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We study a circuit QED setup involving a single cavity mode and a cyclic qutrit whose parameters are time
modulated externally. It is shown that in the dispersive regime this system behaves as a versatile platform to
implement effective n-photon Jaynes-Cummings (JC) and anti-Jaynes-Cummings (AJC) models by suitably
setting the modulation frequency. The atomic levels and the cavity Fock states involved in the effective
Hamiltonians can be controlled through adjustment of the system parameters, and different JC and AJC
interactions can be implemented simultaneously using multitone modulations. Moreover, one can implement
some models that go beyond simple JC and AJC-like interaction, such as multiphoton coupling between
certain entangled states. We estimate analytically the associated transition rates and study numerically the
dynamics in the presence of Markovian dissipation, demonstrating that lower-order effective Hamiltonians can
be implemented with current technology.
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I. INTRODUCTION

The Jaynes-Cummings (JC) Hamiltonian [1] is probably
the most famous and fundamental model in the context of
radiation-matter interaction. It involves a cavity mode (or
a generic quantum harmonic oscillator) coupled to a two-
level atom (or a generic two-state system). Such a model
describes coherent transitions between the two systems, where
every upward (downward) atomic transition is accompanied
by the loss (acquisition) of a photon. The complementary
model describing simultaneous upward atomic transitions and
photon acquisition is known as the anti-Jaynes-Cummings
(AJC) Hamiltonian. Both models descend from the quantum
Rabi model (QRM) [2] under suitable hypotheses concern-
ing the characteristic frequencies of the two subsystems, the
strength of their coupling, and external drivings, which allow
for the rotating-wave approximation (RWA). Beyond this
limit, the QRM is difficult to solve and the diagonalization
of the corresponding Hamiltonian has been an open problem
for decades. Only in the last few years some papers appeared
where analytic resolutions of the QRM were proposed [2–4].

The importance of the QRM and its approximated ver-
sions goes beyond the physical context of cavity quantum
electrodynamics (QED). Indeed, JC and AJC models are
widely used in the effective description of trapped ions [5],
while QRM spontaneously emerges in the circuit QED context
[6–10], where it can be implemented also in the ultrastrong
regime [11–14] (which implies the impossibility to reduce the
original model to the JC model or the AJC model). Depending
on the coupling strengths and the resonances involving the
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two subsystems, multiphoton JC, AJC, and Rabi models can
be implemented [15]. The nonlinear generalizations of the
QRM, in particular the two-photon QRM, have very recently
attracted attention also in view of its potential application to
platforms exploited for quantum technologies [16–19].

Interesting applications of the QRM are obtained when
the relevant Hamiltonian becomes time dependent. Generally
speaking, though time-dependent Hamiltonians are difficult
to solve analytically unless specific conditions are satisfied
[20–23], several classes of time-dependent Hamiltonians that
are approximately solvable can be identified, such as those
related to phenomena ranging from Landau-Zener processes
[24–32] to STIRAP manipulation [33–39] to periodically
driven systems [40–42].

Specific to the Rabi model, when some parameters turn
out to be time dependent, a significant amount of photons
can be produced from vacuum (and other initial states) in
the so-called dynamical Casimir effect (DCE) [32,43–45],
when the photons are generated in pairs while the atomic
populations remain nearly unaffected. Conversely, photons
can be coherently annihilated from certain initial states due
to resonant external modulations. The term antidynamical
Casimir effect (ADCE) was originally coined to describe such
annihilation of three photons in the dispersive regime of QRM
[45–47], which resembles formally the three-photon JC model
with a Kerr nonlinearity. Moreover, it was recently shown that
the rate of ADCE can be substantially increased by employing
qutrits [48], while a cyclic qutrit allows for realization of
novel effects, such as one- and three-photon DCEs [49]. So
here we investigate whether a cyclic qutrit could be used to
implement multiphoton JC and AJC effective interactions by
suitably modulating the energy levels. It is found that this
task is indeed feasible, and in addition our scheme permits

2469-9926/2019/99(3)/033823(11) 033823-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.033823&domain=pdf&date_stamp=2019-03-11
https://doi.org/10.1103/PhysRevA.99.033823


A. V. DODONOV, A. NAPOLI, AND B. MILITELLO PHYSICAL REVIEW A 99, 033823 (2019)

the implementation of combined models (superpositions of JC
and AJC interaction terms) and other multiphoton transitions
between entangled atom-cavity states. This fact effectively
implies the possibility of manipulating the degree of entan-
glement of the system and, in particular, generating entangled
states. To better bring to light this possibility, we analyze the
time behavior of the logarithmic negativity [50], which is an
evolution of the standard negativity [51,52].

The paper is organized as follows. In Sec. II we introduce
the physical system, consisting of a cyclic qutrit coupled to
a single cavity mode and show that in the dispersive regime
it can be used as a versatile platform to emulate multiphoton
JC and AJC interactions between any pair of atomic levels. In
Sec. III numerical results are reported, attesting that under res-
onant modulation of atomic levels the exact system dynamics
is essentially equivalent to the effective description in terms of
multiphoton JC and AJC models. We also estimate the effects
of dephasing and relaxation using a phenomenological master
equation, analyzing which transitions are less susceptible to
dissipation. In Sec. IV we consider the regime of parameters
for which the system bare eigenstates consist of entangled
qutrit-cavity states. It is shown that in this “hybrid” regime the
four-photon JC transitions become substantially faster (hence
more robust against quantum noise) and novel three-photon
transitions can occur between the entangled atom-field states.
Finally, Sec. V contains our main conclusions.

II. PHYSICAL SYSTEM

We consider a single cavity mode of constant frequency
ω that interacts with a qutrit in the cyclic configuration
[10,53–56], so that all the atomic transitions are allowed via
one-photon transitions. The Hamiltonian reads

Ĥ/h̄ = ωn̂ +
2∑

k=1

Ek (t )σ̂k,k

+
1∑

k=0

2∑
l>k

gk,l (â + â†)(σ̂l,k + σ̂k,l ). (1)

Here â (â†) is the cavity annihilation (creation) operator and
n̂ = â†â is the photon number operator. The atomic levels are
E0 ≡ 0, E1, and E2, the corresponding states are denoted as
|k〉, and we define σ̂k, j ≡ |k〉〈j|. The constant parameters gk,l

denote the coupling strengths between the atomic states |k〉
and |l〉 mediated by the cavity field. To emphasize the role of
the counter-rotating terms (CRT) we rewrite (for l > k)

gk,l (â + â†)(σ̂l,k + σ̂k,l ) → gk,l (âσ̂l,k + ck,l âσ̂k,l + H.c.),

where ck,l = 1 when the corresponding CRT is taken into
account and is zero otherwise (in our numeric examples
we consider ck,l = 1 ∀ k, l). Moreover, to shorten the final
expressions we define g1 ≡ g0,1, g2 ≡ g1,2, and g3 = g0,2, and
similarly for c1, c2, and c3.

Utilizing the tunability of Josephson artificial atoms
[57–63], we assume that the atomic energy levels can be
modulated externally via multitone driving as

Ek (t ) ≡ E (0)
k + εk fk, fk =

∑
j
w

( j)
k sin

(
η( j)t + φ

( j)
k

)
,

where εk � E (0)
k is the modulation depth and h̄E (0)

k is the
bare energy value (k = 1 or 2). The sum runs over all the
input frequencies η( j), and w

( j)
k (φ( j)

k ) is the associated weight
(phase) [64].

We expand the wave function as

|ψ (t )〉 =
∞∑
n

e−itλn bn(t )Fn(t )|ϕn〉,

Fn(t ) = exp

{ 2∑
k=1

∑
j

iεkw
( j)
k

η( j)
〈ϕn|σ̂k,k|ϕn〉

× [
cos

(
η( j)t + φ

( j)
k

) − cos
(
φ

( j)
k

)]}
. (2)

Here λn are the eigenfrequencies of the bare Hamiltonian
Ĥ0 ≡ Ĥ [ε1 = ε2 = 0] (n increasing with energy) and |ϕn〉 are
the corresponding eigenstates (dressed states). bn(t ) denotes
the slowly varying probability amplitude of the state |ϕn〉 and
Fn(t ) ≈ 1 is a rapidly oscillating function.

After substituting Eq. (2) into the Schrödinger equation, as-
suming that εkw

( j)
k 〈ϕm|σ̂k,k|ϕn〉 � η( j) and that |η( j) ± η(r)| 
=

|λn − λm| for all possible values of k, r, j, n, and m, to the first
order in ε1 and ε2 we obtain the coupled differential equations

ḃm =
∑

j

∑
n<m


( j)∗
n;m exp[it (|λn − λm| − η( j) )]bn

−
∑

j

∑
n>m


( j)
m;n exp[−it (|λn − λm| − η( j) )]bn , (3)

where to the lowest order


( j)
m;n =

2∑
k=1

ε
( j)
k

2
〈ϕm|σ̂k,k|ϕn〉, ε

( j)
k ≡ εkw

( j)
k exp

(
iφ( j)

k

)
.

We see that for the modulation frequency η(res) = |λn − λm|
the dressed states |ϕn〉 and |ϕm〉 become resonantly cou-
pled with the ideal transition rate |
(res)

m;n |. Indeed, assuming
that all other transitions are strongly off-resonant, we obtain
|ḃm| = |
(res)

m;n bn| and a similar expression for |ḃn|. However,
some undesirable nonresonant transitions (for which |λk −
λl − η(res)| � |
(res)

k;l |) still take place, decreasing the effective
(average) value of bn on the right-hand side, thereby lowering
the actual transition rate between the dressed states |ϕn〉 and
|ϕm〉. Therefore, when the analytic description is oversim-
plified by restricting the dynamics to the truncated subspace
{|ϕn〉, |ϕm〉}, |
( j)

m;n| provides only the order of magnitude for
the corresponding transition rate. Nonetheless, it is crucial to
have closed analytic expressions for |
( j)

m;n| to understand how
it scales with the detunings and coupling strengths.

First we consider the dispersive regime, so that the
atomic populations remain nearly constant in the absence
of external modulation. We require ω � |�1|, |�2|, |�3| �√

nmax max(gk ), where nmax is the maximum number of the
system excitations and the bare detunings are defined as

�1 ≡ ω − E (0)
1 , �2 ≡ ω − (

E (0)
2 − E (0)

1

)
, �3 ≡ �1 + �2 .

In this regime the dressed states read |βk,n〉 =
Nk,n[|k, n〉 + ∑∞

l=1 |k, n〉(l )], where |n〉 is the cavity Fock
state and |k, n〉(l ) denotes the lth order correction obtained
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from the perturbation theory (Nk,n is the normalization
constant). To the lowest order the corresponding
eigenfrequencies are

λ0,k ≈ ωk + g2
1k

�1
− c1g2

1(k + 1)

2ω − �1
− g2

3k

ω − �3

− c3g2
3(k + 1)

3ω − �3
+ kg2

1

�2
1

(
g2

2(k − 1)

�3
− g2

1k

�1

)
, (4)

λ1,k ≈ ω(k + 1) − �1 − g2
1(k + 1)

�1
+ c1g2

1k

2ω − �1

+ g2
2k

�2
− c2g2

2(k + 1)

2ω − �2

+
(

g2
1(k + 1)

�2
1

+ g2
2k

�2
2

)(
g2

1(k + 1)

�1
− g2

2k

�2

)
, (5)

λ2,k ≈ ω(k + 2) − �3 − g2
2(k + 1)

�2
+ c2g2

2k

2ω − �2

+ g2
3(k + 1)

ω − �3
+ c3g2

3k

3ω − �3

− g2
2(k + 1)

�2
2

(
g2

1(k + 2)

�3
− g2

2(k + 1)

�2

)
. (6)

The first-order corrections to the eigenstates read

|0, k〉(1) = g1

√
k

�1
|1, k − 1〉 − c1g1

√
k + 1

2ω − �1
|1, k + 1〉

− c3g3
√

k + 1

3ω − �3
|2, k + 1〉 − g3

√
k

ω − �3
|2, k − 1〉,

(7)

|1, k〉(1) = c1g1

√
k

2ω − �1
|0, k − 1〉 − g1

√
k + 1

�1
|0, k + 1〉

− c2g2
√

k + 1

2ω − �2
|2, k + 1〉 + g2

√
k

�2
|2, k − 1〉, (8)

|2, k〉(1) = c3g3

√
k

3ω − �3
|0, k − 1〉 + g3

√
k + 1

ω − �3
|0, k + 1〉

−g2
√

k + 1

�2
|1, k + 1〉 + c2g2

√
k

2ω − �2
|1, k − 1〉,

and the complete expressions for the fourth-order shifts and
|k, n〉(2) are summarized in Appendix A.

Equation (3) shows that after neglecting rapidly oscillating
terms, the dispersive cyclic qutrit can serve as a versatile plat-
form to emulate k-photon JC and AJC Hamiltonians between
the atomic states {|l〉, |j〉}:

Ĥ (k)
JC (l, j) ≡ iJ (k)∗

l, j â†k σ̂l, j + H.c. (9)

Ĥ (k)
AJC (l, j) ≡ iA(k)

l, j â
k σ̂l, j + H.c., (10)

where j > l and A(k)
l, j and J (k)

l, j are the effective coupling
strengths. These Hamiltonians hold approximately in the trun-
cated subspace {|j, n〉, |l, n ± k〉}, where n can be either a fixed
integer or belong to a small domain (n1 � n � n2) depending
on the parameters of the system [i.e., depending on which

arguments of the exponentials in Eq. (3) are nearly zero for
a given modulation frequency η(res)]. To the lowest order one
obtains the following:

(i) one-photon models:

J (1)
0,1 ≈ ε

(r)
1

g1

2�1
,A(1)

0,1 ≈ ε
(r)
1

c1g1

2(2ω − �1)
,

J (1)
1,2 ≈ (

ε
(r)
2 − ε

(r)
1

) g2

2�2
,A(1)

1,2 ≈ (
ε

(r)
2 − ε

(r)
1

) c2g2

2(2ω − �2)
,

J (1)
0,2 ≈ −ε

(r)
2

g3

2(ω − �3)
,A(1)

0,2 ≈ ε
(r)
2

c3g3

2(3ω − �3)
,

(ii) two-photon models:

J (2)
0,1 ≈

(
ε

(r)
2

2ω − �2
− ε

(r)
1

ω + �1

)
c2g2g3

2(ω − �3)
,

A(2)
0,1 ≈ c3g2g3

2(3ω − �3)

(
ε

(r)
2

�2
− ε

(r)
1

3ω − �1

)
,

J (2)
1,2 ≈

(
ε

(r)
2

2ω − �1
− ε

(r)
1

ω − �3

)
c1g1g3

2(ω + �2)
,

A(2)
1,2 ≈ − c3g1g3

2(3ω − �2)

(
ε

(r)
1

3ω − �3
+ ε

(r)
2

�1

)
,

J (2)
0,2 ≈

(
ε

(r)
2

�3
− ε

(r)
1

�2

)
g1g2

2�1
,

A(2)
0,2 ≈ c1c2g1g2

2(2ω − �1)

(
ε

(r)
1

2ω − �2
− ε

(r)
2

4ω − �3

)
. (11)

Similarly one can obtain the coefficients J (k)
l, j and A(k)

l, j
for three- and four-photon models, whose approximate ex-
pressions are summarized in Appendix B. Although these
expressions provide only the upper bounds for the effective
coupling strengths, they are crucial to identify the most ad-
vantageous regimes of parameters (e.g., when gi/� j appears
instead of gi/ω). It is worth noticing that one can also imple-
ment transitions |l, n〉 ↔ |j, n〉 which do not alter the photon
number. Introducing the effective Hamiltonian Ĥ (0)

q (l, j >

l ) ≡ iSl, j (n̂)σ̂l, j + H.c., to the lowest order we find

S0,1(n̂) ≈ g2g3

2

[
− ε

(r)
1

ω − �1

(
n̂

ω − �3
+ c2c3(n̂ + 1)

3ω − �3

)

+ ε
(r)
2

(
n̂

�2(ω − �3)
− c2c3(n̂ + 1)

(3ω − �3)(2ω − �2)

)]
,

S1,2(n̂) ≈ g1g3

2(ω − �2)

[
−ε

(r)
1

(
c1c3n̂

3ω − �3
+ n̂ + 1

ω − �3

)

+ ε
(r)
2

(
c1c3n̂

2ω − �1
− n̂ + 1

�1

)]
,

S0,2(n̂) ≈ g1g2

2

[
−ε

(r)
1

(
c2n̂

�1(2ω − �2)
+ c1(n̂ + 1)

�2(2ω − �1)

)

+ ε
(r)
2

2ω − �3

(
c2n̂

�1
− c1(n̂ + 1)

2ω − �1

)]
.
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In this case the modulation frequency must also be adjusted
according to the populated Fock state |n〉, since λ j,n − λl,n �
|Sl, j (n)| for typical parameters.

At this point it is opportune to discuss the main differences
between this work and the recent paper [49]. In both cases
the system consisted of a nonstationary cyclic qutrit coupled
to a single cavity mode, as described by the Hamiltonian
(1). In Ref. [49] the goal was to find transitions that occur
primarily in the cavity field, with the cyclic qutrit remaining
in the ground state; this led to the prediction of one- and
three-photon DCEs for single-tone modulations with frequen-
cies η ≈ ω and η ≈ 3ω, respectively. Instead, in the present
paper we study single- and multitone perturbations that couple
different atomic levels via effective multiphoton transitions,
and we estimate analytically the corresponding transition rates
up to four-photon effects. Additionally, here we find that in
the “hybrid” regime, �3 = 0, the JC multiphoton transition
rate increases, and multiphoton entangled states can be created
from the initial state |0, 0〉 for η ≈ 3ω (see Sec. IV). Hence,
these two studies combined demonstrate the versatility of non-
stationary cyclic qutrits for the engineering of sophisticated
effective interactions.

We conclude this section recalling the definition of loga-
rithmic negativity as defined in Ref. [50], which we exploit as
a tool to single out the presence of entanglement in the state
of the qutrit-cavity system. Given a density operator ρ̂ of a
bipartite system A-B, the logarithmic negativity is defined as

EN (ρ) = log2 tr
√

[ρ (A)B]†ρ (A)B, (12)

where ρ (A)B is the partial transpose of ρ̂ with respect to
party A.

III. NUMERIC RESULTS

In this section we solve numerically the Schrödinger equa-
tion for the original Hamiltonian (1). To assess the exper-
imental feasibility of the scheme we compare the unitary
dynamics to the dissipative one obtained through numeric in-
tegration of the phenomenological Markovian master equation
[54,56]

ρ̇ = 1

ih̄
[Ĥ, ρ̂] + κL[â] +

1∑
k=0

2∑
l>k

γk,lL[σ̂k,l ]

+
2∑

k=1

γ
(φ)

k L[σ̂k,k] .

Here ρ̂ is the density operator, L[Ô] ≡ Ôρ̂Ô† − Ô†Ôρ̂/2 −
ρ̂Ô†Ô/2 is the Lindblad superoperator, κ is the cavity re-
laxation rate, and γk,l (γ (φ)

k ) are the atomic relaxation (pure
dephasing) rates. Notice that related works [32,46,65] demon-
strated that for gk/ω < 10−1 and small times this approach is
a good approximation to a more rigorous microscopic model
of dissipation [66].

In all the simulations we set ε1 = 0 and g1/ω = 0.06.
In Fig. 1 we consider the initial zero-excitation state |0, 0〉
and study the simultaneous implementation of the Hamil-
tonians Ĥ (2)

AJC (0, 2) and Ĥ (3)
JC (1, 2), adjusted to couple the

states |0, 0〉 → |2, 2〉 and |2, 2〉 → |1, 5〉, respectively. We
use the plausible parameters (normalized by ω): g2 = 0.08,
g3 = 0.04, �1 = −0.52, �2 = −0.54, ε2 = 0.3, η(1) = 5.103

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

Pa(1)

Pa(2)

Pa(0)

10-3 g1t

(a)

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0(b)

p(rest)p(5)

p(2)

p(0)

10-3 g1t

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5
(c)

E
N
(ρ
)

10-3 g1t

unitary

dissipation

FIG. 1. Implementation of combined two-photon AJC and three-
photon JC Hamiltonians for the initial state |0, 0〉. (a) Probabilities
of atomic states. (b) Photon number probabilities. (c) Logarithmic
negativity EN (ρ ). Thick lines represent the unitary evolution and
thin lines describe the evolution under Markovian dissipation. For
g0,1t ∼ 103 one creates an entangled state composed mostly of |0, 0〉,
|1, 5〉, and |2, 2〉.

(for AJC coupling), and η(2) = 1.398 (for JC coupling).
The weights of the modulation components are w

(1)
2 = 1

and w
(2)
2 = 0.24; the dissipative parameters read κ = γk,l =

10−4g1 and γ
(φ)

k = 2κ . The unitary dynamics is represented
by thick lines. As expected, mostly the states |0, 0〉, |2, 2〉, and
|1, 5〉 are populated (with similar probabilities near the time
t∗ ∼ 103g−1

1 ), and the probability of other Fock states, denoted
as p(rest), is below 10%. In the presence of dissipation (thin
lines) other states become populated, yet for g1t � 103 the
contribution of undesirable states is small. Therefore, this pro-
tocol could be implemented experimentally with present tech-
nology [59,67–74], offering an alternative manner to generate
entangled qutrit-cavity states involving all the atomic levels.
This fact is clearly shown through Fig. 1(c), where an increase
of logarithmic negativity is visible, even in the presence of
dissipation. In Fig. 2(a) we illustrate the degree of accuracy
with which the effective Hamiltonian Ĥ (2)

AJC(0, 2) + Ĥ (3)
JC (1, 2)

describes the actual dynamics in the unitary case. As noted
previously, for high-order processes our analytic results pro-
vide only the order of magnitude of the coupling parameters,
so we replace J (3)

1,2 → 0.45J (3)
1,2 in Eq. (B1) to obtain the

correct JC-coupling parameter. We see that for initial times,
g1t � 103, the agreement between the numeric results (thick
lines) and the ones according to the effective Hamiltonian
(thin lines) is satisfactory. For larger times the description in
terms of the truncated subspace {|0, 0〉, |2, 2〉, |1, 5〉} becomes
clearly inadequate.
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0.0 0.5 1.0
0.0

0.5

1.0

Pa(1)

Pa(2)

10-3 g1t

Pa(0)
(a)

0 3 6 9
-1

0

1

2

3(b)

10-3 g1t

n

Q

FIG. 2. Numeric results versus predictions of effective Hamilto-
nians. Thick lines represent the exact numeric dynamics (without
dissipation), while the thin lines depict the behavior according to
the effective Hamiltonians. (a) Atomic populations corresponding to
Fig. 1(a) (initial state |0, 0〉). (b) Average photon number and Man-
del’s factor corresponding to Fig. 3(a) (initial state |0〉 ⊗ |α〉). For
initial times, the simplified analytic description in terms of effective
Hamiltonians approximates satisfactorily the exact dynamics. This is
remarkable, since the effective Hamiltonians neglect the dressing of
the bare states |k, n〉 and all the off-resonant transitions.

In Fig. 3 we choose the regime of parameters for which
Ĥ (2)

AJC(0, 1) can couple several states |0, k〉 ↔ |1, k + 2〉 for
0 � k � 4: g2 = 1.03g1, g3 = 0.38g1, �1 = 7.5g1, �2 =
5.83g1, ε2 = 0.12ω, η = 2.548ω, κ = 5 × 10−5g1, and γk,l =
γ

(φ)
k = κ/2. We consider the initial state |0〉 ⊗ |α〉, where

|α〉 is the coherent state with the average photon number
α2 = 1.1. Figure 3(c) proves that indeed several Fock states
are coupled by the single-tone modulation (for the sake of
clarity we omitted the corresponding results in the presence of
dissipation), giving rise to nonperiodic oscillation of the av-
erage photon number 〈n〉, atomic population Pa(1), and the
Mandel’s factor Q = [〈(�n)2〉 − 〈n〉]/〈n〉. As expected, the
population of the atomic level |2〉 remains nearly zero, under-
going fast oscillations due to off-resonant couplings. More-
over, for the assumed low dissipative rates, the time evolution
is virtually unaffected by dissipation for g1t � 103. Hence
Fig. 3 confirms that one can emulate effective Hamiltonians
that couple multiple pairs of states by properly choosing the
system parameters and the modulation frequency. In Fig. 2(b)
we compare the results of Fig. 3(a) to the dynamics according
to the effective Hamiltonian Ĥ (2)

AJC(0, 1) with the coupling
strength (11). Again, the agreement is quite good for initial
times, g1t � 103; for larger times the deviations occur mainly
because the modulation frequency goes off resonance for Fock
states with k � 4.

In Fig. 4 we illustrate the implementation of the four-
photon JC Hamiltonian Ĥ (4)

JC (0, 1) for the initial state |1, 0〉
and the following parameters (normalized by ω): g2 =
0.08, g3 = 0.04, �1 = −0.66, �2 = 0.42, η = 2.301, ε2 =

0 3 6 9
-1
0
1
2
3

10-3 g1t

(c)

(b)

(a) <n>

Q dissipation

0 1 2 3
0.0
0.2
0.4
0.6 p(0)

10-3 g1t

p(2)
0 3 6 9

0.0

0.5

1.0 Pa(1)

10-3 g1t

Pa(2)

dissipation

0 1 2 3
0.0

0.2

0.4

p(4)

p(1)p(3)

10-3 g1t

0 1 2 3

0.0
0.1
0.2

p(5)

10-3 g1t

FIG. 3. Effective two-photon AJC model for the initial coherent
state |0〉 ⊗ |α〉. (a) Time evolution of the average photon number
〈n〉 and the Mandel’s Q factor under unitary (thick lines) and lossy
(thin lines) evolutions. (b) Atomic populations. (c) Photon-number
probabilities during unitary evolution. In this regime of parameters a
single-tone modulation couples several doublets |0, k〉 ↔ |1, k + 2〉
with transition rates ∝ √

(k + 1)(k + 2).

0.22, and γk,l = γ
(φ)

k = κ = 5 × 10−5g1. The exact numeric
dynamics (thick lines) resembles quite well the expected
four-photon exchange, though the analytical transition rate,
Eq. (B2), overestimates the actual rate by a factor of 2 (data
not shown). Since in reality the modulation induces coupling
between the dressed states |β1,0〉 and |β0,4〉, it is not surprising
that in the unitary case the (small) population p(3) oscillates
with the same period as p(4). The population of the atomic
level Pa(2) is always less than 2%, so it is not shown. In our
scheme, the higher-order Hamiltonians naturally have smaller
transition rates due to the multiplicative factors gi/�k and
gi/ω. As shown by thin lines in Fig. 4, in this case even very
weak dissipation suffices to inhibit the oscillatory behavior.
Fortunately, for n-photon JC models we can surpass this
limitation by exploring the “hybrid transitions” described in
the next section.

IV. HYBRID TRANSITIONS FOR �3 = 0

We can speed up the n-photon JC transitions between the
atomic states |0〉 and |1〉 by setting �2 = −�1, maintaining
|�1| � gk

√
nmax. In this case, the dominant part of the bare
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0 2 4 6
0

1

2

3

4

Pa(1)

10-4 g1t

n

0 2 4 6
0.0

0.5

1.0
(b)

p(3)

p(4)

10-4 g1t

p(0)

(a)

FIG. 4. Approximate implementation of the four-photon JC
Hamiltonian for the initial state |1, 0〉. (a) Average photon number
and the atomic population. (b) Relevant photon number probabilities.
Thick (thin) lines represent the unitary (dissipative) evolution. In
the lossless case, the main transition is between the states |1, 0〉 ↔
|0, 4〉, but other states also become slightly populated due to their
presence in the dressed states, Eqs. (7) and (8), as illustrated by p(3).

Hamiltonian is Ĥaux ≡ Ĥ0[c1 = c2 = g3 = 0], with the m-
excitation eigenfrequencies and eigenstates (see Ref. [48] for
exact expressions): |ξ0〉 = |0, 0〉, λ

(0)
0 = 0, and for m � 1

λ
(0)
m,− ≈ mω − �1 − (

K2
m/�1 − K4

m/�3
1

)
,

λ
(0)
m�2,0 = mω,

λ
(0)
m,+ ≈ mω + (

K2
m/�1 − K4

m/�3
1

)
, (13)

|ξm,−〉 ≈
(

1 − 3K2
m

2�2
1

)
g1

√
m|0, m〉 + g2

√
m − 1|2, m − 2〉

�1

−
(

1 − K2
m

2�2
1

)
|1, m − 1〉,

|ξm�2,0〉 = g2
√

m − 1|0, m〉 − g1
√

m|2, m − 2〉
Km

,

|ξm,+〉 ≈
(

1 − K2
m

2�2
1

)
g1

√
m|0, m〉 + g2

√
m − 1|2, m − 2〉

Km

+ Km

�1

(
1 − 3K2

m

2�2
1

)
|1, m − 1〉 , (14)

where Km ≡
√

mg2
1 + (m − 1)g2

2. For g1 ∼ g2 one can crudely
picture these dressed states as |ξm,−〉 ∼ |1, m − 1〉, |ξm�2,0〉 ∼
(|0, m〉 − |2, m − 2〉)/

√
2, and |ξm�2,+〉 ∼ (|0, m〉 + |2, m −

2〉)/
√

2.
The complete dressed states |ϕm,s〉 can be obtained in a

straightforward manner from the perturbation theory with
the perturbation V̂ = Ĥ0 − Ĥaux.One immediately sees that
the first-order energy shifts h̄λ(1)

m,s = 〈ξm,s|V̂ |ξm,s〉 are zero
because V̂ does not conserve the total number of excitations.

Hence the correction to the eigenfrequencies, Eqs. (13) and
(14), will be ∼O(g2/ω) (where g stands for the order of mag-
nitude of gk); for example, for the ground state one obtains
λ

(2)
0 ≈ −[c1g2

1/(2ω − �1) + c3g2
3/3ω]. To evaluate the tran-

sition rates 

( j)
m;n in Eq. (3) we need the first-order corrections

to the eigenstates. For example, for the ground state one gets

∣∣ξ (1)
0

〉 ≈ c1g1

2ω − �1
|ξ2,−〉 − c1g1K2

2ω�1
|ξ2,+〉 +

√
3c3g1g3

3ωK3
|ξ3,0〉

−
√

2c3g2g3

�1(3ω − �1)
|ξ3,−〉 −

√
2c3g2g3

3ωK3
|ξ3,+〉̇.

The expressions for other states are calculated analogously,
but for the sake of space we omit them here.

One can achieve the JC-like transitions by employing the
hybrid states |ϕm�2,0〉 and |ϕm�2,+〉, which contain approxi-
mately equal contributions of the atomic states |0〉 and |2〉 and
lack the state |1〉. For instance, the three-excitation transitions
between the states |ϕm,−〉 ↔ |ϕm+3,+〉 and |ϕm,−〉 ↔ |ϕm+3,0〉
have the transition rates



( j)
m,−;m+3,+√

m(m + 1)(m + 2)
= − c3g1g2g3

2Km+3(3ω + �1)

[
ε

( j)
1

3ω
+ ε

( j)
2

�1

]
,



( j)
m,−;m+3,0√

m(m + 1)(m + 3)
= c3g2

1g3

2Km+3(3ω + �1)

[
ε

( j)
1

3ω
+ ε

( j)
2

�1

]
.

For the typical scenario g2 > g1 [53], by choosing the mod-
ulation frequency η = λm+3,0 − λm,−, one can achieve the
four-photon JC transition |1, m〉 ↔ |0, m + 4〉, with the tran-
sition rate at least 1 order of magnitude larger than in the
previous section [cf. Eq. (B2)]. However, the price for such
an impressive speed-up is the simultaneous excitation of the
state |2, m + 2〉, whose probability is ∼(g2/g1)2 times smaller
than the probability of the state |0, m + 4〉. As an example,
in Fig. 5 we consider the initial state |1, 0〉 and the same
parameters as in Fig. 4 except for ε2 = 0.2ω, η = 2.289ω,
and �2 = −�1. As expected, the transition rate is roughly
ten times larger than in Fig. 4, so this effect is robust against
moderate dissipation. Mostly the states |1, 0〉 and |0, 4〉 are
populated; the population of the state |2, 2〉 is expected from
the dressed state |ξ4,0〉, and the small probability of three
photons (in the unitary case) arises from other nonresonant
transitions in Eq. (3).

The regime �3 = 0 is also attractive to generate entangled
states with multiple excitations from the initial zero-excitation
state. One possibility is the transition |ϕ0〉 ↔ |ϕ3,+〉 when η ≈
λ3,+, for which



( j)
0;3,+ = c3g2g3

3
√

2K3ω

[
K2

3

�1(3ω − �1)
ε

( j)
1 − ε

( j)
2

]
.

However, only three excitations can be generated in this
case because the resonant modulation frequency goes off
resonance by ∼g2

1/�1 as the number of excitations increases
[see Eq. (14)]. On the other hand, since λm+3,0 − λm,0 =
3ω + O(g2

k/ω), for η ≈ 3ω one expects the generation of a
larger number of photons due to the simultaneous nearly res-
onant transitions |ϕ0〉 ↔ |ϕ3,0〉 ↔ |ϕ6,0〉 ↔ · · · . Notice that
this effect takes place only for cyclic qutrits (as do the
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(ρ
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unitary
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FIG. 5. Four-photon JC-like transition to the hybrid state |ϕ4,0〉.
Unitary (thick lines) and dissipative (thin lines) dynamics are shown
for the initial state |1, 0〉. (a) Average photon number and the Man-
del’s factor. (b) Atomic populations. (c) Photon number probabilities
[the probabilities p(3) and p(4) in the presence of dissipation are
omitted for the sake of clarity]. (d) Logarithmic negativity.

one- and three-photon DCEs described in Ref. [49]), since the
associated transition rate reads



( j)
m,0;m+3,0 = c3g1g2g3

6ωKmKm+3
ε

( j)
2

√
(m − 1)(m + 1)(m + 3)

(this expression remains formally valid for m = 0). In Fig. 6
we illustrate the typical unitary dynamics for the parameters of
Fig. 5 except for η = 3.004ω. We see that the atomic level |1〉
remains nearly unpopulated, while the average photon number
oscillates between 0 and 5. The timescale of this effect is com-
parable to the one of the two-photon AJC transition illustrated
in Fig. 1. Moreover, the Q factor becomes negative when 〈n〉
attains its local maxima, indicating a generation of nonclassi-
cal field states. In Fig. 6(c) we also plot the largest photon
number probabilities p(n), demonstrating that Fock states
with up to ten photons become populated. Concerning the
entanglement generation, we observe that both in Figs. 5(d)
and 6(c) logarithmic negativity is mainly above unity, with
the exception of those regions where the mean photon number
approaches zero or an atomic population approaches unity,

0 1 2 3
0

2

4

10-3 g1t
(c)

(b)(a) n Q

0.0 0.5 1.0 1.5
0.0

0.5

1.0

10-3 g1t

p(0)

EN(ρ)
0 1 2 3

0.0

0.4
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10-3 g1t

Pa(2)

0.0 0.5 1.0
0.0

0.2

0.4

p(9)

p(3)

p(7)

p(1)

p(4)

10-3 g1t

0.0 0.5 1.0 1.5 2.0
0.0

0.2 p(6)

10-3 g1t

FIG. 6. Generation of multiphoton entangled states via hybrid
transitions for the initial state |0, 0〉 and the modulation frequency
η ≈ 3ω (without dissipation). (a) Average photon number (thick line)
and the Mandel’s factor (thin line). (b) Atomic populations. (c) Rel-
evant photon number probabilities and the logarithmic negativity.

since each of such conditions implies that the qutrit-cavity
state is almost factorized. In Fig. 5(d) the detrimental effect of
dissipation is clearly visible, though entanglement production
remains possible even for a relatively long time.

V. CONCLUSIONS

It was shown analytically and numerically that coupling a
single cavity mode with a qutrit in the cyclic configuration
can represent a good starting point to realize dynamics that
emulate the ones stemming from the JC and AJC models.
We have proved the possibility of realizing effective n-photon
JC or AJC evolutions, as well as a combined dynamics,
by appropriately modulating the qutrit energy levels in the
dispersive regime. To assess the experimental feasibility of
our proposal we have also considered the presence of Marko-
vian noise, showing a certain level of robustness against
environment-induced fluctuations. Some limitations deriving
from the lowering of the transition rates for high-order JC
models can be overcome by exploring the hybrid transitions in
the regime �1 = −�2, when the JC transition rate increases
substantially at the expense of generating an entangled atom-
cavity state. Finally, we have shown that this feature allows
for a straightforward way of generating entangled states with
multiple excitations starting from the zero-excitation state.
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APPENDIX A: PERTURBATIVE CORRECTIONS

The second-order corrections to the eigenstates are

|0, k〉(2) =
√

(k + 1)(k + 2)

2ω

[
c1g2

1

2ω − �1
+ c3g2

3

3ω − �3

]
|0, k + 2〉 +

√
k(k − 1)

2ω

[
c1g2

1

�1
− c3g2

3

ω − �3

]
|0, k − 2〉

+ c3g2g3
√

(k + 1)(k + 2)

(3ω − �3)(3ω − �1)
|1, k + 2〉 + g2g3

ω − �1

[
k

ω − �3
+ c2c3(k + 1)

3ω − �3

]
|1, k〉 − c2g2g3

√
k(k − 1)

(ω − �3)(ω + �1)
|1, k − 2〉

+ c1c2g1g2
√

(k + 1)(k + 2)

(2ω − �1)(4ω − �3)
|2, k + 2〉 + g1g2

2ω − �3

[
c1(k + 1)

2ω − �1
− c2k

�1

]
|2, k〉 + g1g2

√
k(k − 1)

�1�3
|2, k − 2〉,

|1, k〉(2) = c2g2g3
√

(k + 1)(k + 2)

(2ω − �2)(ω + �1)
|0, k + 2〉 + g2g3

ω − �1

(
k

�2
− c2c3(k + 1)

2ω − �2

)
|0, k〉 + c3g2g3

√
k(k − 1)

�2(3ω − �1)
|0, k − 2〉

+
√

(k + 1)(k + 2)

2ω

(
c1g2

1

�1
+ c2g2

2

2ω − �2

)
|1, k + 2〉 +

√
k(k − 1)

2ω

(
c1g2

1

2ω − �1
+ c2g2

2

�2

)
|1, k − 2〉

+ c3g1g3
√

(k + 1)(k + 2)

�1(3ω − �2)
|2, k + 2〉 + g1g3

ω − �2

(
k + 1

�1
− c1c3k

2ω − �1

)
|2, k〉 + c1g1g3

√
k(k − 1)

(2ω − �1)(ω + �2)
|2, k − 2〉,

|2, k〉(2) = g1g2
√

(k + 1)(k + 2)

�2�3
|0, k + 2〉 + g1g2

2ω − �3

(
c2k

2ω − �2
− c1(k + 1)

�2

)
|0, k〉 + c1c2g1g2

√
k(k − 1)

(2ω − �2)(4ω − �3)
|0, k − 2〉

− c1g1g3
√

(k + 1)(k + 2)

(ω − �3)(ω + �2)
|1, k + 2〉 + g1g3

ω − �2

(
k + 1

ω − �3
+ c1c3k

3ω − �3

)
|1, k〉 + c3g1g3

√
k(k − 1)

(3ω − �3)(3ω − �2)
|1, k − 2〉

+
√

(k + 1)(k + 2)

2ω

(
c2g2

2

�2
− c3g2

3

ω − �3

)
|2, k + 2〉 +

√
k(k − 1)

2ω

(
c2g2

2

2ω − �2
+ c3g2

3

3ω − �3

)
|2, k − 2〉.

The third- and fourth-order corrections are obtained analogously, but we omit the explicit expressions here.
The fourth-order corrections to the eigenfrequencies read

λ
(4)
0,k = kg2

1

�1

{
c1(k − 1)

2ω

[
g2

1

�1
− c3g2

3

ω − �3

]
+ c2g2

2

2ω − �3

[
c1(k + 1)

2ω − �1
− k

�1

]
+ g2

2(k − 1)

�1�3
− λ

(2)
0,k

�1

}

− c1g2
1(k + 1)

2ω − �1

{
k + 2

2ω

[
g2

1

2ω − �1
+ c3g2

3

3ω − �3

]
+ g2

2

2ω − �3

[
k + 1

2ω − �1
− c2k

�1

]
+ c2g2

2(k + 2)

(4ω − �3)(2ω − �1)
+ λ

(2)
0,k

2ω − �1

}

+ g2
3k

ω − �3

{
c2g2

2(k − 1)

(ω − �3)(ω + �1)
− g2

2

ω − �1

[
k

ω − �3
+ c2c3(k + 1)

3ω − �3

]
− c3(k − 1)

2ω

[
c1g2

1

�1
− g2

3

ω − �3

]
− λ

(2)
0,k

ω − �3

}

− c3g2
3(k + 1)

3ω − �3

⎧⎨
⎩

g2
2(k+2)

3ω−�1
+ λ

(2)
0,k

3ω − �3
+ c2g2

2

ω − �1

[
k

ω − �3
+ c2(k + 1)

3ω − �3

]
+ k + 2

2ω

[
c1g2

1

2ω − �1
+ g2

3

3ω − �3

]⎫⎬
⎭,

λ
(4)
1,k = −g2

1(k + 1)

�1

⎧⎨
⎩c1(k + 2)

2ω

[
g2

1

�1
+ g2

2c2

2ω − �2

]
+

g2
3

(
k+1
�1

− c1c3k
2ω−�1

)
ω − �2

+ c3g2
3(k + 2)

�1(3ω − �2)
+ λ

(2)
1,k

�1

⎫⎬
⎭

+ c1g2
1k

2ω − �1

⎧⎨
⎩

(k − 1)
(

g2
1

2ω−�1
+ c2g2

2
�2

)
2ω

+ g2
3(k − 1)

(ω + �2)(2ω − �1)
+

c3g2
3

(
k+1
�1

− k
2ω−�1

)
ω − �2

− λ
(2)
1,k

2ω − �1

⎫⎬
⎭
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+ g2
2k

�2

{
c2(k − 1)

2ω

[
c1g2

1

2ω − �1
+ g2

2

�2

]
+ g2

3

ω − �1

[
k

�2
− c2c3(k + 1)

2ω − �2

]
+ c3g2

3(k − 1)

�2(3ω − �1)
− λ

(2)
1,k

�2

}

− c2g2
2(k + 1)

2ω − �2

⎧⎨
⎩

(k + 2)
(

c1g2
1

�1
+ g2

2
2ω−�2

)
2ω

+ g2
3(k + 2)

(2ω − �2)(ω + �1)
+

c3g2
3

(
k

�2
− k+1

2ω−�2

)
ω − �1

+ λ
(2)
1,k

2ω − �2

⎫⎬
⎭,

λ
(4)
2,k = −g2

2(k + 1)

�2

{
g2

1(k + 2)

�2�3
+ c1g2

1

2ω − �3

[
c2k

2ω − �2
− k + 1

�2

]
+ c2(k + 2)

2ω

[
g2

2

�2
− c3g2

3

ω − �3

]
+ λ

(2)
2,k

�2

}

+ c2g2
2k

2ω − �2

⎧⎨
⎩

g2
1

(
k

2ω−�2
− c1(k+1)

�2

)
2ω − �3

+ c1g2
1(k − 1)

(4ω − �3)(2ω − �2)
+

(k − 1)
(

g2
2

2ω−�2
+ g2

3c3

3ω−�3

)
2ω

− λ
(2)
2,k

2ω − �2

⎫⎬
⎭

+ g2
3(k + 1)

ω − �3

⎧⎨
⎩

g2
1

(
k+1

ω−�3
+ c1c3k

3ω−�3

)
ω − �2

− c1g2
1(k + 2)

(ω + �2)(ω − �3)
+ c3(k + 2)

2ω

(
c2g2

2

�2
− c3g2

3

ω − �3

)
− λ

(2)
2,k

ω − �3

⎫⎬
⎭

+ c3g2
3k

3ω − �3

⎧⎨
⎩ g2

1(k − 1)

(3ω − �2)(3ω − �3)
+

c1g2
1

(
k+1

ω−�3
+ c1k

3ω−�3

)
ω − �2

+
(k − 1)

(
c2g2

2
2ω−�2

+ g2
3

3ω−�3

)
2ω

− λ
(2)
2,k

3ω − �3

⎫⎬
⎭,

where λ
(2)
n,k are the second-order corrections from Eqs. (4)–(6).

APPENDIX B: APPROXIMATE EXPRESSIONS FOR THREE- AND FOUR-PHOTON MODELS

(i) Three-photon models:

J (3)
0,1 ≈ g1

2ω

[
ε

(r)
1

2

(
c1g2

1

�2
1

+ c2g2
2

�1�3
− c3g2

3

2ω2

)
− ε

(r)
2

�1

(
c2g2

2

2�3
+ c3g2

3

3ω

)]
,

A(3)
0,1 ≈ c1g1

4ω2

[
ε

(r)
1

2

(
3c1g2

1

4ω
+ c2g2

2

�2
+ c3g2

3

6ω

)
− ε

(r)
2

(
c2g2

2

4�2
− c3g2

3

3ω

)]
,

J (3)
1,2 ≈ g2

2ω

[
ε

(r)
2

(
c1g2

1

8ω2
+ c2g2

2

2�2
2

− c3g2
3

3ω�2

)
− ε

(r)
1

2

(
c1g2

1

�2�3
+ c2g2

2

�2
2

− c3g2
3

2ω2

)]
,

A(3)
1,2 ≈ c2g2

8ω2

[
ε

(r)
2

2

(
c1g2

1

�1
+ 3c2g2

2

2ω
+ 5c3g2

3

3ω

)
− ε

(r)
1

(
c1g2

1

�1
+ 3c2g2

2

4ω
+ c3g2

3

6ω

)]
,

J (3)
0,2 ≈ g3

2ω2

[
ε

(r)
1

(
−c1g2

1

�1
+ c2g2

2

�2

)
+ ε

(r)
2

(
c1g2

1

2�1
− c2g2

2

2�2
+ c3g2

3�3

ω2

)]
,

A(3)
0,2 ≈ c3g3

40ω3

[
ε

(r)
1

(
c1g2

1 − c2g2
2

) + ε
(r)
2

(
c1g2

1 + 2c2g2
2 + 2c3g2

3

)]
. (B1)

(ii) Four-photon models:

J (4)
0,1 ≈ g2g3

2ω

{
ε

(r)
2

[
g2

1

�1

(
c3

3�1�3
− c1c2

8ω2

)
+ c2g2

2

2ω3
+ 3c2c3g2

3

8ω3

]
− ε

(r)
1

ω

[
g2

1

�1

(
c3�2

9�1�3
+ c1c2

2ω

)
+ c2g2

2

2ω2
+ c2c3g2

3

6ω2

]}
,

A(4)
0,1 ≈ g2g3

2ω3

{
ε

(r)
1

[
c1g2

1

6

(
c3

3�2
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2ω

)
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2

18�2
− c3g2

3

150ω

]
− ε

(r)
2

4

[
c1g2

1

(
c2

4ω
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5�2

)
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2

3�2
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3

3�2

]}
,

J (4)
1,2 ≈ g1g3

2ω

{
ε

(r)
2

[
c1g2

1

48ω3
+ g2

2

�2

(
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5ω2
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3�2�3

)
− c1c3g2

3

4ω3

]
− ε

(r)
1

ω

[
c1g2

1

2ω2
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2

�2

(
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9�2�3

)
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3

6ω2

]}
,

A(4)
1,2 ≈ −g1g3

2ω3

{
ε

(r)
1

6

[
c1c3g2

1

3�1
− c2g2

2

(
c3

3�1
+ c1

2ω

)
+ c3g2

3

25ω

]
+ ε

(r)
2

10

[
c1c3g2

1

2�1
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2

(
c3

�1
+ c1

9ω

)
+ c3g2

3

�1

]}
,
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J (4)
0,2 ≈ g1g2

2ω

{
ε

(r)
1

[
−c1g2

1 + c2g2
2

2�1�2�3
+ g2

3

ω2

(
c1c2

ω
+ c3�3

4�1�2

)]
+ ε

(r)
2

[
c1g2

1

8�1ω2
+ c2g2

2

2�1�2�3
+ g2

3

ω

(
c3

�1 − �2

3�1�2�3
− c1c2

2ω2

)]}
,

(B2)

A(4)
0,2 ≈ g1g2

20ω4

{
ε

(r)
1

2

[
c1c2(g2

1 + g2
2) − c3g2

3

(
1

3
− c1c2

)]
− ε

(r)
2

[
c1c2

(
g2

1

10
+ g2

2

3

)
− c3g2

3

5

(
1

3
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)]}
. (B3)

[1] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).
[2] Q. Xie, H. Zhong, M. T. Batchelor, and C. Lee, J. Phys. A 50,

113001 (2017).
[3] D. Braak, Phys. Rev. Lett. 107, 100401 (2011).
[4] Q.-H. Chen, C. Wang, S. He, T. Liu, and K.-L. Wang, Phys. Rev.

A 86, 023822 (2012).
[5] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod.

Phys. 75, 281 (2003).
[6] P. Forn-Diaz, J. Lisenfeld, D. Marcos, J. J. Garcia-Ripoll, E.

Solano, C. J. P. M. Harmans, and J. E. Mooij, Phys. Rev. Lett.
105, 237001 (2010).

[7] P. Forn-Diaz, G. Romero, C. J. P. M. Harmans, E. Solano, and
J. E. Mooij, Sci. Rep. 6, 26720 (2016).

[8] P. Forn-Diaz, J. J. Garcia-Ripoll, B. Peropadre, J.-L. Orgiazzi,
M. A. Yurtalan, R. Belyansky, C. M. Wilson, and A. Lupascu,
Nat. Phys. 13, 39 (2017).

[9] Z. Chen, Y. Wang, T. Li, L. Tian, Y. Qiu, K. Inomata, F.
Yoshihara, S. Han, F. Nori, J. S. Tsai, and J. Q. You, Phys. Rev.
A 96, 012325 (2017).

[10] X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori,
Phys. Rep. 718-719, 1 (2017).

[11] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J.
Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hummer, E. Solano,
A. Marx, and R. Gross, Nat. Phys. 6, 772 (2010).

[12] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and
K. Semba, Nat. Phys. 13, 44 (2017).

[13] J. Casanova, G. Romero, I. Lizuain, J. J. Garcia-Ripoll, and E.
Solano, Phys. Rev. Lett. 105, 263603 (2010).

[14] O. Di Stefano, R. Stassi, L. Garziano, A. Frisk Kockum, S.
Savasta and F. Nori, New J. Phys. 19, 053010 (2017).

[15] J. Casanova, R. Puebla, H. Moya-Cessa, and M. B. Plenio, npj
Quantum Inf. 4, 47 (2018).

[16] I. Travenec, Phys. Rev. A 85, 043805 (2012).
[17] V. V. Albert, G. D. Scholes, and P. Brumer, Phys. Rev. A 84,

042110 (2011).
[18] L. Duan, Y.-F. Xie, D. Braak, and Q.-H. Chen, J. Phys. A 49,

464002 (2016).
[19] E. Lupo, A. Napoli, A. Messina, E. Solano, and I. L. Egusquiza,

arXiv:1807.08674.
[20] E. Barnes and S. Das Sarma, Phys. Rev. Lett. 109, 060401

(2012).
[21] B. Sriram Shastry, J. Phys. A 38, L431 (2005).
[22] H. K. Owusu and E. A. Yuzbashyan, J. Phys. A 44, 395302

(2011).
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