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Laser-mode bifurcations induced by PT -breaking exceptional points
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A laser consisting of two independently pumped resonators can exhibit mode bifurcations that evolve out of
the exceptional points (EPs) of the linear system at threshold. The EPs are non-Hermitian degeneracies occurring
at the parity–time-reversal (PT ) symmetry-breaking points of the threshold system. Above threshold, the EPs
become bifurcations of the nonlinear zero-detuned laser modes, which can be most easily observed by making
the gain saturation intensities in the two resonators substantially different. Small pump variations can then switch
abruptly between different laser behavior, e.g., between below-threshold and PT -broken single-mode operation.
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I. INTRODUCTION

Non-Hermitian effects have been the subject of strong and
sustained attention in optics and related fields, driven largely
by the rise of parity–time-reversal (PT ) symmetric photonics
[1–3]. Following early proposals to utilize PT symmetry for
unidirectional invisibility cloaks [4,5], laser absorbers [6–8],
etc., much recent progress has been based on the complex
interactions between PT symmetry breaking and nonlinearity
[9–13]. Recent prominent experiments exploring this direc-
tion have demonstrated efficient optical isolation [14–16],
robust wireless power transfer [17], and the stabilization of
single-mode lasing in microcavity lasers [18–21].

Lasers provide a compelling setting for such investigations
because they are intrinsically both non-Hermitian (due to gain
and outcoupling loss), and nonlinear when operating above
threshold (due to gain saturation). Although these features
have long been known, the recent interest in non-Hermitian
physics has provided fresh inspiration for devising lasers
with novel characteristics. Several authors have drawn special
attention to the peculiar effects of exceptional points (EPs)—
points in parameter space where a non-Hermitian Hamiltonian
becomes defective and two (or more) eigenvectors coalesce
[22,23]. PT symmetry provides a convenient, although not
exclusive, way to generate EPs: whenever PT symmetry
spontaneously breaks, there is an EP at the transition point
[24]. The presence of an EP among the non-Hermitian eigen-
modes of a laser has been shown to give rise to pump-
induced suppression and revival of lasing [25–27], although
these works regarded the EP as “accidental,” not arising from
PT symmetry breaking. EPs have also been shown to pro-
mote single-mode operation in dark-state lasers [28,29] and
PT -symmetric lasers [18,19,30], as well as chiral or unidi-
rectional emission [31,32].
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In this paper, we show that EPs associated with PT
symmetry breaking in a laser at threshold can generate
bifurcations in the nonlinear laser modes above threshold.
The bifurcations appear as discontinuities in the laser’s
I-V curve (i.e., the dependence of output power on pump
strength), allowing small variations in the pump strength to
induce abrupt switching between below-threshold and single-
mode operation, or between high-power PT -broken single-
mode operation and low-power PT -symmetric two-mode
operation.

Bifurcations have previously been investigated extensively
in laser physics; they underlie the operation of bistable lasers,
which have applications as optical “flip-flop” memory de-
vices [33–43]. Typically, they result from the inclusion of
two different nonlinearities in a single laser, such as a sat-
urable gain medium and a saturable absorber [34,35,42,43], or
two polarization modes experiencing different gain saturation
[36,37,39,41], or competing modes that circulate in opposite
directions in microring resonators [31,32,44,45].

In this context, the most noteworthy aspect of the present
work is that it establishes a connection between the phe-
nomenon of laser mode bifurcations and the physics of PT
symmetry and EPs. We study an exemplary coupled-resonator
system in which the two resonators can be pumped inde-
pendently and show that laser mode bifurcations evolve con-
tinuously out of the EPs corresponding to PT symmetry-
breaking points in the family of PT -symmetric threshold
modes. These EPs are also closely related to the phenomenon
of pump-induced suppression and revival of lasing studied in
Refs. [25–27]. When nonlinear effects are neglected, varying
the pump on one of the resonators causes the system to evolve
between PT -symmetric and PT -broken laser modes, with
lasing suppressed in an interval between the two regimes (in
the vicinity of the EP). When the nonlinearities are included,
however, imbalances between the gain saturation intensities
of the two resonators shift the domain of stability of the
PT -broken mode, producing a bifurcation. Our analysis is
based on coupled-mode theory [46], via analysis of the steady-
state solutions backed by time-domain simulations.
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FIG. 1. (a) Schematic of coupled-resonator laser. (b) Las-
ing threshold conditions for pump strengths D1 and D2. The
PT -symmetric threshold (labeled “PT”) and zero-mode threshold
(labeled “ZM”) are plotted as solid lines. Red areas show where
the linear Hamiltonian has one or more amplifying eigenvalues, the
conventional criterion for lasing. Dashes indicate the zero-mode bi-
furcation points for different saturation intensity ratios I2/I1. The left
panel shows the vicinity of the linear Hamiltonian’s exceptional point
(EP), with stars and circles showing the pump values corresponding
to the same symbols in panels (c) and (d). (c) Output power Pout

versus D1, for D2 = 2.2. For I1 = I2 (thin red lines), the laser exhibits
the “suppression and revival” phenomenon [25–27]. For I2/I1 = 50,
there is a high-intensity stable lasing zero mode (thick solid blue
line) ending in a bifurcation; the other modes (thick blue dashes)
are unstable. (d) Pout versus D2 for D1 = 1.4, showing both stable
modes (solid lines) and unstable modes (dashes). For I2/I1 = 50, a
stable mode appears abruptly at finite intensity (blue circle). The
other model parameters, for all subplots, are κ = 1.8, g = 0.5, and
I1 = 1.

II. DIMER LASER MODEL

Consider a pair of coupled resonators, as shown in
Fig. 1(a). They have the same resonance frequency, variable
gain rates �1 and �2, equal radiative loss rates κ , and coupling
rate g, with �1, �2, κ , and g all real. In the framework of
coupled-mode theory [46], a single-mode steady-state solu-
tion can be described by the equation(

i(�1 − κ ) g
g i(�2 − κ )

)(
�1

�2

)
= �

(
�1

�2

)
, (1)

where �1, �2 are the complex field amplitudes in each
resonator, and � is the relative frequency. We assume that
the field amplitudes are the only relevant dynamical vari-
ables, with the polarization and population inversion having
no independent dynamics [47–50]; it is known that such
an assumption can describe high-quality-factor microcavity
lasers [25–27]. In each resonator j, the gain has the saturable
form � j = Dj/(1 + |� j |2/I j ), where Dj � 0 is the pump
strength and I j > 0 is the saturation intensity. Laser modes are
solutions to Eq. (1) with |�1|, |�2| > 0 and � ∈ R, while a
threshold mode has real � with linear gain � j = Dj (i.e., zero
intensity). Evidently, the threshold conditions are independent
of I1 and I2. While multiple threshold modes may exist, lasers
typically have a “lowest” threshold featuring the smallest
possible pump(s); with increasing pump, a stable laser mode
evolves from the lowest threshold mode, with output power
increasing continuously from zero. We shall see, however, that
the dimer can behave very differently.

Equation (1) gives two types of threshold modes. First, if
� �= 0, the real and imaginary parts of the secular equation
give D1 + D2 = 2κ and �2 = g2 − (D2 − κ )2. For � to be
real, we also require

κ − g � D1, D2 � κ + g. (2)

We call such solutions “PT -symmetric threshold modes,”
for they correspond to the PT -unbroken eigenvectors of a
Hamiltonian whose imaginary diagonal components are equal
and opposite.

The second type of threshold mode occurs when � =
0. We call these “zero modes” for short. In this case, the
secular equation gives (D1 − κ )(D2 − κ ) + g2 = 0, and the
Hamiltonian is not PT symmetric. This is not, however, an
ordinary instance of linear PT symmetry breaking, wherein
a linear Hamiltonian remains PT symmetric but the eigen-
modes become PT broken [1–3]. Here, the Hamiltonian itself
loses PT symmetry.

The two threshold conditions are plotted in Fig. 1(b)
against the independent pump strengths D1 and D2. The
PT -symmetric thresholds lie on a line segment whose end-
points are exceptional points (EPs) where the PT -symmetric
Hamiltonian becomes defective, and the inequalities in Eq. (2)
saturate. These EPs are also where PT -symmetric and zero-
mode threshold curves meet. One would ordinarily expect the
dimer to be below threshold in the white region of Fig. 1(b),
bounded by the threshold curves. In the red region, at least
one eigenfrequency is amplifying [Im(�) > 0] in the zero-
intensity limit; thus, when entering this region starting from
one of the threshold curves, one expects the output power
to increase continuously from zero. An extremely similar
threshold map has previously been observed experimentally
in Ref. [26], although the relation to PT symmetry was not
discussed in that work. The axes of Fig. 1(b) are relative to
a chosen inverse timescale, the appropriate value of which is
platform specific.

Figure 1(c) plots the output power Pout versus pump
strength D1, where the output power is given by Pout =
κ (|ψ1|2 + |ψ2|2). The vertical axis is proportional to the cho-
sen power (intensity per unit time) scale. For fixed D2 > 0 and
I1 = I2 (red curves), the system lases in a zero mode for small
D1; then as D1 increases, Pout drops to zero over a finite range

033829-2



LASER-MODE BIFURCATIONS INDUCED BY … PHYSICAL REVIEW A 99, 033829 (2019)

FIG. 2. Simulations showing the time evolution of the output
power Pout as the pump is tuned across the bifurcation point. In
all subplots, κ = 1.8, g = 0.5, I1 = 1, and I2 = 50. Vertical dotted
lines indicate when the change in pump occurs, and horizontal
dashes indicate the steady-state zero-mode and PT -symmetric mode
intensities before and after the change. (a) With fixed D2 = 2.2, D1

is increased from 1.78 to 1.82 at t = 50, so as to cross the bifurcation
in Fig. 1(c) left to right, returning to D1 = 1.78 at t = 300. The
system, initialized in the higher-intensity zero mode, switches to
two-mode lasing with Pout beating around the PT -symmetric modal
intensity at t = 50. It remains there after t = 300, thus showing
flip-flop behavior. (b) With fixed D1 = 1.4, D2 is decreased from
2.16 to 2.14, crossing the bifurcation in Fig. 1(d) right to left. The
system is initialized in the higher-intensity zero mode and decays
to zero intensity. The inset shows the time evolution for D1 = 1.4
and D2 = 2.16, with noisy initial conditions to test the stability
of the zero mode. The different solid curves show results for 20
independent initial conditions � j (0) = �ZM

j + δ� j , where �ZM
j is

the zero-mode solution, δ� j ∼ 0.2[N + iN ], and N is the standard
normal distribution.

of D1, then increases as the system resumes lasing in a PT -
symmetric mode. This is the phenomenon of “suppression and
revival of lasing” [25–27]. The role of nonlinearity in transi-
tioning from a non-PT -symmetric mode to a PT -symmetric
mode has also been noted by Hassan et al. [11].

When the gain media have substantially different saturation
intensities, we find that the behavior of the nonlinear system
deviates from the above simple predictions based on the
threshold map. As shown by the blue curves in Fig. 1(c), for
I2/I1 = 50 the power of the lasing zero mode decreases with
D1, but does not reach zero at the zero-mode threshold point
D0

1,th. Instead, the solution branch ends in a bifurcation point,
at nonzero intensity and at a value of D1 higher than both D0

1,th

and the PT -symmetric threshold DPT
1,th. In effect, the domain

of nonlinear zero-mode solutions shifts beyond the boundaries
set by the threshold conditions, as indicated by the dashed

curves in Fig. 1(b). Lyapunov stability analysis shows that the
entire high-intensity branch of lasing zero modes is stable up
to the bifurcation point. A second branch of lower-intensity
zero-modes, starting from D0

1,th and ending at the bifurcation
point, is unstable, whereas the PT -symmetric modes become
unstable in single-mode operation shortly above DPT

1,th. In
Fig. 2(a), we verify these features via a simulation based on
the time-domain version of Eq. (1). As D1 is increased by a
small amount (at t = 50), crossing the bifurcation point, the
laser switches from high-intensity zero-mode operation into
two-mode PT -symmetric lasing, which manifests in the time-
domain results as two-mode beating or self-pulsation [51],
with a much lower mean intensity. When we subsequently
set D1 = 1.78 at t = 300, the laser retains the two-mode
PT -symmetric operation, consistent with the flip-flop behav-
ior observed in previous bistable laser devices.

It is also possible to switch directly between stable laser
operation at a finite intensity and the below-threshold regime.
As indicated in Fig. 1(b), this happens in the vicinity of one
of the EPs, where the domain of stability for the nonlinear
zero-modes extends into the “below-threshold” part of the
threshold map. The phenomenon is most apparent when the
two saturation intensities are very different. In the I-V plot of
Fig. 1(d), we see that, for I2/I1 = 50, an infinitesimal change
in D2 across the bifurcation point (with D1 fixed) causes Pout to
jump between zero and a nonzero value. This is verified by the
time-domain simulation results shown in Fig. 2(b). Here, the
laser initially operates at the high-intensity zero mode, and af-
ter D2 is decreased by less than 1%, the intensity drops to zero.
One important limitation to this switching behavior is that the
timescale over which switching occurs becomes longer as one
approaches the bifurcation point. When operating very near to
the bifurcation point, the present coupled-mode treatment may
no longer be sufficient, as other effects (such as gain medium
dynamics) could become important.

III. RELATION BETWEEN EXCEPTIONAL AND
BIFURCATION POINTS

Generally, the bifurcation points of the nonlinear zero
modes are not EPs. At each bifurcation point, the nonlinear
Hamiltonian has both a zero eigenvalue and a nonzero eigen-
value with a distinct eigenvector. Nonetheless, we can show
that the bifurcations evolve continuously out of the EPs of the
linear system at threshold.

In Fig. 3, we fix D1 = κ − g and locate the value of D2

corresponding to the zero-mode bifurcation point, for varying
saturation intensity ratio I2/I1. The bifurcation is present only
for I2/I1 above a certain minimum value (below this value,
the upper zero-mode branch is the only one with a valid non-
negative intensity). At the critical value I2/I1 = (κ + g)/(κ −
g), the bifurcation point occurs at D2 = κ + g, which is the
precise location of the EP in the threshold system. We also
calculate the eigenvalues of the nonlinear Hamiltonian at the
bifurcation point, �1,2, and plot |�1 − �2|. As the bifurcation
point approaches the EP value, we find that |�1 − �2| →
0; although not plotted in this figure, the overlap between
the eigenvectors also approaches unity (i.e., the eigenvectors
coalesce), indicating that the bifurcation point indeed be-
comes coincident with the EP.
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FIG. 3. Continuity between the EP of the system at threshold
and the bifurcation points of the zero modes above threshold. For
different values of I2/I1, the left vertical axis plots the value of
D2 at the bifurcation point, while the right vertical axis plots the
magnitude of the difference between the eigenvalues of the nonlinear
Hamiltonian at the bifurcation point. The pump D1 is fixed at κ − g,
so that the threshold system passes through the EP upon varying D2

(threshold diagram shown in inset). As I2/I1 → (κ + g)/(κ − g), the
critical value of D2 approaches that of the EP, and the eigenvalues
coalesce as the nonlinear Hamiltonian approaches the EP. The model
parameters are κ = 1.8, g = 0.5, and I1 = 1.

IV. DISCUSSION

We have shown that a coupled-resonator laser with in-
dependent pumps exhibits mode bifurcations that evolve
out of the exceptional points (EPs) of the linear system at

threshold. This is consistent with studies in other systems
that have demonstrated that the behavior of nonlinear non-
Hermitian systems can be subtly influenced by EPs in the lin-
ear limit [9–13]. The present case offers the prospect of using
PT -symmetry principles, specifically the fact that EPs occur
at PT -breaking points, to design laser flip-flops and related
devices.

A coupled-resonator laser of this type should be straight-
forward to implement, and indeed a similar design has previ-
ously been realized in experimental studies of the “suppres-
sion and revival of lasing” [26,27]. The key extra requirement
to make the bifurcations easy to observe is for the resonators
to have different gain saturation intensities. This could be
achieved by deliberate engineering of the two gain media.
Alternatively, both resonators can be given identical (but
independently pumped) gain media, but a saturable absorber
can be placed on on one of the resonators. Since both gain
and absorbing media are unsaturated at threshold, such a
configuration only shifts the threshold curves of Fig. 1 by a
fixed amount. The EPs remain well defined and are continu-
able to the laser mode bifurcations in the same way we have
discussed.
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