵ+â†F1(â†â)] (10)

is the generalized counter-rotating-wave term, which is the
counterpart of ˆ̃HGRW. Here Ĵ± = 1

2 (Ĵz ∓ iĴy) and â (â†) are
single-excitation operators for the spin and the oscillator,
respectively.

To let ˆ̃H1 be solvable, Ĵ2
− and Ĵ2

+ terms in ˆ̃H0 should be
neglected, since they correspond to the remote off-diagonal

entries in the spin representation | jx〉. We also eliminate the
generalized counter-rotating term ˆ̃HGCRW, such that the total
excitation of the Hamiltonian is conserved. Then, we obtain a
solvable one, named the GRWA Hamiltonian:

ˆ̃HGRWA = ωâ†â+�ĴxF0(â†â)+ 1
4 (λ2ω − 2gλ)(Ĵ+Ĵ− + Ĵ−Ĵ+)

+ 1
2 {Ĵ+[g − λω + �F1(â†â)]â + H.c.}. (11)

If one chooses λ = g/ω, the Hamiltonian in Eq. (11) recovers
the GRWA in Ref. [46].

The Hamiltonian ˆ̃HGRWA is a block-diagonal matrix in
the basis of subspace {|1x〉 ⊗ |n − 1〉, |0x〉 ⊗ |n〉, | − 1x〉 ⊗
|n + 1〉}. The nth block takes the form of

ˆ̃H ′
n(λ) =

⎛
⎜⎜⎝

ω(n − 1) + f 0
n−1 + ελ

√ n
2

(
f 1
n−1 + λ′) 0√ n

2

(
f 1
n−1 + λ′) ωn + 2ελ

√
n+1

2

(
f 1
n + λ′)

0
√

n+1
2

(
f 1
n + λ′) ω(n + 1) − f 0

n+1 + ελ

⎞
⎟⎟⎠, (12)

where ελ = (λ2ω − 2gλ)/2, λ′ = g − λω, and f 1
n = �F1(n).

The eigenvalues E j
n ( j = {1, 2, 3}) and the corresponding

eigenvectors
−→̃
ψ

j
n can be obtained as

ˆ̃H ′
n(λ)

−→̃
ψ j

n = E j
n

−→̃
ψ j

n. (13)

Thus the wave functions can be expressed as

∣∣φ̃ j
n

〉 = (−→̃
ψ j

n

)T

⎛
⎜⎝

|1x, n − 1〉
|0x, n〉

|−1x, n + 1〉

⎞
⎟⎠ (14)

and take the form∣∣φ̃ j
n

〉 = c j
1,n|1x〉 ⊗ |n − 1〉 + c j

0,n|0x〉 ⊗ |n〉
+ c j

−1,n|−1x〉 ⊗ |n + 1〉, (15)

where the coefficients {c j
ms,n} are given in Appendix B in

detail.
There is a special case for n = 0. In the basis of subspace

{|0x〉 ⊗ |0〉, | − 1x〉 ⊗ |1〉}, we have

ˆ̃H ′
0(λ) =

(
ε0

0 R0,1

R0,1 ε−
1

)
, (16)

where ε0
0 = 2ελ, R0,1 =

√
1
2 ( f 1

0 + λ′), and ε−
1 = ω − f 0

1 + ελ.
Consequently the eigenvalues are

E±
0 = 1

2

[
ε0

0 + ε−1
1 ±

√(
ε0

0 − ε−1
1

)2 + 4(R0,1)2
]
, (17)

and the corresponding normalized eigenstates are

∣∣ψ̃±
0

〉 =

⎛
⎜⎜⎜⎜⎜⎝

±
√

1
2

(
1 ± ε0

0−ε−
1√

(ε0
0−ε−

1 )2+4(R1
0 )2

)
√

1
2

(
1 ∓ ε0

0−ε−
1√

(ε0
0−ε−

1 )2+4(R1
0 )2

)

⎞
⎟⎟⎟⎟⎟⎠. (18)

For the ground state |φ̃g〉 = | − 1x〉 ⊗ |0〉, the ground-state
energy is

Eg = 1
2 (λ2ω − 2gλ) − �e− λ2

2 . (19)

Up to here, the only task left to be completed is determin-
ing the parameter λ. The unitary transformation we employ
presents the form of a set of approximate wave functions.
Particularly, we extract the one for the ground state as

|φG(λ)〉 = U (λ)|−1x〉 ⊗ |0〉, (20)

where U (λ) is defined as the previous one, U (λ) = eλĴz (â†−â).
The |φG(λ)〉 can be considered as a trial ground-state wave
function with an undetermined parameter λ. Thus, the ground-
state energy function can be readily obtained as

EG(λ) = 〈φG(λ)|Ĥ |φG(λ)〉 = 1
2 (λ2ω − 2gλ) − �e− λ2

2 ,

(21)

where Ĥ is the whole model Hamiltonian. The parameter
λ can be determined by minimizing the ground-state wave
function in Eq. (21), namely ∂EG/∂λ = 0, which yields

g − λω − λ�e−λ2/2 = 0. (22)

The approximate solution is then obtained as

λ = g

ω + �e−λ2
0/2

, (23)

where λ0 = g/(ω + �). In the small-g limit, we can further
simplify the solution to

λ = g

ω + �
, (24)

which is the same as λ0. Note that a more accurate λ value can
be acquired by numerically solving Eq. (22). In this work, we
focus on the analytical study for an intuitive understanding.
By substituting the value of λ in Eq. (24) into Eqs. (14)– (19),
our method is completed.

Although λ is obtained in a variational manner for the
ground state, we find that our method also improves the
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FIG. 1. The energy spectra of the system with (a) � = 1.0 and
(b) � = 2.0. The numerical result is obtained by an exact diagonal-
ization of Hamiltonian Eq. (1). The results for our method and the
GRWA are obtained by solving Hamiltonian Eq. (11) with an optimal
λ = g/(ω + �) and λ = g/ω, respectively.

conventional GRWA for the excited states. The reason is
addressed as follows. Note that the coefficient of the general
counter-rotating term is

g − λω − �e−λ2/2 λ

n + 1
L1

n (λ2). (25)

When the coupling strength λ is small enough, using L1
n (x) →

1 if x 	 1, Eq. (25) can be simplified as

g − λω − λ�e−λ2/2, (26)

which vanishes when Eq. (22) is adopted. This ensures that
the approximate Hamiltonian (11) is exact up to the single-
excitation level since the general counter-rotating term van-
ishes.

III. THE ADVANTAGE OF THE VARIATIONAL METHOD

Our variational method improves the GRWA in both quan-
titative and qualitative ways. We take energy spectra, the
mean photon number, and the dynamic process as examples
to compare the variational method with the GRWA. The
numerically exact diagonalized results are also involved in the
comparison as a benchmark.

From the comparison of the energy spectra between dif-
ferent methods, the quantitative advantage of the variational
method over the GRWA is clearly revealed. Figure 1 displays
the energy spectra with two sets of parameters, i.e., � = 1.0
and � = 2.0 (we set ω = 1 as an energy unit). From both
panels, we can see that the energy spectra calculated by both
our method and the GRWA are undistinguishable and agree
with the numerical ones well when the coupling strength g
is small. However, as g rises, the difference between the two
methods becomes noticeable. This is because the difference
between the corresponding variational parameters λ = g/ω
and λ = g/(ω + �) increases as g becomes larger. Although
the GRWA gains the mean feature of the cross structure of
the energy spectra, it evidently deviates from the numerical
solution for large g. However, our variational method keeps
pace with the exact one. We also find that when � becomes
large, the GRWA gets worse [see Figs. 1(a) and 1(b)]. It can be
readily understood that the deviation from the optimal param-
eter λ = g/(ω + �) to the GRWA one λ = g/ω is exaggerated
when � gets larger.
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0

0.5
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0.8
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FIG. 2. Mean photon number as a function of g for (a) � = 1 and
(b) � = 2, and as a function of � for (c) g = 0.1 and (d) g = 0.3.
We compare our results [solid line, obtained by Eqs. (C2), (C3), and
(C4)] with those obtained by the numerically exact diagonalization
method (open circles) and GRWA (dashed line).

Besides the energy spectra, the mean photon number is
another fundamental observable in the light-matter interacting
systems. The results indicate the accuracy of our method in
calculating the mean photon number in the ground state as
well as in the low excited states. Figures 2(a) and 2(b) show
the mean photon number 〈â†â〉 as a function of the coupling
strength g. Similar to the energy spectra, we see that our
method evidently improves the accuracy of the GRWA and
agrees well with the numerically exact one. We also show
〈â†â〉 as a function of �. The importance of our method
becomes more evident as � increases, because the value
obtained by the GRWA will have more derivation from the
exact one as � enlarges, as can be clearly seen in Figs. 2(c)
and 2(d).

In the two-qubit model, recall that the mean photon number
of the ground state obtained by GRWA [46] is

〈a†a〉 = 1

2

⎛
⎝1 + χ0√

χ2
0 + 8

⎞
⎠ g2

ω2
, (27)

where χ0 =
√

2g2

�ω
e

g2

2ω2 . In our method, the mean photon num-
ber of the ground state (see details in Appendix C) is

〈â†â〉 = λ2

2
, (28)

where λ = g/(ω + �). As is shown in Fig. 3, we find that the
mean photon number obtained by GRWA is always larger than
g2/(2ω2), while our result is always smaller than g2/(2ω2).

Recently, a quantum phase transition in a large fre-
quency ratio (η = �/ω → ∞) has been extensively discussed
[25,26,48]. Note that the large-η limit is equivalent to the
large-� limit here since ω = 1 has been taken. In such a
condition, the ground state can be categorized into two phases
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FIG. 3. The comparison of the mean photon number for the
ground state obtained by different methods. Here we chose g = 0.1.

through a phase transition point: one is the normal phase for
small coupling strength g, where the mean photon number is
zero; the other is the super-radiant phase for sufficiently large
g, where the mean photon number is finite. The analytical for-
mulas of Eqs. (27) and (28) allow us to explore the asymptotic
behavior in the large-� limit. In this limit, if g is small, the
value of 〈â†â〉 obtained by our method approaches zero, while
the mean photon number obtained by the GRWA method
approaches g2/(2ω2), as is exhibited in Fig. 3. The validity of
the mean photon number in a large frequency ratio shows the
variational method captures the more essential physics, which
is missed by the GRWA.

Apart from the static properties, the dynamical evolution
is another significant issue in Rabi physics. In this work,
we study the time evolution of the polarization 〈Ĵz〉 and
the population of the qubits remaining in the initial state
| − 1z〉 as two examples. The two physical quantities can be
defined as

Jz(t ) = 〈ϕ̃(t )| ˆ̃Jz|ϕ̃(t )〉 (29)

and

P−1(t ) = 〈−1z|(Trph|ϕ̃(t )〉〈ϕ̃(t )|)|−1z〉, (30)
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FIG. 4. Time evolution of 〈Ĵz〉 with g = 0.2 and � = 2. For the
initial state, we chose α = 2. (a) The results obtained by our method
[see Eq. (D9)]. (b) The exact diagonalization results. (c) The GRWA
results. (d) The deviations of the analytical results (our method and
the GRWA) from the numerically exact ones.

0.5

1

P
−1

(t
) (a)

0.5

1

P
−1

(t
) (b)

0 100 200 300 400 500
Ωt/2π

0

0.5

1.0

P
−1

(t
) (c)

0 100 200 300 400 500
Ωt/2π

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Δ
P
−1

(t
)

(d) GRWA

Our method

FIG. 5. Population of the qubits remaining in the initial state
| − 1z〉 with g = 0.2 and � = 2. For the initial state, we chose α = 2.
(a) The results obtained by our method [see Eq. (D10)]. (b) The exact
diagonalization results. (c) The GRWA results. (d) The deviations
of the analytical results (our method and the GRWA) from the
numerically exact ones.

respectively. Based on our variational method, the dynamic
process can be analytically expressed. The initial state in the
original Hamiltonian is chosen as |ϕ(0)〉 = eα(â†−â)| − 1z, 0〉.
Our analytical calculation is performed in the transformed
frame. Thus, the initial state can be obtained using the unitary
transformation Û as |ϕ̃(0)〉 = Û |ϕ(0)〉. The wave function
evolves as |ϕ̃(t )〉 = e−i ˆ̃HGRWAt |ϕ̃(0)〉. The detailed formulas of
the dynamic process are exhibited in Appendix D.

Figures 4 and 5 show Jz(t ) and P−1(t ), respectively. In
order to illustrate the improvement of our variational method
over the GRWA, the numerically exact result is incorporated
as a benchmark. In order to study the characteristics of
the dynamics process, we give the results with evolution
time up to �t/(2π ) = 500. Figures 4(a), 4(b) and 5(a), 5(b)
show that both Jz(t ) and P−1(t ) obtained by the numerically
exact method exhibit obvious quasiperiodical structure. In
comparison with the numerically exact method, the results
obtained by our method seize the characteristic panorama,
which is missed by the GRWA, as is shown in Figs. 4(c)
and 5(c). Figures 4(d) and 5(d) display the deviations of
the analytical results (our method and the GRWA) from the
numerically exact ones. From Figs. 4(d) and 5(d), we can see
that the dynamical process results calculated with our method
agree with the numerically exact ones with high accuracy. In
contrast, the GRWA results evidently deviate. This indicates
that our method is an obvious improvement over the GRWA.

Based on the results of time evolution, it is obvious that
our variational method has an important qualitative correction
on the GRWA. Furthermore, considering the fact that the
dynamical process relates to the energy spectra of the system,
the results shown in Figs. 4 and 5 indicate that our method
can obtain the energy spectra close to the exact one with high
accuracy.

IV. DISCUSSION AND CONCLUSIONS

We have developed an analytical approximation for the
two-qubit quantum Rabi model. Although still employing
the GRWA frame, we further extend it by introducing the
variational method. The advantage of our method is clearly
revealed in both quantitative and qualitative aspects. We have
explored the energy spectra, the mean photon number, and the
dynamical processes. The outcome obtained by our method
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shows good agreement with the exact numerical calculation
and evidently improves the accuracy of the GRWA. Further-
more, the importance of the variational method is shown by
the correct prediction of the zero mean photon in normal
phase and the quasiperiodical structure of time evolution. We
also expect our method will be helpful in understanding the
physics in two-qubit systems, which are quite fundamental to
perform quantum state manipulation, such as quantum state
preparation and quantum computing [45,49].

Finally, we would like to discuss the applicable parameter
ranges of our approximate method. The main idea of the
GRWA can be roughly regarded as employing the displaced
oscillator as the nonperturbed term and considering the atomic
term �Ĵx as a perturbation. However, we realize that problems
readily come when an atomic energy scale enlarges and can
no longer be taken as a perturbation. Luckily, for a large
value of � accompanying a small coupling strength g, the
displaced oscillator can still be dominant if the displacement
is renormalized via a variational way, and thus our variational
method works in such a case. Summarizing, we can efficiently
improve the GRWA for arbitrary � with a perturbative g.
Beyond the abovementioned parameter regimes, in principle
our method fails. For example, for an intermediate coupling
strength g and a large �, the ground-state energy obtained
by the variational method has a clear deviation from the
numerical result.
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APPENDIX A: ADIABATIC APPROXIMATION RESULTS

The matrix shown in Eq. (7) in the main text can be easily
diagonalized; the results are shown in the following.

The eigenvalues are

ε̃0
n (λ) = ξ 0

n , (A1)

ε̃±
n (λ) = 1

2

(
ξ−

n + ξ+
n ±

√
(ξ−

n − ξ+
n )2 + 4(ελ)2

)
, (A2)

and the corresponding eigenstates are

∣∣ε̃0
n (λ)

〉 =
⎛
⎝0

1
0

⎞
⎠, (A3)

|ε±
n (λ)〉 =

⎛
⎜⎜⎜⎜⎜⎝

±
√

1
2

(
1 ± ξ−

n −ξ+
n√

(ξ−
n +ξ+

n )2+4(ελ )2

)
0√

1
2

(
1 ∓ ξ−

n −ξ+
n√

(ξ−
n +ξ+

n )2+4(ελ )2

)

⎞
⎟⎟⎟⎟⎟⎠. (A4)

If we want to determine the optimal value of λ, we should

solve ∂ε̃−
0

∂λ
= 0. An analytical expression cannot be readily

obtained as a consequence of cumbersome form.

APPENDIX B: ENERGY SPECTRUM OF THE MODEL
CALCULATED BY OUR METHOD

For the energy spectra, we can easily obtain the three
lowest energies. For the Hamiltonian matrix in the nth man-
ifold subspace, we can diagonalize it through the method
used by Zhang and Chen [46]. For simplicity, we write the
Hamiltonian matrix in Eq. (12) as

ˆ̃H ′
n(λ) =

⎛
⎝ν− z 0

z ν0 y
0 y ν+

⎞
⎠, (B1)

where ν− = ω(n −1)+ f 0
n−1 + ελ, ν0 = ωn + f 0

n + 2ελ, ν+ =
ω(n + 1) + f 0

n+1 + ελ, z = √ n
2 ( f 1

n−1 + λ′), and y =
√

n+1
2

( f 1
n + λ′).
The determinant is∣∣∣∣∣∣

ν− z 0
z ν0 y
0 y ν+ − E

∣∣∣∣∣∣ = 0, (B2)

and it gives the cubic equation E3 + bE2 + cE + d = 0,
where

b = − ν− − ν0 − ν+,

c =ν−ν0 + ν+(ν− + ν0) − z2 − y2,

d = − ν−ν0ν+ + z2ν+ + y2ν−.

(B3)

Then we can easily obtain three eigenvalues for each n > 0 as

E1
n = −b − 2

√
b2 − 3ccosθ

3
,

E2
n = −b + √

b2 − 3c(cosθ + √
3sinθ )

3
,

E3
n = −b + √

b2 − 3c(cosθ − √
3sinθ )

3
,

(B4)

where θ = 1
3 arccos[ 2b(b2−3c)−3a(bc−9d )

2
√

(b2−3c)3
] when (bc − 9d )2 −

4(b2 − 3c)(c2 − 3bd ) < 0.
The eigenstates are∣∣φ̃ j

n

〉 = c j
1,n|1x, n − 1〉 + c j

0,n|0x, n〉 + c j
−1,n|−1x, n + 1〉,

(B5)

where the coefficients are

c j
−1,n =y

(
E j

n − ν−
)

η
,

c j
0,n =

(
E j

n − ν+
)(

E j
n − ν−

)
η

,

c j
1,n = z

(
E j

n − ν+
)

η
,

(B6)

with the normalized parameter η2 = y2(E j
n − ν−)

2 +
(E j

n − ν+)
2
(E j

n − ν−)
2 + z2(E j

n − ν+)
2
.
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APPENDIX C: MEAN PHOTON NUMBER CALCULATED BY OUR METHOD

For the photon number 〈â†â〉, we can obtain it’s expression in the transformed representation as

ˆ̃n = Û â†âÛ † = â†â − λĴz(â† + â) + λ2Ĵ2
z = â†â − λ

Ĵ+ + Ĵ−
2

(â† + â) + λ2 (Ĵ+ + Ĵ−)2

4
. (C1)

Then we can calculate the mean photon number by 〈 ˆ̃O〉 = 〈φ̃| ˆ̃O|φ̃〉. Since the energy spectra and corresponding wave
functions are calculated in different subspaces, the mean photon number is also calculated in different subspaces.

For the ground state,

〈 ˆ̃ng〉 = 〈φ̃g| ˆ̃n|φ̃g〉 = λ2

2
. (C2)

For the second and third excited states,

〈
ˆ̃n j

0

〉 = 〈
φ̃

j
0

∣∣ ˆ̃n
∣∣φ̃ j

0

〉 = λ2

2
+

(
λ√
2

c j
0,0 − c j

−1,0

)[
λ√
2

(
c j

0,0

)∗ − (
c j
−1,0

)∗
]
. (C3)

For the nth manifold states,

〈
ˆ̃n j

n

〉 =〈
φ̃ j

n

∣∣ ˆ̃n
∣∣φ̃ j

n

〉 =
(

n + λ2

2

)
+ λ2

2

(
c j

0,n

)∗
c j

0,n − (
c j

1,n

)∗
c j

1,n + (
c j
−1,n

)∗
c j
−1,n

−
√

nλ√
2

[(
c j

0,n

)∗
c j

1,n + (
c j

1,n

)∗
c j

0,n

] −
√

n + 1λ√
2

[(
c j
−1,n

)∗
c j

0,n + (
c j

0,n

)∗
c j
−1,n

]
.

(C4)

APPENDIX D: DYNAMICS CALCULATED BY OUR METHOD

The initial state in the original representation is set as

|ϕ(0)〉 = | − 1z, α〉 = eα(a†−a)|0〉 ⊗ | − 1z〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 ⊗ | − 1z〉. (D1)

The initial state in the transformed representation can be obtained as

|ϕ̃(0)〉 = Û |ϕ(0)〉 = |−1z, α − λ〉. (D2)

In the basis of | jx〉, the eigenvector of Ĵz corresponding to eigenvalue jz = −1 is

|−1z〉 = 1

2
|1x〉 − 1√

2
|0x〉 + 1

2
|−1x〉. (D3)

So, the initial state in the basis of | jx, n〉 takes the form

|ϕ̃(0)〉 = 1

2
|1x, α − λ〉 − 1√

2
|0x, α − λ〉 + 1

2
|−1x, α − λ〉

= χ0|−1x, 0〉 + χ0,0|0x, 0〉 + χ−1,0|−1x, 1〉

+
∞∑

n=1

(χ1,n|1x, n − 1〉 + χ0,n|0x, n〉 + χ−1,n|−1x, n + 1〉), (D4)

where χ0 = 1
2ζ α−λ

0 , χ−1,n = 1
2ζ α−λ

n+1 , χ0,n = − 1√
2
ζ α−λ

n , χ1,n = 1
2ζ α−λ

n−1 , and ζ α
n = e−|α|2/2 αn√

n!
.

For simplicity, we define |φ̃1
0〉 = |ψ̃−

0 〉 and |φ̃2
0〉 = |ψ̃+

0 〉. According to Eq. (18), these wave functions take the form∣∣φ̃ j
0

〉 = c j
0,0|0x, 0〉 + c j

−1,0|−1x, 1〉. (D5)

The time evolution of the wave function in the transformed Hamiltonian is

|ϕ̃(t )〉 = e−i ˆ̃HGRWAt |ϕ̃(0)〉 = e−iEgt D0|φ̃g〉 +
2∑

j=1

(
e−iE j

0 t D j
0

)∣∣φ̃ j
0

〉 + 3∑
j=1

∑
n>0

(
e−iE j

n t D j
n

)∣∣φ̃ j
n

〉
, (D6)

where D0 = 〈φ̃g|ϕ̃(0)〉 and D j
n = 〈φ̃ j

n |ϕ̃(0)〉 and take the following forms:

D0 = χ0,

D j
0 = c j

0,0χ0,0 + c j
−1,0χ−1,0,

D j
n = c j

1,nχ1,n + c j
0,nχ0,n + c j

−1,nχ−1,n. (D7)
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With an expansion in the basis of subspace {| jx, n〉}, the time evolution of the wave function can be written as

|ϕ̃(t )〉 = β0|−1x, 0〉 + β0,0|0x, 0〉 + β−1,0|−1x, 1〉 +
∑
n=1

(β1,n|1x, n − 1〉 + β0,n|0x, n〉 + β−1,n|−1x, n + 1〉), (D8)

where β0 = e−iEgt D0, β0,0 = ∑2
j=1 (e−iE j

0 t D j
0c j

0,0), and β−1,0 = ∑2
j=1 (e−iE j

0 t D j
0c j

−1,0).

Jz in the transformed Hamiltonian can be obtained as ˆ̃Jz = Û ĴzÛ † = Ĵz. The time evolution of 〈Ĵz〉 can be calculated as

W (t ) = 〈ϕ̃(t )| ˆ̃Jz|ϕ̃(t )〉 = 1√
2

(β∗
1,1β0,0 + β∗

0,0β1,1) + 1√
2

(β∗
0,0β0 + β∗

0 β0,0)

+
∑
n>0

[
1√
2

(β∗
1,n+1β0,n + β∗

0,nβ1,n+1) + 1√
2

(β∗
−1,n−1β0,n + β∗

0,nβ−1,n−1)

]
. (D9)

The population for the qubits remaining in the initial state | − 1z〉 is

P−1(t ) = 〈−1z|(Trph|ϕ̃(t )〉〈ϕ̃(t )|)| − 1z〉

= 1

4
β1,1β

∗
1,1 + 1

2
β0,0β

∗
0,0 + 1

4
β0β

∗
0 + 1

4
(β0β

∗
1,1 + β1,1β

∗
0 ) − 1

2
√

2
(β0,0β

∗
1,1 + β1,1β

∗
0,0 + β0,0β

∗
0 + β0β

∗
0,0)

+
∑
n>0

(
1

4
β1,n+1β

∗
1,n+1 + 1

2
β0,nβ

∗
0,n + 1

4
β−1,n−1β

∗
−1,n−1

)
−

∑
n>0

1

2
√

2
(β0,nβ

∗
1,n+1 + β1,n+1β

∗
0,n + β0,nβ

∗
−1,n−1

+β−1,n−1β
∗
0,n) +

∑
n>0

1

4
(β−1,n−1β

∗
1,n+1 + β1,n+1β

∗
−1,n−1). (D10)
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