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Optical sorting of small chiral particles by tightly focused vector beams
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The identification and separation of substances by chirality has always been an important problem in
biomedical research and industry. Light beams carry optical momentum, and can exert optical force on any
object they impinge due to the transfer of momentum. Different chiral objects will experience different optical
forces when illuminated by the same light beam. We demonstrate here, based on the dipolar approximation, that
a tightly focused vector beam can selectively trap and rotate small chiral particles in the transverse plane via the
chirality-tailored optical forces. The radial optical force can transversely trap the chiral particles off axis or push
them away depending on the real part of the chirality parameter, while the lateral optical force manifesting as
the azimuthal optical force can drive the trapped particles to orbitally rotate with opposite chiral absorption in
opposite directions. The study reported here may find applications in discriminating and separating chiral objects
with specified chirality.
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I. INTRODUCTION

Chirality, derived from the Greek χειρ (kheir), “hand,”
refers to an asymmetry that an object cannot be superposed
onto its mirror image by any rotation or translation [1]. As
an intrinsic property, chiral objects abound in nature and
the human hand is perhaps the most classic example. In
biomedicine, the chirality of a molecule is strongly associated
with the biological function. The two mirror images of a chi-
ral molecule can have remarkably different bioactivities and
biotoxicities [2]. For example, a chiral protein will become
toxic to cells when its original chirality is varied, which may
cause many diseases such as Parkinson’s, Alzheimer’s, type
II diabetes, and Huntington’s [3]. Therefore, identifying and
separating substances by chirality have always been the hot
topic in research and industry, especially in pharmaceuticals
and agrochemicals [4–6].

In recent years, optical sorting of the chiral objects has
attracted significant interest for its less invasive and more
efficient alternative to the chemical means [7–16]. Different
chiral objects tend to interact differently with light beams
having the same intensity and polarization. The chiral light-
matter interactions involve the cross coupling between electric
and magnetic characteristics, resulting in new types of optical
forces such as a lateral optical force which acts in the direction
with vanishing intensity gradient and energy flow [17–22].
Wang and Chan showed an electromagnetic plane wave can
induce a lateral optical force on a chiral particle near a sub-
strate [17]; Hayat et al. predicted the transverse spin angular
momentum (SAM) density of evanescent waves can give
rise to lateral optical forces on chiral particles [19]; Zhang
et al. demonstrated how to take advantage of interference
fields to induce lateral optical forces on chiral particles [22].
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Such lateral optical force can push the chiral particles with
opposite handedness in opposite directions, facilitating the de-
velopment of the optical sorting of chiral particles. However,
these studies on the optical chirality sorting mainly involved
nonparaxial beams with linear or circular polarization state
[7–22], and majority situations only consider the case where
the chirality parameter takes real values [7–9,11–22].

In this paper, based on the vectorial diffraction method and
the dipole approximation model, we demonstrate an approach
to separating chiral particles by using not only the lateral
optical force but also a radial optical force induced by a
tightly focused vector beam composed of radial and azimuthal
components and with a π /2 phase difference between the
two components. The effects of different chirality parameters,
e.g., imaginary and complex values, on the transverse optical
forces are presented. Furthermore, the physical origins of the
optical forces are investigated by using the analytical theory.
It is shown that the focused vector field can transversely
trap the particles on a circle near the intensity maximum, or
push them away in a nontrap state, or drive them to orbitally
rotate around the optical axis; these are strongly dependent
on the particle chirality. These investigations may provide the
possibility of identifying and separating chiral particles.

II. THEORETICAL MODEL

A. Optical force on dipolar chiral particles

Considering an isotropic chiral particle with relative elec-
tric permittivity ε2 and relative magnetic permeability μ2 the
constitutive relations that connect the complex displacement
field D and magnetic field B to the electric field E and
magnetization field H can be described by [23–25]

[
D
B

]
=

[
ε2ε0 iκ/c

−iκ/c μ2μ0

][
E
H

]
, (1)
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where ε0, μ0, and c are, separately, the permittivity, perme-
ability, and the speed of light in vacuum; κ is the chirality
parameter which is controlled by the inequality κ2 < ε2μ2

[25,26], and is used to describe the chirality of the object.
In such chiral medium, there exist two kinds of waves, k± =
k0[(ε2μ2)1/2 ± κ], with k0 being the wave number in vacuum,
which corresponds to left- and right-handed circular polar-
ization states. The real and imaginary parts of the chirality
parameter κ are associated with optical rotation and circular
dichroism, respectively [27,28].

When light is scattered by a particle, the transfer of optical
momentum from light to particle induces an optical force on
the particle. For a spherical dipolar particle with a radius a
being much smaller than the trapping wavelength, the optical
force can be obtained analytically within the dipole approxi-
mation. In a background medium with the relative permittivity
ε1 and permeability μ1, the vector expression of the optical
force can be expressed as [29–31]

〈F〉 = 1

2
Re

[
p · (∇E∗) + m · (∇H∗) − ck4

1

6π

1√
ε1μ1

(p × m∗)

]
.

(2)

Here k1 = n1ω/c is the wave number with ω being the angular
frequency of light and n1 = (ε1μ1)1/2 being the refractive
index of the medium; p and m are the induced electric and
magnetic dipole moments, which can be written as [25][

p
m

]
=

[
αee iαem

−iαem αmm

][
E
H

]
, (3)

with aee, amm, and aem being, separately, the electric, magnetic,
and chiral polarizabilities of the chiral particle. Polarizabilities
aee, amm, and aem are complex functions of the relative permit-
tivity ε2, relative permeability μ2, and chirality parameter κ .
Setting the chiral polarizability aem = 0 recovers the behavior
to an achiral particle. One can derive the polarizabilities aee,
amm, and aem for the spherical chiral particle from its Mie
scattering coefficients. Following the notations of Bohren and
Huffman [23], the corresponding Mie scattering coefficients
expressed in terms of vector spherical wave functions are
defined as

an = Vn(R)An(L) + Vn(L)An(R)

Wn(L)Vn(R) + Wn(R)Vn(L)
,

bn = Wn(L)Bn(R) + Wn(R)Bn(L)

Wn(L)Vn(R) + Wn(R)Vn(L)
, (4)

cn = i
Wn(R)An(L) − Wn(L)An(R)

Wn(L)Vn(R) + Wn(R)Vn(L)
,

with

Wn(J ) = mψn(mJx)ξ ′
n(x) − ξn(x)ψ ′

n(mJx),

Vn(J ) = ψn(mJx)ξ ′
n(x) − mξn(x)ψ ′

n(mJx),

An(J ) = mψn(mJx)ψ ′
n(x) − ψn(x)ψ ′

n(mJx),

Bn(J ) = ψn(mJx)ψ ′
n(x) − mψn(x)ψ ′

n(mJx). (5)

Here J is L or R and x = k1a; ψn(ρ) = ρ jn(ρ), ξn(ρ) =
ρh(1)

n (ρ) with jn(ρ) being the spherical Bessel functions and
h(1)

n (ρ) being the spherical Hankel functions of the first kind;
the relative refractive indices mL, mR and the mean refrac-

tive index m take expressions of mL = (
√

ε2μ2 + κ )/
√

ε1μ1,
mR = (

√
ε2μ2 − κ )/

√
ε1μ1, and m = (mL + mR)/2, respec-

tively. Within the small particle limit, we retain only the term
of n = 1 and then obtain the polarizabilities of the dipolar
chiral particle as

αee = i6πε1ε0

k3
1

a1, αmm = i6πμ1μ0

k3
1

b1, αem = 6πn1

ck3
1

c1.

(6)

Substituting Eq. (3) into Eq. (2), the expression of the
optical force can be written as

〈F〉 = ∇〈U 〉 + σn1

c
〈S〉 − Im[αem]∇ × 〈S〉 − cσe

n1
∇ × 〈Le〉

− cσm

n1
∇ × 〈Lm〉 + ωγe〈Le〉 + ωγm〈Lm〉

+ ck4
1

12πn1
Im[αeeα

∗
mm]Im[E × H∗], (7)

with the optical potential,

〈U 〉 = 1
4 Re[αee]|E|2 + 1

4 Re[αmm]|H|2

+ 1
2 Re[αem]Im[E · H∗], (8)

the time-averaged Poynting vector and SAM densities,

〈S〉 = 1

2
Re[E × H∗],

〈Le〉 = −ε1ε0

4ω
Im[E × E∗],

〈Lm〉 = −μ1μ0

4ω
Im[H × H∗], (9)

and the cross sections:

σe = k1Im[αee]

ε1ε0
, σm = k1Im[αmm]

μ1μ0
,

σ = σe + σm − c2k4
1

6πn2
1

(Re[αeeα
∗
mm] + αemα∗

em),

γe = 2ωIm[αem] − ck4
1

3πε1ε0n1
Re[αeeα

∗
em],

γm = 2ωIm[αem] − ck4
1

3πμ1μ0n1
Re[αmmα∗

em]. (10)

In the optical force (7), the first term corresponds to the
gradient force Fgrad due to the particle-field interaction; the
second term represents the radiation pressure Frad propor-
tional to the time-averaged Poynting vector; the third term
denotes the “vortex” force Fvor determined by the energy
flow vortex (the curl of the Poynting vector) and particle
chirality (aem) [17]; the fourth and fifth terms describe the
curl-spin force Fcurl associated with the curl of the SAM
densities [32,33]; the sixth and seventh terms are referred to
the spin density force Fspin related to the SAM densities and
particle chirality (aem); and the last term is associated with the
alternating flow Fflow of the so-called “stored energy” [34].
Clearly, the vortex force Fvor and the spin-density force Fspin

vanish for a dipolar particle without chirality (aem = 0).
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B. Tight focusing of vector beams

In optical trapping and manipulation, the optical fields
interacting with the target particles are actually the fields of
some illumination focused by a high numerical aperture (NA)
objective lens. Here, we introduce a vector beam consisting
of radial and azimuthal components and having a π/2 phase
difference between the two components as the illumination.
Then, the input field at the entrance pupil plane can be written
as

A0(θ, φ) = l (θ )(cos φ0eρ + i sin φ0eφ ), (11)

which is described in the cylindrical coordinates and uses
the relationship of ρ = f sinθ in the context of an aplanatic
lens with f being the focal length; eρ and eφ are the unit
vectors in the radial and azimuthal direction, respectively;
angle φ0 is the polarization angle between the electric vector
and the radial vector; l (θ ) is the amplitude function assumed
to have a simple form l (θ ) = l0 when 0 � θ � θm and l (θ ) =
0 otherwise, where l0 is a constant factor dependent on the
power of the incident field and θm is the maximal converging
angle determined by the NA. After being focused, the focused
electric field in the vicinity of the focus, according to the
Richards-Wolf vectorial diffraction method [35,36], can be
expressed as

E(r) = −ik1 f

2π

∫ θm

0

∫ 2π

0
A(θ, φ) exp(ik1 · r) sin θdφdθ,

(12)

where vectors k1 and r, separately, designate the wave vector
and the observation point position in the image space; integral
kernel A(θ, φ) stands for the apodized field which is related
to the input field A0(θ, φ) with the following transform rule
[37]:

A(θ, φ) = (cos θ )1/2

[
eθ 0
0 eφ

](
A0ρ

A0φ

)
, (13)

where (eθ , eφ ) are the respective unit vectors in the θ and
φ directions and (A0ρ, A0φ ) are the radial and azimuthal
components of the input field A0(θ, φ). Integrating over the
azimuthal direction in Eq. (12) yields the three electric-field
components (Eρ, Eφ, Ez ) in cylindrical coordinates (ρs, φs, zs)
as

Eρ = cos φ0C
∫ θm

0
cos1/2θ sin(2θ )l (θ )eik1zs cos θJ1(β )dθ,

Eφ = 2 sin φ0Ci
∫ θm

0
cos1/2θ sin θ l (θ )eik1zs cos θJ1(β )dθ,

Ez = 2 cos φ0Ci
∫ θm

0
cos1/2θsin2θ l (θ )eik1zs cos θJ0(β )dθ,

(14)

where C = k1 f /2, β = k1ρs sin θ , and Jm(β ) is the m th-order
Bessel function of the first kind. It is observed that the radial-
field component has a π/2 phase difference with both the
azimuthal and axial components. In combination with the
SAM density (9), it is clearly seen that the focused field carries
not only the longitudinal but also azimuthal SAM densities. A
chiral particle trapped in such a focused field is expected to

FIG. 1. Transverse optical force distributions experienced by the
particle with chirality parameters κ = 0.5 (a), −0.5 (b), 0.5i (c), and
−0.5i (d), respectively, in the focal plane illuminated by the focused
vector beam.

experience an azimuthal optical force through contributions of
both the spin-density and curl-spin force terms from the opti-
cal force (7). Moreover, the focused field obviously has the
same intensity distribution with a general cylindrical vector
beam [38]; a hollowlike focusing distribution can be obtained
with the polarization angle 0 < φ0 < π/2 . In the following
calculation, we focused on the case of φ0 = π/3.

III. RESULTS AND DISCUSSION

Based on the optical force obtained from the dipole ap-
proximation, we can evaluate the force precisely and analyze
its dependence on the particle chirality in such a focused
vector beam. In what follows, we assume that the input power
P = 100 mW, the free-space wavelength λ0 = 1.064 μm, the
objective lens NA = 1.26, the refractive index n1 = 1.33, and
relative permeability μ1 = 1 of the image space; the dipolar
particle has the radius of a = 40 nm, relative permittivity ε2 =
2.5, and permeability μ2 = 1. Here, the axial equilibrium
position is assumed to be in the focal plane and only the
transverse trapping is considered. Figures 1(a)–1(d) show the
transverse optical force distributions exerted on the chiral
particle in the focal plane for the vector beam illumination,
where the arrows denote the direction and magnitude of
the transverse optical force and the background presents the
intensity distribution of the focused field. When the chirality
parameter κ = 0.5 or −0.5, the particle experiences only the
radial optical force. The radial optical force vanishes on a
circle somewhat smaller than that of the intensity maximum
for the case of κ = 0.5 as shown in Fig. 1(a), implying a stable
transverse trapping at the off-focus equilibrium position. This
is different from an achiral particle that will be trapped on
the intensity maxima [39–41]. For the particle with κ = −0.5
as shown in Fig. 1(b), the radial optical force is always
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FIG. 2. The radial (a) and azimuthal (b) optical forces as functions of the particle’s radial displacement and chirality parameter. The inset
shown in (a) is line scan of radial optical force with particle chirality parameter κ = −0.38 along the radial direction. Both the optical forces
are in units of piconewtons.

positive for arbitrary positions and, thus, will push the chiral
particle away, manifesting as a nontrap phenomenon in the
transverse plane. However, it is dramatically different for the
case of κ = 0.5i or −0.5i as visualized in Fig. 1(c) or 1(d).
The particle experiences a strong azimuthal optical force in
addition to the radial optical force near the intensity maxima,
indicating that the particle will be trapped off focus on a circle
and undergo an orbital motion around the optical axis. With
κ = 0.5i, the orbital motion is in a counterclockwise sense
around the negative z axis, whereas for κ = −0.5i, the orbital
motion reverses the direction. According to the focused field
(14), there is neither intensity gradient nor wave propagation
in the azimuthal direction; thus this azimuthal optical force
can also be called the lateral optical force. The formation of
this lateral optical force will be analyzed in detail later on.

Figure 2 shows the radial Fρ and azimuthal Fφ optical
forces as functions of the particle’s radial displacement ρ and
chirality parameter κ (purely real or imaginary value here)
for the vector beam illumination. It is clear in Fig. 2(a) that
the acquisition of transversely stable trapping is conditional.
There exists a critical chirality parameter κ0(= −0.38) in
which the transversely off-focus stable trapping position just
appears as the curve shown in the inset in Fig. 2(a). To
be specific, the radial optical force tends to trap the chiral
particles with the chirality parameter κ > κ0 in a circle near
the intensity maxima, while pushing the chiral particles with
κ < κ0 away, manifesting as a nontrap phenomenon. As a
consequence, the chiral particles with different magnitudes of
chirality can be separated, thus possibly implementing sorting
of the chiral particles. Both the sign and magnitude of the az-
imuthal optical force are directly related to the particle chiral
absorption which expresses itself as the imaginary part of the
chirality parameter, as shown in Fig. 2(b). The magnitude of
the azimuthal optical force increases with the increase of the
magnitude of the chiral absorption. If the chiral absorption
is positive, the azimuthal optical force is negative, and vice
versa, resulting in a negative or positive orbiting motion of
the chiral particles, and the azimuthal optical force vanishes
when the particle is without chiral absorption, as denoted
by the white dashed line. Therefore, we conclude that the
focused vector beam can selectively trap the chiral particles

with different real chirality parameters, and even selectively
rotate the chiral particle with different imaginary chirality
parameters, leading to an optical chirality sorting of the chiral
particles in the transverse plane.

Next, we turn to the cases of chiral particles with complex
chirality parameters, κ = Re(κ ) + iIm(κ ). Figure 3 presents
the changes of radial Fρ and azimuthal Fφ optical forces of
the chiral particles suffered along the radial direction with a
variety of chirality parameters. When Im(κ) is fixed at 0.2,
the radial optical force Fρ varies greatly with Re(κ) as shown
in Fig. 3(a). With Re(κ) increasing from −0.8 to 0.8, the
particle also experiences a process of being pushed away and
trapped off axis on a circle. The stiffness of the radial trapping
increases with the value of Re(κ) increasing, indicating an
easier transverse trapping will be achieved. Moreover, the
transverse trapped equilibrium position of the particle is closer
and closer to the optical axis. While with Im(κ) changing from
−0.8 to 0.8 when Re(κ) is held at 0.2 as shown in Fig. 3(b),
the changes of the Fρ are small, and nearly no change of
the Fρ can be discerned with the positive and negative Im(κ)
by comparing the curves of κ = 0.2 − 0.8i(0.2 − 0.4i) and
κ = 0.2 + 0.8i(0.2 + 0.4i). Consequently, the real part of the
chirality parameter has a more significant effect than the
imaginary part on the radial optical force. Nevertheless, for
the azimuthal optical force Fφ , the situation is remarkably
different. With Re(κ) increasing, as illustrated in Fig. 3(c),
the Fφ decreases, indicating that the real part of the chirality
parameter can be appropriately reduced to obtain an enhanced
orbital motion of the chiral particle. Notice from Fig. 3(d)
that the Fφ also vanishes with Im(κ ) = 0 even though Re(κ)
is 0.2. The increase of the absolute value of Im(κ) results
in an obvious enhancement of the Fφ . In addition, the sign
of the Fφ is determined by the sign of Im(κ), becoming
negative (positive) for positive (negative) values of Im(κ).
Therefore, for the particle with complex chirality parameter,
the real and imaginary parts of the chirality parameter are also
the decisive factors for realizing the transverse trapping and
orbital rotation, respectively.

Of course, to obtain an orbital rotation for particles with a
complex chirality parameter, the particles must first be trapped
transversely. Since this is so, the critical chirality parameter
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FIG. 3. The radial (a,b) and azimuthal (c,d) optical forces on the chiral particle with different chirality parameters under the vector beam
illumination.

for particles being trapped transversely will also be a complex
value and may be changed. To show this, the dependence
of the real part Re(κ0) of the critical chirality parameter on
the particles’ chiral absorption Im(κ) are examined in Fig. 4.
That is, the particles with a certain chiral absorption that
can be trapped transversely should satisfy the condition of
the chirality parameter, Re(κ ) > Re(κ0). Since the size of
the particles has a certain influence on the magnitude of the
optical force, the cases of particles with radii of 20 and 30 nm

FIG. 4. Changes of the real part of the critical chirality parame-
ters for particles with the chiral absorption to be trapped transversely
under the vector beam illumination for different particles’ radii.

are also plotted as comparisons. Obviously, the curves of
Re(κ0) show the same variation tendency and are even func-
tions of Im(κ). The values of Re(κ0) increase with the particle
size increasing; the differences in Re(κ0) for the three radii
become smaller and smaller as |Im(κ )| decreases and finally
vanish at Im(κ ) = 0. Furthermore, with increasing the values
of Im(κ), Re(κ0) first increases until a peak of −0.38 is
reached at Im(κ ) = 0; thereafter it decreases. This facilitates
the further sorting of the chiral particles with different radii
and complex chirality parameters. Figure 4 also suggests that
the particles with Re(κ ) > −0.38 can be trapped transversely
in such a focused vector beam, irrespective of the chiral
absorption.

The aforementioned discussions prove that such a focused
vector field can selectively trap and rotate chiral particles
by the chirality-tailored radial and azimuthal (lateral) optical
forces, respectively. To trace the physical origins of these
transverse optical forces on the chiral particles, the contribu-
tion of each term of the optical forces in Eq. (7) to the radial
Fρ and azimuthal Fφ optical forces under the vector beam
illumination is plotted in Fig. 5, where the chirality parameter
κ = 0.5 + 0.5i. In Fig. 5(a), it can be seen that the Fρ over-
whelmingly comes from the gradient force Fgrad, arising from
the interaction of particle polarizabilities (aee, amm, aem) with
the electric |E|2 and magnetic |H|2 energy densities as well as
chirality density Im[E · H∗]. However, the Fφ in Fig. 5(b) is
dominated largely by the spin-density force Fspin and the vor-
tex force Fvor which is directly related to the particle chirality
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FIG. 5. The contributions of decomposed radial (a) and azimuthal (b) optical forces defined in Eq. (7) acting on the chiral particle with
κ = 0.5 + 0.5i under the vector beam illumination.

(aem), also associated with the radiation pressure Frad and the
curl-spin force Fcurl, but almost not related to the gradient
force and the alternating flow owing to the terms of ∇〈U 〉 and
Im[E × H∗] without the azimuthal component. As a result,
the lateral optical force caused by the tightly focused field
in our case originates from a complex process consisting of
four force terms, differing from all those reported previously
[17–22]. Such lateral optical force–induced orbital motion of
the chiral particle is derived from the transformation of optical
SAM of the focused field into the mechanical orbital angular

momentum (OAM) of the particle, the curl of the Poynting
vector and SAM, as well as the radiation pressure. It becomes
clear that, in addition to the usual optical gradient force and
radiation pressure as well as curl-spin force, the chiral particle
indeed can be affected by new forces which directly depend on
the particle chirality.

Finally, the dependences of the above contributing optical
force terms on the particle chirality parameter are further
investigated. In Fig. 5(a), following the optical potential of
Eq. (8), the gradient force Fgrad can be subdivided into three

FIG. 6. The scattering coefficients involved in the radial (a,b) and azimuthal (c,d) optical forces as functions of particle chirality parameter
Re(κ) and Im(κ) under the vector beam illumination. Fix Im(κ ) = 0.5 in (a,c) and Re(κ ) = 0.5 in (b,d).
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parts and expressed in the form with only electric field E
based on the Maxwell equation of ∇ × E = −∂B/∂t . Thus,
for a given incident field, different factors related to the
scattering coefficients involved in these three parts are, sep-
arately, Im(a1/2), Im(b1/2), and Re(c1). Figures 6(a) and
6(b) plot these scattering coefficients as functions of the real
Re(κ) and imaginary Im(κ) parts of the chirality parameter,
respectively. Clearly, the coefficients Im(a1/2) and Im(b1/2)
are much less sensitive to the magnitude and sign of the
chirality parameter, whereas the coefficient Re(c1) changes
greatly with Re(κ) exhibiting a nearly linear dependence on
Re(κ) and is also insensitive to Im(κ). Consequently, it once
again proves that the real part of the chirality parameter has
more influence on the radial optical force, and also shows that
the appearance of trap and nontrap states of the chiral particles
are due to the opposite signs of coefficient Re(c1) for opposite
Re(κ).Concerning Fig. 5(b), likewise, the four force terms
contributing to the azimuthal optical force are separately re-
lated to different factors that are associated with the scattering
coefficients for the same incident field. Specifically, the spin
density force Fspin is related to the coefficients Im(c1 + a1c∗

1 )
and Im(c1 + b1c∗

1 ), the vortex force Fvor to Im(c1), the ra-
diation pressure Frad to Re(a1 + b1 − a1b∗

1) + c1c∗
1, and the

curl-spin force Fcurl to Re(a1/2) and Re(b1/2). Notice that
the coefficients Im(a1c∗

1 ) and Im(b1c∗
1 ) are much smaller than

the Im(c1), and the Re(a1b∗
1) + c1c∗

1 is much smaller than the
Re(a1) or Re(b1). As a result, the azimuthal optical force is
mainly determined by the scattering coefficients of Im(c1),
Re(a1), and Re(b1). Changes of these coefficients with the real
Re(κ) and imaginary Im(κ) parts of the chirality parameter are
shown in Figs. 6(c) and 6(d), respectively. Evidently, except
for the Im(c1) exhibiting an almost symmetric behavior with
respect to the sign of Re(κ), the other five curves depend
nearly linearly on the chirality parameter. The values of co-
efficient Im(c1) with the chirality parameter varied are much
larger compared to those of coefficients Re(a1) and Re(b1).
This leads to the force terms associated with the Im(c1) having
greater influences on the azimuthal optical force, as mentioned
above. Moreover, the Im(c1) is insensitive to Re(κ) but takes

opposite signs for opposite Im(κ). Accordingly, the sign of
the azimuthal optical force is determined by the sign of the
chiral absorption, while the magnitude is mainly determined
by the chiral absorption but also related to the real part of the
chirality parameter.

IV. CONCLUSION

In summary, we have numerically shown that the tightly
focused vector beam can induce different transverse optical
forces on the dipolar chiral particles with different chirality,
achieving an effective optical sorting of the chiral particles.
The radial optical force, resulting from the gradient force as-
sociated with the particle-field interaction, is sensitive to both
the sign and magnitude of the real part of the chirality parame-
ter, and tends to trap the chiral particles with Re(κ ) > Re(κ0)
(κ0 is the critical chirality parameter) on a circle while pushing
the particles with Re(κ ) < Re(κ0) away, enabling a selective
trapping of the chiral particles in the transverse plane. The
lateral optical force manifests itself as the azimuthal optical
force, arising from the transformation of optical SAM of the
focused field into the mechanical OAM of the particle and the
curl of the Poynting vector and SAM, as well as the radiation
pressure, which is sensitive to both the sign and magnitude
of the chiral absorption. This can induce an orbital rotation
of the trapped chiral particles around the negative optical
axis with Im(κ ) > 0 but around the positive optical axis with
Im(κ ) < 0, leading to a selective separation of the chiral
particles. The results of chirality-controlled optical trapping
and manipulation may provide a possible route toward optical
identification and separation of chiral particles.
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