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Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical system
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We propose and analyze an efficient scheme for realizing high-sensitive mass sensor in a quadratically
coupled optomechanical system via nonlinear second-order sideband process. This is achieved by exploiting
a well-established optomechanical circumstance, where a degenerate parametric amplifier (DPA) is embedded
into a membrane-in-the-middle cavity driven by a strong control field and a weak probe pulse. Beyond the
conventional linearized approximation, we derive analytical expressions for the efficiency of a second-order
sideband and the sensitivity of a mass sensor by using a perturbation method. In this scheme, an added mass
deposited on the dielectric membrane can be measured by monitoring the efficiency variation of second-order
sideband generation. Using experimentally achievable parameters, we identify the conditions under which
nonlinear gain of DPA allows us to enhance the efficiency of a second-order sideband and improve the sensitivity
of a mass sensor beyond what is achievable in the linearly coupled optomechanical system based on the detection
of mechanical frequency shift. More importantly, we also find that the maximum efficiency of a second-order
sideband and the optimum sensitivity of a mass sensor simultaneously serve as an efficient detection for the
added mass of a membrane when a control field and nonlinear gain of DPA become strong. The present proposal
offers a practical opportunity to design an all-optical nonlinear mass sensor at the picogram level.
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I. INTRODUCTION

Cavity optomechanics [1], arming to combine an optical
degree of freedom with mechanical degree of freedom via a
radiation-pressure force, has been an active disciplinary field
for exploring the boundary between quantum and classical
physics. It is known that, based on the feedback-backaction
of radiation-pressure force, the effective frequency of opti-
cal cavity ω(x) = ωc + ω f (x) in all optomechanical systems
is characterized by a superposition of the intrinsic cavity
frequency ωc and the frequency shift of cavity ω f (x) =
∂ω
∂x x + 1

2
∂2ω
∂x2 x2, in which ω f (x) originates from the linear and

quadratic optomechanical coupling between optical and me-
chanical degrees of freedom [2]. In the linear optomechanical
coupling regime, the effective frequency of a cavity is approx-
imatively proportional to the displacement of a mechanical
mode: ω(x) ∝ x. It enables a direct measurement for the dis-
placement of a mechanical mode [3]. Particularly, as the
linear optomechanical coupling reaches a radiation-pressure
strong-coupling regime, a variety of optical phenomena have
been theoretically and experimentally discovered, such as op-
tomechanically induced transparency (OMIT) [4,5], sideband
cooling of mechanical resonator [6–8], higher-order sideband
generation [9–15], and the production of squeezed states
[16–21].

Recently, an optomechanical device featuring pure
quadratic optomechanical coupling has been fabricated in
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the high-finesse Fabry-Pérot cavity [22–24], where a flexible
dielectric membrane is accurately positioned at a node or
antinode of the intracavity standing wave. One advantage
of this quadratically coupled optomechanical system is the
quantum nondemolition readout of a membrane energy eigen-
state [22,23,25], which arises from a linear relation between
the position-dependent cavity frequency and the square dis-
placement of the membrane, i.e., ω(x) ∝ x2. This quadratic
optomechanical coupling has been used to induce unique
optical phenomena including two-phonon OMIT [26,27] and
amplification [24,28,29], quantum phase transition [30], and
the preparation of squeezed states and superposition states
[31–34].

On the other hand, the special structure of cavity optome-
chanics, which consists of the high-Q optical cavity and the
small mass of a mechanical object, has provided an excel-
lent platform for studying manipulation of output light and
developing high-precision measurement for electrical charge,
mass, and weak force [35–50]. Note that all of these precision
measurements in optomechanical system are designed by
seeking the correlations between output spectra and measured
physical quantities. For example, several groups [35–38] pre-
sented the electrical charge detection in a linear optomechan-
ical system, where the mechanical oscillator is coupled to
an adjoining charged body via Coulomb interaction. Then
one found that the probe transmission or sideband spectrum
depends crucially on the electrical charges, which leads to
a correlation between the electrical charges and the output
spectrum. Other schemes [39–43] about all-optical mass sen-
sors were also proposed by establishing a direct relationship
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between the mass change of a mechanical resonator and the
frequency shift of the output spectrum in a linear optome-
chanical microresonator. More interestingly, in comparison
with precision measurement in an electrical device, all-optical
measurement in an optomechanical device has ultralow heat
loss, broadband frequency of the detection region, and higher
accuracy.

It is worth noting that the detection capability of an op-
tomechanical device is always governed by few noise pro-
cesses that cause the fluctuation of the output spectrum and the
uncertainty while detecting targets. Two main noise sources of
cavity optomechanics are extrinsic and intrinsic noises [51].
Although it is very difficult to avoid these noise processes in
precision measurement, there are several effective methods for
reducing the noise levels. First, extrinsic noise in the form
of detection noise can be suppressed by making use of a
nonlinear parametrically driven sensor and other sophisticated
readout equipments [45–47,52]. Second, the composition of
intrinsic noise mostly includes mechanical thermal noise,
Brownian motion of mechanical elements, and photon shot
noise. By employing the advanced techniques of sideband
cooling and squeezed light in an optomechanical system,
these intrinsic noises can be reduced to a low-noise level,
even to below the standard quantum limit [6–8,20,21,31,49].
Based on these technical achievements, it reminds us of one
question: Could high-precision measurement for the added
mass and the eigenenergy of a membrane be achieved in the
quadratically coupled optomechanical system?

In this paper, we demonstrate that a quadratically cou-
pled optomechanical system assisted by DPA is suggested
to realize the all-optical nonlinear mass sensor. This scheme
involving a nonlinear second-order sideband is dependent
upon an observable correlation between the added mass of a
mechanical object and the efficiency variation of an output
sideband spectrum. Using experimentally achievable param-
eters, our results illustrate that the nonlinear gain of DPA
allows us to enhance the efficiency of a generated second-
order sideband and improve the sensitivity of nonlinear mass
measurement. In the presence of a strong control field and
DPA, it is found that the maximum efficiency of a second-
order sideband and the corresponding optimum sensitivity
simultaneously serve as an efficient monitor for the added
mass and the eigenenergy of membrane. From the viewpoint
of application, the present optomechanical system is suitable
for establishing an all-optical mass sensor at the picogram (pg)
level.

In comparison with previous work [29], we emphasize
that, differently from the mechanism of two-phonon sideband
amplification induced by an external mechanical pump in
Ref. [29], the enhanced second-order sideband in the present
scheme is achieved as a result of DPA-induced nonlinear
parametrical process. With the help of a nonlinear paramet-
rical process, we analyze that DPA-induced noise squeezing
and cooling have a robust ability for resisting various noises
in the process of mass detection. But the previous work
in Ref. [29] aims only at amplifying a nonlinear sideband
spectrum by employing an external mechanical pump. This
external mechanical pump carries an amount of mechanical
thermal noise, which is unsuitable for the precision measure-
ment of ultrasmall mass.

FIG. 1. Schematic diagram of a quadratically coupled optome-
chanical system. A DPA is embedded in the optomechanical cavity,
while a thin dielectric membrane is located at an antinode of the
cavity field. This quadratically coupled optomechanical system is
driven by a strong control field (with frequency ωd ) and a relatively
weak probe pulse (with frequency ωp).

II. THEORETICAL MODEL AND BASIC
EQUATIONS IN THE QUADRATICALLY

COUPLED OPTOMECHANICAL SYSTEM

As schematically shown in Fig. 1, a quadratically cou-
pled optomechanical setup is made up of two fixed high-
finesse mirrors separated from each other by a distance L
and a thin dielectric membrane with angular frequency ωm,
effective mass mm, and finite reflectivity R. The DPA em-
bedded in the optomechanical cavity is expected for am-
plifying nonlinear optical responses of system and reducing
mechanical thermal noise and photon shot noise. As verified
in Refs. [20,49,53], the operating mechanism of DPA is
standard two-photon squeezing. The optomechanical system
assisted by DPA provides an excellent circumstance, where
the squeezed state transfers between a photon of a cavity field
and a phonon of mechanical mode. When this quadratically
coupled optomechanical system is driven by the input field
Sin = εd e−iωd t + εpe−iωpt (εd,p and ωd,p denote the ampli-
tudes and center frequencies of the continuous-wave control
field and probe pulse, respectively), a radiation-pressure force
acts on the movable membrane and triggers the generation
of quadratic optomechanical coupling by ensuring that the
membrane is located at an antinode of the intracavity field.
Then the effective frequency of the cavity is approximated to
the second-order term of displacement: ω(x) = ωc + 1

2
∂2ω
∂x2 x2.

The quadratic optomechanical coupling constant is defined as

G = 1
2

d2ω
dx2 |x=0 = 8π2c

Lλ2
d

√
R

1−R [2,26] with the speed of light c in

vacuum and the wavelength of control field λd .
In a rotating frame at the frequency of control field ωd , we

begin our analysis by writing the interaction Hamiltonian of
the quadratically coupled optomechanical system:

Ĥint = p̂2

2m
+ 1

2
mω2

mx̂2 + h̄�câ†â + ih̄
√

ηLκεd (â† − â)

+ h̄Gâ†âx̂2 + ih̄
√

ηLκεp(â†e−i�pt − âei�pt )

+ ih̄Ga(â†2e−i�pt eiθ − â2ei�pt e−iθ ). (1)

The first two terms in the above Hamiltonian represent the
energy of a membrane, where x̂ and p̂ are the position and
the momentum operators of a membrane, respectively. â
(â†) denotes the bosonic annihilation (creation) operator of
the cavity mode. The corresponding frequency detunings are
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defined as �c = ωc − ωd and �p = ωp − ωd . In the DPA, we
assume that this DPA with a second-order nonlinearity crystal
is excited by a pump driving with the frequency ωp + ωd and
the phase θ , so that the signal light and the idler light in DPA
have the same frequency 1

2 (ωp + ωd ). Ga is the nonlinear gain
of DPA, which can be controlled and adjusted by the pump
driving [54,55]. The total mass of membrane m = mm + δm

includes the intrinsic membrane mass mm and the added mass
δm. Usually, this added mass deposited onto the surface of a
membrane modifies the nonlinear dynamics of a membrane
and the interaction between optical and mechanical degrees of
freedom and ultimately results in an obvious variation in lin-
ear and nonlinear output spectra. In addition, the amplitudes
εd,p of the control field and probe pulse can be normalized to a
photon flux at the input of the cavity [4], εd,p = √

Pd,p/h̄ωd,p,
with control field and probe pulse powers Pd,p. The total
loss rate is described as κ = κ0 + κL + κR with an intrinsic
loss rate κ0 and an external loss rate of left (right) mirror
κL = ηLκ (κR = ηRκ), where the coupling parameter ηL,R can
be continuously adjusted [56].

It is well known that, taking the cavity damping and the
dissipation process into consideration, the motion dynamics
for all of the optomechanical system can be fully described
by the Heisenberg-Langevin equations. After employing some
shorthand definitions for the Heisenberg operators, X̂ = x̂2,
P̂ = p̂2, and Q̂ = x̂ p̂ + p̂x̂, one readily obtains the following
Heisenberg-Langevin equations:

∂t â = −
[κ

2
+ i(�c + GX̂ )

]
â + 2Gaâ†e−i�pt eiθ

+√
ηLκ (εc + εpe−i�pt ) + √

ηLκ âin, (2)

∂t x̂ = p̂

m
, (3)

∂t p̂ = −mω2
mx̂ − �m p̂ − 2h̄Gâ†âx̂ + F̂th, (4)

∂t X̂ = Q̂

m
, (5)

∂t P̂ = −(
2h̄Gâ†â + mω2

m

)
Q̂ − 2�mP̂ + F̂ ′

th, (6)

∂t Q̂ = −(
4h̄Gâ†â + 2mω2

m

)
X̂ − �mQ̂ + 2P̂

m
, (7)

where the decay rate κ of the cavity field and the damping
�m of the mechanical mode are phenomenologically added in
above equations. âin is the input vacuum noise operator, while
F̂th represents the thermal bath operator of mechanical mode.
The expectation values of the two noise operators are zero:
〈âin(t )〉 = 0 and 〈F̂th(t )〉 = 0. Their correlation functions are
governed by 〈âin(t )â†

in(t ′)〉 = δ(t − t ′) and 〈F̂th(t )F̂th(t ′)〉 =
h̄�mm

2π

∫
ωe−iω(t−t ′ )[1 + coth ( h̄ω

2kBT )] dω with the Boltzmann

constant kB [57]. Note that F̂ ′
th in Eq. (6) represents the

derivation of the thermal mechanical operator F̂th and has
the form F̂ ′

th = p̂F̂th + F̂th p̂. Its expectation value is 〈F̂ ′
th(t )〉 =

�m(1 + 2nth)h̄mωm, in which nth = [exp(h̄ωm/kBT ) − 1]−1 is
the mean thermal phonon number at the thermal equilibrium
between the membrane and the thermal environment with
temperature T (see the Appendix). For simplicity, we don’t
consider the phase-dependence effect of DPA and assume
θ = 0.

According to the perturbation method used in Ref. [29],
the expectation values of the operators in Eqs. (2)–
(7) can be expressed as the perturbation forms of
a(t ) = a0 + ∑

n (A−
n e−ni�pt + A+

n eni�pt ) and O(t ) = O0 +∑
n (One−ni�pt + O∗

neni�pt ) (O = X, P, Q), in which A−
n (A+

n )
is the amplitude of n-order upper (lower) sideband with
the integer n being the order of sideband. By taking
these perturbation forms into Eqs. (2)–(7) and comparing
the coefficients of the same order, the steady-state solu-
tions of Eqs. (2)–(7) can be obtained as [a0, X0, P0, Q0] =
[
√

ηLκεc
κ
2 +i�̄c

, P0
m2ω2

m (1+2α) , (1 + 2nth) h̄mωm
2 , 0] with �̄c = �c + GX0

and α = h̄G|a0|2
mω2

m
, while the amplitudes of the first-order side-

band and second-order upper sideband are given as

A−
1 = i|a0|2β1(�p) + β2(�p)

D(�p)
(
√

ηLκεp + 2a∗
0Ga), (8)

A+
1 = ia2

0β
∗
1 (�p)

D∗(�p)
(
√

ηLκεp + 2a0Ga), (9)

A−
2 = 1

D(2�p)
{2Ga(A+

1 )∗[β2(2�p) + i|a0|2β1(2�p)]

+β3(2�p)(A+
1 )∗X1 + β4(2�p)A−

1 X1

+ ia0 f2(2�p)β1(2�p)(A+
1 )∗A−

1 }, (10)

with

f1(n�p) = κ

2
+ i�̄c − in�p,

f2(n�p) = κ

2
− i�̄c − in�p,

f3(n�p) = 2�m − in�p,

f4(n�p) = (4α + 2)ω2
m − in�p(�m − in�p),

β1(n�p) = 4G2 h̄X0
f3(n�p)

m f2(n�p)
,

β2(n�p) = f3(n�p) f4(n�p) − i(4α + 2)n�pω
2
m,

β3(n�p) = 4�ph̄G2a2
0/m + 4ih̄G2a2

0 f3(n�p)/m

− Ga2
0β1(n�p),

β4(n�p) = 4�ph̄G2|a0|2/m + 4ih̄G2|a0|2 f3(n�p)/m

+ G|a0|2β1(n�p) − iGβ2(n�p),

D(n�p) = −2�̄|a0|2β1(n�p) + f1(n�p)β2(n�p),

X1 = −a∗
0 f2(�p)β1(�p)

GD(�p)
(
√

ηLκεp + 2a∗
0Ga).

Subsequently, we concentrate on the output fields that
transmit through the left mirror of the cavity. According to
the input-output relation of the cavity, we have the output
transmission spectrum as

Sout = √
ηLκa − SI

in = c1 + cpe−i�pt + √
ηLκA+

1 ei�pt

+√
ηLκ

n∑
z=2

(A−
z e−zi�pt + A+

z ezi�pt ), (11)

with c1 = √
ηcκa0 − εc and cp = √

ηcκA−
1 − εp. SI

in is the
transformation form of Sin in a rotating frame of control field
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frequency. We introduce the dimensionless quantity [9,58]

η2 =
∣∣∣∣
√

ηcκA−
2

εp

∣∣∣∣, (12)

which refers to the efficiency of the second-order upper side-
band, in which the amplitude of the probe pulse is treated as a
basic scale to gauge the amplitude of the output sideband η2.

Now, we turn to study the realization of a highly sensitive
mass sensor. Although the mechanical object of an optome-
chanical system has minuscule mass (about 10−11–10−20 kg),
it has a significant influence on optical feedback cooling,
transmission spectrum, and sideband spectrum [1–5,9–13].
It may provide the possibility to measure the added mass
deposited on the surface of a mechanical object by monitoring
the efficiency variation of a second-order sideband. There are
two reasons why the second-order sideband is chosen as the
detection signal in nonlinear mass sensor: (1) Comparing with
linearly mass detection techniques, the mass sensor operating
in a nonlinear parametrical region has a great performance on
enhancing a nonlinear output signal without amplifying input
thermomechanical noise, which is favorable for improving the
signal-to-noise ratio [47]. (2) In the nonlinear output spectra,
the intensity of a second-order sideband is always stronger
than the other higher order sideband signals, which is benefi-
cial for the observation of output signal in an experiment.

In order to evaluate the influence of the added mass on
second-order upper sideband η2, a similar definition used in
Ref. [40] for the sensitivity of mass sensor is

S =
∣∣∣∣ dη2

dδm

∣∣∣∣. (13)

The sensitivity indicates the spectrum slope of a second-order
sideband with respect to the mass change. More specifically,
this sensitivity exhibits the identification ability for the mass
change of a membrane in a mass detection process. When a
tiny mass deposited on the membrane is measured, the higher
the detection sensitivity is, the more obvious the change
of an output second-order sideband signal is. It should be
noted that the sensitivity mentioned above merely depends
on the efficiency variation of second-order sideband efficiency
without considering system noise processes. How to exclude
the disturbance of system noise processes in a mass sensor
will be introduced in Sec. IV.

Based on the above theoretical derivation of the efficiency
of a second-order upper sideband and the detection sensitivity,
the detailed measurement process in a mass sensor can be
illustrated as follows: (1) after the added mass is deposited
on the dielectric membrane, a cavity optomechanical system
is driven by the strong control field with fixed frequency
detuning �c = 2ωm, while DPA is driven by a weak pump
driving; (2) we apply another probe pulse to scan across the
optomechanical cavity, then detect the nonlinear transmission
spectrum. By using a similar heterodyne detection scheme as
in Ref. [59], the intensity of the second-order sideband can be
easily obtained.

It should be emphasized that the currently outstanding
technique allows us to integrate a flexible micromechanical
object into a high-finesse cavity without compromising
the mechanical and optical properties. Experimentally, the
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FIG. 2. (a) The steady-state solution of GX0 and (b) the eigenen-
ergy of a membrane versus the added mass δm for different control
field intensities Pd = 50 μW, 80 μW, and 150 μW. Other param-
eters are mm = 100 pg, ωm = 2π × 0.1 MHz, Q = ωm/�m = π ×
104, L = 67 mm, T = 50 K, κ = 0.2ωm, �c = 2ωm, ηL = 0.499,
and εp = 0.05εc, respectively.

quadratically coupled optomechanical system has been re-
ported in the recent Ref. [22], in which the membrane is
movable with angular frequency ωm = 2π × 0.1 MHz, mass
mm = 100 pg, reflectivity R = 0.45, and mechanical quality
factor Q = ωm/�m = π × 104. The cavity length L and total
loss rate of cavity field κ are estimated to be 67 mm and
0.2ωm, respectively. In this scenario, we assume the wave
length of control field λd = 2πc/ωd = 532 nm and the cavity
mode detuning �c = 2ωm for building a two-phonon reso-
nance case in the quadratic optomechanical coupling circum-
stance.

III. NUMERICAL RESULTS AND DISCUSSIONS

Within the above practical parameter set, first we ana-
lyze the influence of the load mass of a membrane on the
steady-state solution of system. Therefore, Fig. 2 shows the
steady-state solution of GX0 and the eigenenergy of membrane
P0
2m + 1

2 mω2
mX0 versus the added mass δm for three different

control field intensities Pd = 50 μW, 80 μW, and 150 μW.
Associating Fig. 2(a) with Fig. 2(b), one can find that, as
the added mass δm increases, the steady-state solution of
GX0 in Fig. 2(a) decreases monotonically, while the eigenen-
ergy of the membrane in Fig. 2(b) increases monotonically.
Accordingly, the added mass change in the quadratically
coupled optomechanical system has a prominent influence on
the steady-state solution of the system and the eigenenergy
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FIG. 3. (a) The efficiency η2 of a second-order upper sideband
and (b) the sensitivity S (in units of pg) of a mass sensor as a
function of the probe-pulsed detuning �p for different control field
intensities Pd = 50 μW (blue dashed line), 80 μW (red dotted line),
and 150 μW (black solid line). Other parameters are the same as in
Fig. 2 except for δm = 0 pg and Ga = 0.

of the membrane. From Fig. 2(b), it also shows that, for
a fixed added mass, the lowest eigenenergy of membrane
occurs in the case of the maximum control field driving with
Pd = 150 μW. The above interesting result comes from the
sideband cooling effect. When the red detuning control field
becomes strong, the sideband cooling process of a membrane
increases spontaneously [31], causing this decrease of the total
energy of membrane. It is worth noting that, based on the
premise of mass detection, it may provide a possibility to
measure the eigenenergy of a membrane by the functional
relationship between the added mass and eigenenergy of a
membrane in Fig. 2(b). Now we start to seek the optimized
correlation between the output second-order sideband and
the added mass deposited on the dielectric membrane. In
Fig. 3 we show that the efficiency η2 of a second-order upper
sideband and the sensitivity S of a mass sensor vary with the
probe-pulsed detuning �p without the participation of DPA:
Ga = 0. From the three spectrum lines of Fig. 3 with different
control field intensities (Pd = 50 μW, 80 μW, and 150 μW),
one can find that two located peaks of second-order sideband
spectra in Fig. 3(a) appear on both sides of a low-efficiency
valley. Correspondingly, the sensitivity S exhibits one located
maximum [see points A, B, and C labeled in Fig. 3(b)]. As
the control field intensity increases from 50 μW to 80 μW
and then to 150 μW, the maximums of both the efficiency

η2 and the sensitivity S have an obvious enhancement, and
the positions of these maximums shift toward blue detuning
of the probe pulse. In detail, in the case of Pd = 50 μW in
the blue dashed spectra of Figs. 3(a) and 3(b), the maximum
sensitivity S is located at point A (2.031ωm, 0.319%), while
the corresponding efficiency η2 is located at the low-efficiency
valley, point A′ (2.031ωm, 3.089 × 10−4). For the case of
Pd = 80 μW in the red dotted spectra of Figs. 3(a) and 3(b),
the maximum sensitivity S is located at point B (2.053ωm,
0.4232%), while the corresponding efficiency η2 becomes
point B′ (2.053ωm, 2.336 × 10−2). If the intensity of the
control field reaches 150 μW in the black solid spectra of
Figs. 3(a) and 3(b), the maximum sensitivity S is point C
(2.1ωm, 1.007%), while the corresponding efficiency η2 is
near the peak position at point C′ (2.1ωm, 4.556 × 10−2). Ob-
viously, both the sensitivity and the corresponding efficiency
of a second-order sideband can be simultaneously maximized
by employing a strong control driving, Pd = 150 μW, which
is favorable for designing the high-sensitive mass sensor.

We know that DPA in an optomechanical system has
versatile performance for the manipulation of output spectrum
[54] and the strong squeezing and sideband cooling of a
mechanical mode [20,55]. To explore the role of DPA in this
mass sensor, we illustrate the efficiency η2 of a second-order
upper sideband and the sensitivity S of a mass sensor versus
the probe-pulsed detuning �p with different nonlinear gain Ga

in Figs. 4(a) and 4(b). There are two main characteristics for
the efficiency η2 and the sensitivity S. First, when the non-
linear gain Ga of DPA increases from 0.1κ to 0.6κ , both the
efficiency η2 in Fig. 4(a) and the sensitivity S in Fig. 4(b) can
be significantly enhanced. Second, whatever nonlinear gain
Ga is to increase, the located maximums of the efficiency η2

and the sensitivity S are still located at the same position of the
probe-pulsed detuning, and the same as that in the black solid
spectrum of Fig. 3. This phenomenon can be explained by per-
turbation theory. Similar to the steady-state solution, the posi-
tions of these located maximums or peaks of sideband spectra
depend merely on the intrinsic structural parameters of an
optomechanical system and the intensity of the control field,
rather than the other perturbation terms including probe pulse
and nonlinear gain of DPA. As a result, the DPA not only im-
proves the sideband efficiency of a second-order sideband and
the sensitivity of a mass sensor, but also keeps the locality of
maximum values of the sideband efficiency and the sensitivity.

In order to give a better insight into the effect of DPA
on the second-order upper sideband, the efficiency η2 of
a second-order upper sideband and the sensitivity S of a
mass sensor versus nonlinear gain Ga of DPA for different
probe-pulsed detunings �p are depicted in Fig. 5. The results
clearly verify that both the efficiency η2 in Fig. 5(a) and
the sensitivity S in Fig. 5(b) increase monotonically with
nonlinear gain Ga increasing. Especially, when nonlinear gain
Ga increases from 0 to 0.6κ in the case of �p = 2.1ωm [see
the red dotted line in Figs. 5(a) and 5(b)], the quadratically
coupled optomechanical system provides an enhancement
of more than six times for both the sideband efficiency η2

and its sensitivity S. Physically, when the DPA is pumped
at twice the frequency of the anti-Stokes field, 1

2 (ωp + ωd ),
the parametric frequency conversion between this anti-Stokes
field and phonon mode of membrane can provide another way
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FIG. 4. (a) The efficiency η2 of a second-order upper sideband
and (b) the sensitivity S (in units of pg) of a mass sensor as a function
of the probe-pulsed detuning �p for the different nonlinear gain Ga

of DPA. Other parameters are the same as in Fig. 2 except for δm =
0 pg and Pd = 150 μW.

to generate an optical second-order sideband, leading to the
enhancement of a second-order sideband.

Up to now, we have identified that the efficiency η2 of
a second-order upper sideband and the sensitivity S of a
mass sensor can be simultaneously optimized by choosing a
strong control driving Pd = 150 μW and a strong excitation
of DPA with nonlinear gain Ga = 0.6κ . Based on such an
optimized parameter set, a natural question is whether or
not this nonlinear mass measurement method is applied to
an arbitrary mass deposited on the dielectric membrane, To
make an intuitional picture that illustrates the functionality
of our proposed mass sensor, we plot the efficiency η2 of a
second-order upper sideband and the sensitivity S of a mass
sensor varying with the probe-pulsed detuning �p and the
added mass δm, as shown in Fig. 6. Associating the efficiency
η2 in Fig. 6(a) with the sensitivity S in Fig. 6(b), it is readily
seen that the evolution tendency of maximum efficiency η2 is
consistent with the maximum sensitivity S. Moreover, as the
added mass δm decreases, both the maximum efficiency η2 and
the corresponding maximum sensitivity S have a remarkable
enhancement. In other words, the smaller the added mass is,
the more sensitive the detection for a nonlinear second-order
sideband spectrum is.

In Fig. 7 we also plot the efficiency η2 of a second-order
upper sideband and the sensitivity S of a mass sensor versus
the probe-pulsed detuning �p for different added mass δm.
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FIG. 5. (a) The efficiency η2 of a second-order upper sideband
and (b) the sensitivity S (in units of pg) of a mass sensor as a function
of the nonlinear gain Ga of DPA for different probe-pulsed detunings
�p. Other parameters are the same as in Fig. 2 except for δm = 0 pg
and Pd = 150 μW.

Although, as illustrated in Figs. 3–5, the efficiency η2 and
the sensitivity S can be enhanced in the optimized parametric
regime, there is a certain extent of mismatching between the
maximum efficiency η2 and the maximum sensitivity S. More
specifically, the sensitivities S labeled by points A, B, and
C in Fig. 7(b) corresponding to the maximum efficiencies
η2 marked by points A′, B′, and C′ in Fig. 7(a) deviate
slightly from the maximum sensitivities (or the peak values)
of Fig. 7(b). In analogy with Fig. 3, the located maximum
efficiency η2 and the corresponding sensitivity S in Fig. 7
exhibit an obvious frequency shift when the added mass
changes. The physical interpretation is that, according to the
perturbation theory, the peak position of sideband spectrum
relies sensitively on the intensity of control field and the
intrinsic structural parameters of optomechanical system
including the mass of membrane.

For our proposed nonlinear mass sensor in the quadrati-
cally optomechanical coupled system, the detection sensitivity
is an important index for the measurement of a nonlinear
second-order sideband spectrum. Due to the existence of mis-
matching between the maximum efficiency and the maximum
sensitivity in the same second-order sideband spectrum as
introduced in Fig. 7, we need to define the optimum sensitivity
of a mass sensor as Sopt that corresponds directly to the max-
imum efficiency ηmax

2 of a second-order upper sideband. By
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FIG. 6. Contour maps of (a) the efficiency η2 of a second-order
upper sideband and (b) the sensitivity S (in units of pg) of a mass
sensor as a function of the probe-pulsed detuning �p and the added
mass δm. Other parameters are the same as in Fig. 2 except for Ga =
0.6κ and Pd = 150 μW.

extracting the maximum efficiency ηmax
2 and the correspond-

ing optimum sensitivity Sopt in the same sideband spectrum,
Fig. 8 shows the maximum efficiency ηmax

2 of a second-order
upper sideband and the optimum sensitivity Sopt of a mass
sensor varying with the added mass δm for different nonlinear
gain Ga of DPA. When the added mass δm increases, the max-
imum efficiency ηmax

2 in Fig. 8(a) and the corresponding opti-
mum sensitivity Sopt in Fig. 8(b) exhibit the overall decrease
trends with an oscillatory variation. Direct comparison of
Fig. 8(a) and Fig. 8(b) implies that the oscillatory variation of
optimum sensitivity Sopt in Fig. 8(b) is more obvious than that
in the maximum efficiency ηmax

2 of Fig. 8(a). In fact, this more
obvious oscillation of the optimum sensitivity results from the
position deviation between the maximum efficiency and the
maximum sensitivity. From the viewpoint of application, the
present optomechanical system, which creates synchronously
the maximum efficiency of a second-order sideband and the
optimum sensitivity, is suitable for the establishment of the
high-sensitive mass sensor. More importantly, the oscillatory
extent of maximum efficiency ηmax

2 depends essentially on
the resolution of a mass sensor, because the overlap region
of maximum efficiency induced by this efficiency oscillation
cannot be distinguished in the present mass sensor based on
the detection of the maximum efficiency variation. That is
to say, if the same maximum efficiency of a second-order
sideband is achieved in two optomechanical environments
with two kinds of added mass, the mass difference between
two kinds of added mass can be regarded as the minimum
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FIG. 7. (a) The efficiency η2 of a second-order upper sideband
and (b) the sensitivity S (in units of pg) of a mass sensor as a function
of the probe-pulsed detuning �p for different added mass δm. Other
parameters are the same as in Fig. 2 except for Ga = 0.6κ and Pd =
150 μW.

resolution of a mass sensor. For instance, in the case of the
mass difference between two points D and D′ in the inset of
Fig 8(a), the resolution of a mass sensor equates to 99.0 pg −
98.6 pg = 0.4 pg. From Fig. 8(a), it is easily checked that
the smaller the added mass of membrane is, the higher the
resolution of mass sensor becomes. Specially for the added
mass within 100 pg, the minimum resolution of a sideband
spectrum reaches 0.4 pg, which enables this mass sensor of
an optomechanical system to achieve a high resolution at the
pg level.

IV. NOISE ANALYSIS AND EXPERIMENTAL FEASIBILITY

Although system noise processes limit the performance
of a high-precision mass sensor, there are various methods
that can suppress these system noise processes and improve
the detection sensitivity. As an example, we analyze how the
photon shot noise is suppressed by using a quantum squeezed
effect in the cavity optomechanical system. According to the
perturbation method of O(t ) = O0 + δO(t ) (O = a, X, P, Q),
δO(t ) is the small fluctuation. By substituting perturbation
forms into Eq. (2), we can obtain the linearized equation for
the fluctuating operators:

∂tδa = −
[κ

2
+ i(�c + GX0)

]
δa − iGaδX

+ 2Gaδa†e−i�pt + √
ηLκain, (14)
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2 of a second-order

upper sideband and (b) the corresponding optimum sensitivity Sopt
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parameters are the same as in Fig. 2 except for Ga = 0.6κ and
Pd = 150 μW.

∂tδX = δQ

m
, (15)

∂tδP = −(
2h̄G|a0|2 + mω2

m

)
δQ − 2�mδP + F ′

th, (16)

∂tδQ = −(
4h̄G|a0|2 + 2mω2

m

)
δX − �mδQ + 2δP

m
− 4h̄G(a0X0δa† + a∗

0X0δa). (17)

Note that the incident fields support the intensity of the output
field, while noise operators ain and F ′

th directly contribute to
the fluctuation of the output field. Here, since we concentrate
only on the quantum fluctuation induced by system photon
shot noise, the incident fields are neglected in Eq. (14), and the
thermomechanical noise F ′

th needs to be excluded by setting
G = 0. In this case, using the slowly varying fluctuation
operators δa = δãe−i�pt/2 and ain = ãine−i�pt/2, Eq. (14) is
rewritten as

∂tδã = −
[
κ

2
+ i�c − i

�p

2

]
δã + 2Gaδã† + √

ηLκ ãin. (18)

Then, by considering a Fourier transform f (t ) =
1

2π

∫ +∞
−∞ f (ω)e−iωt dω for operators δã, δã† and noise source

ãin, one can give the linearized fluctuation equation in the
frequency domain

−iωδã(ω) = −
[
κ

2
+ i�c − i

�p

2

]
δã(ω) + 2Gaδã†(ω)

+√
ηLκ ãin(ω). (19)
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FIG. 9. The quadrature squeezing spectra for output light. Under
the rotating frame of control field frequency ωd , the central frequency
ω = 0 of the x axis corresponds to the position of ωd . Other param-
eters are the same as in Fig. 2 except for G = 0, �p = 2ωm, and
Pd = 150 μW.

The solution for Eq. (19) is derived as

δã(ω) = B2
√

ηLκ ãin(ω) + 2Ga
√

ηLκ ã†
in(ω)

B1B2 − 4G2
a

, (20)

where B1 = κ
2 + i�c − i �p

2 − iω and B2 = κ
2 − i�c + i �p

2 −
iω. The output field of noisy fluctuation is related to
the input noise via the standard input-output relation
δaout (ω) = √

ηLκδã(ω) − ãin(ω). Note that the correlation
of the noise operator in a frequency domain is expressed
as 〈ãin(ω)ã†

in(ω
′
)〉 = 2πδ(ω + ω

′
). By simulating a practical

approach as already used in Refs. [57,60,61], the optimum
quadrature squeezing Sopt (ω) can be obtained as

Sopt (ω) = Cout
aa† (ω) + Cout

a†a(ω) − 2
∣∣Cout

aa (ω)
∣∣, (21)

with the parameter Cout
ξξ ′ (ω) = 1

4π

∫
dω′ei(ω+ω′ )t

〈δξout (ω)δξ ′
out (ω

′) + δξout (ω′)δξ ′
out (ω)〉 (ξ and ξ ′ represent

a or a†). The quadrature squeezing occurs in the condition
of Sopt (ω) < 1, while Sopt (ω) > 1 represents nonsqueezing.
It should be pointed out that Sopt (ω) = 1 corresponds to the
spectra of fluctuation for a vacuum state or coherent light.

In the same cavity optomechanical environment of a non-
linear mass sensor, we plot the quadrature squeezing spectra
in Fig. 9. Actually, the amount of squeezing in the quadrature
squeezing spectra describes the level of photon shot noise.
For example, Sopt (ω) < 1 means that the fluctuation of the
output spectrum is below the standard quantum fluctuations
(or the quantum shot noise limit). In this case, not only the
above second-order sideband signal at the μW level but also
gravitational waves can be efficiently measured [62]. In these
squeezing spectra of Fig. 9, one finds that the amount of
squeezing slightly increases with nonlinear gain Ga increas-
ing. This result indicates that DPA plays an important role
in reducing the level of shot noise. From the three squeezed
spectra, we also find that the amount of squeezing at the fre-
quency of the second-order sideband (i.e., ω � 4ωm) is below
the quantum shot noise limit [i.e., Sopt (ω) < 1[. Consequently,
the present cavity optomehcanical system assisted by DPA is
competent for achieving the all-optical mass sensor.
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In addition to photon shot noise mentioned above, how
to manage the other noise processes in the present optome-
chanical system needs to be introduced. (1) This sophisticated
optomechanical device, which is used to explore the boundary
between quantum and classical physics, should be operated
in the low-temperature environment, which can avoid some
extrinsic and intrinsic thermal noises. (2) The membrane’s
Brownian motion, that is, the dominant mechanical noise,
can be limited by laser precooling [6–8,22]. More specially,
an ultralow membrane’s effective temperature with 6.82 mK
has been realized in the quadratically coupled optomechanical
system, as described in Ref. [22]. In this case, the membrane’
Brownian motion is essentially suppressed, so that the quan-
tum jumps of the membrane can be observed. As a result,
the present optomechanical system has a robust ability for
resisting these noise processes.

Before coming to a conclusion, we give a concise de-
scription of the experimental feasibility of our proposed mass
sensor. For the quadratically coupled optomechanical system,
these achievements of the present proposal including the
nonlinear second-order sideband, the detection for the added
mass, and the membrane energy require a strong quadratic
optomechanical coupling between the cavity field and the
membrane’s displacement. Fortunately, recent experiments
have allowed the quadratic optomechanical coupling to in-
crease several orders of magnitude beyond previous devices
[22–24]. In these works, the special optomechanical systems
are fabricated in a high-finesse Fabry-Pérot cavity with good
mechanical properties (high Q; small m, spring constant k),
in which a SiN membrane is mounted to the waist of the
cavity field. This optomechanical device with high finesse
has an experimental repeatability even when the membrane
is precisely placed at a node or antinode of the cavity field
[22]. In addition, the assisted DPA can be realized by inte-
grating a strong second-order nonlinearity material of lithium
niobate or aluminum nitride into an optomechanical cavity
[63–65]. Based on the excellent second-order nonlinear prop-
erty of lithium niobate and the present mature deposition
technology, a stable, narrow-line tunable, low-threshold op-
tical parametric oscillator was experimentally reported in a
whispering gallery mode resonator [63]. This report opens
the possibility to combine the nonlinearity crystalline ma-
terials with an optomechanical system. Moreover, the mea-
sured sample of a micro- and nanoscale particle, such as
single biomolecules, viruses, and nanoparticles, can be safely
placed on the dielectric membrane without the additional
interaction [39,40,66]. We believe that this nonlinear all-
optical mass sensor is feasible under the existing experimental
techniques of an optomechanical cavity with microstructured
materials.

V. CONCLUSION

In conclusion, we have performed a theoretical analysis for
realizing a high-sensitive mass sensor in the quadratically cou-
pled optomechanical system. In this membrane-in-the-middle
optomechanical configuration, the DPA is embedded into the
optomechanical cavity driven by a strong control field and a
weak probe pulse. By employing the perturbation method, we
derive explicitly analytical expressions for the efficiency of

a second-order sideband and the sensitivity of a mass sensor
beyond the conventional linearized approximation. Compar-
ing with the other state-of-the-art ultrasmall mass sensor, like
the single optical detection and the electrical measurement,
our proposed nonlinear mass sensor has several advantages.
First, with the aid of a DPA-induced nonlinear parametrical
process, our results show that nonlinear gain of DPA allows
us to enhance the efficiency of a second-order sideband and
improve the sensitivity of a nonlinear mass sensor beyond
what is achievable in the linearly coupled optomechanical
system based on the detection of mechanical frequency shift.
Second, in the process of nonlinear mass detection, a cavity
optomechanical system assisted by DPA has a robust ability
for resisting various noises. Third, due to the compact micron-
scale optical structure, this cavity optomechanical device
emerges as an excellent platform for realizing large-scale inte-
gration. Fourth, considering the readability of the membrane’s
energy eigenstate in the quadratically coupled optomechanical
system, this nonlinear mass sensor can be used to provide an
additional functionality for detecting the energy of a mem-
brane. Finally, this nonlinear mass sensor based on monitoring
the efficiency variation of a second-order sideband can reach
a high resolution at the pg level. Consequently, these results
illustrate the potential to utilize the nonlinear dynamics of the
quadratically coupled optomechanical system for designing
an all-optical nonlinear mass detector.
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APPENDIX

If the operator b̂ (b̂†) is used to describe the quantization
for the position and momentum operators of the membrane
via a relationship of b̂ = (b̂†)† = √

mωm/2h̄(x̂ + i p̂/mωm) in
the quadratically coupled optomechanical system, we have
motion equations of operators b̂ and b̂† as

∂t b̂ = − ih̄Gâ†â

mωm
(b̂† + b̂) − iωmb̂ − �mb̂ + b̂in, (A1)

∂t b̂
† = ih̄Gâ†â

mωm
(b̂ + b̂†) + iωmb̂† − �mb̂† + b̂†

in, (A2)

where b̂in (b̂†
in) is the annihilation (creation) operator of ther-

mal noise. To simplify the above differential equations (A1)
and (A2), we assume G = 0. Then under a rotating frame at
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the frequency of ωm by employing b̂ = b(t )e−iωmt , the general
solution of Eqs. (A1) and (A2) can be given as

b(t ) = b(0)e−�mt +
∫ t

0
dt ′e−�m (t−t ′ )bin(t ′), (A3)

b†(t ) = b†(0)e−�mt +
∫ t

0
dt ′e−�m (t−t ′ )b†

in(t ′). (A4)

Comparing Eqs. (A1) and (A2) with Eq. (4), one can

find F̂th = −i
√

mh̄ωm
2 (b̂in − b̂†

in). Based on the general so-
lution in Eqs. (A3) and (A4) and the relationship p̂ =
−i

√
mh̄ωm

2 (b̂ − b̂†), we also obtain

p(t ) = p(0)e−�mt +
∫ t

0
dt ′e−�m (t−t ′ )Fth(t ′). (A5)

According to the Heisenberg-Langevin equation, the dynami-
cal motion of square-momentum operator P̂ can be expressed

as

∂t P̂ = (∂t p̂) p̂ + p̂(∂t p̂) = −(
mω2

m + 2h̄Gâ†â
)
(x̂ p̂ + p̂x̂)

− 2�m p̂2 + F̂ ′
th, (A6)

where the noise operator F̂ ′
th = F̂th p̂ + p̂F̂th originates from

the derivation of the thermal mechanical operator F̂th.
Next, we turn to solve the expectation value of 〈F̂ ′

th(t )〉.
By using the general solution of Eq. (A5) and F̂th =
−i

√
mh̄ωm

2 (b̂in − b̂†
in), we have

〈F̂ ′
th(t )〉 = 〈F̂th(t ) p̂(t )〉 + 〈p̂(t )F̂th(t )〉 = 2p(0)〈F̂th(t )〉e−�mt

+ 2
∫ t

0
dt ′e−�m (t−t ′ )〈F̂th(t )F̂th(t ′)〉

= 2�m(2nth + 1)
mh̄ωm

2
. (A7)

In the above formula derivation, the noise correlation
functions associated with the input fluctuations are
given by 〈b̂in(t ), b̂†

in(t ′)〉 = 2�m(nth + 1)δ(t − t ′) and
〈b̂†

in(t ), b̂in(t ′)〉 = 2�mnthδ(t − t ′) with the mean thermal
phonon number nth.
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