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Frequency-resolved quantum correlation of resonance fluorescence is investigated in a two-atom radiating
system. In this quantum radiating system, only one atom is driven by a laser field, and the spontaneous transition
of the undriven atom resonates with one of the Rabi sidebands of the driven atom. A single-mode empty cavity
is applied to serve as a Lorentzian filter to output the superbunched fluorescent photon pairs when its frequency
is tuned to halfway between the central peak and one of the side peaks. In the case of large filter width, two-
photon correlation signal and its physical correspondence can be bridged analytically in our approach. It reveals
that this superbunching effect turns out to be the constructive quantum interference between a pair of coupled
two-photon cascaded transitions. Ulteriorly, it is the consequence of the modulations of the unfiltered dressed-
state transition amplitudes by the filter. Our analytical formalism also shows that, although the dipole-dipole
interaction is usually weak, the interatomic coherence caused by this weak perturbation can also play a crucial
role in breaking through the superbunching limit obtained from a single two-level atom in the same parameter
regime. In addition to being a treasurable quantum pump to probe into the target quantum system, it is also
found in our investigation that this superbunched fluorescence can serve as a promising quantum response in
detecting this weak perturbation in the interior of the quantum source. A general case is also considered when
the two-atom radiating system is monitored by two filter-detector monitoring systems. It is found that this filtered
strong quantum correlation can be maintained even though the two photons are spatially separated.
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I. INTRODUCTION

With the frequency filtering and engineering techniques
gradually opening up a promising perspective for resonance
fluorescence [1–5] and cavity-quantum electrodynamics [6,7],
frequency-resolved quantum correlation has attracted con-
siderable attention in recent years. On the one hand, as a
treasurable source of correlated photons, frequency-resolved
resonance fluorescence deeply reveals the underlying phys-
ical scenario of quantum emitter radiating photons in fre-
quency and time domains [8–14]. On the other hand, it
also serves as a promising quantum excitation from a quan-
tum light source to drive another target quantum system
[15,16], triggering a burgeoning field called “Mollow spec-
troscopy” [17]. Recently, an inconspicuousness in Mollow
spectroscopy has been excavated that superbunching effect
can be achieved from halfway between the central peak and
each side peak in Mollow spectrum [8,17]. This effect is
attributed to the leapfrog transitions involving virtual states
[8,18] or the frequency postselection [19]. Undoubtedly, the
superbunched fluorescence built up from this mechanism car-
ries considerable potential applications. For example, it can
not only provide a highly sensitive quantum signal in detecting
weak interaction between light and atoms [17,20], but also
serve as a popular quantum entanglement source to prepare
strong correlated photon pairs. Recently, it has been verified
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experimentally that this frequency-resolved strong correlated
photon pair is able to violate the Cauchy-Schwarz inequality
and Bell’s inequality [21–23].

However, in order to output the filtered fluorescence with
the desired frequency, how to tackle the frequency filtering
theoretically is also another main topic. The complete and
primitive description of filtering process requires that the orig-
inal fluorescent filed operator E (t ) of the quantum radiating
source should be dressed into the filtered filed operator E f (t )
by the filtering function as E f (t ) = ∫ ∞

0 f (λ, ω f , τ )E (t −
τ )dτ [24–26] with λ and ω f being the filter pass-band
width and filter setting frequency. However, unfortunately,
this exquisite description may also lead to extensive con-
siderations of time orderings and mathematical complexity.
Concerned with this topic, del Valle et al. have carried on
a systematic research and proposed a pioneering sensors
method in weak coupling regime between quantum emitter
and sensors [27]. On the one hand, this weak coupling regime
is, physically, to eliminate the reactions of the filter to the
quantum emitter, retaining only the incident effects of the
emitted photons on the filter [26,28]. In this respect, it can
be considered as a unidirectional interaction from the emitter
to the filter, structuring a cascaded quantum system [29,30].
On the other hand, because the pass-band width of the filter
characterizes its average resolution ability [31], a Lorentzian
filter can be replaced physically by a such single-mode quan-
tum empty cavity that its decay rate and resonance frequency,
respectively, correspond to the pass-band width and setting
frequency of the filter.
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Based on these two points, in this theoretical work, we em-
ploy a quantum cascade approach to investigate the frequency-
resolved superbunching effect in a two-atom radiating sys-
tem with the aim of exploring the underlying applications
of this strong quantum correlation in the collective atomic
system. Compared with a single atom, more steerable geo-
metrical factors including the geometrical configuration and
detection azimuth can be controlled in a multiatom system
[32]. In our two-atom radiating system, only one atom is
driven by an external laser field, and the spontaneous tran-
sition of the undriven atom resonates with one of the Rabi
side peaks of the former. Resonance fluorescence is injected
into a cavity unidirectionally, and the superbunched photon
pairs can be outputted when the cavity frequency is tuned
to halfway between the central peak and one of the side
peaks of the collective fluorescent spectrum. In general, the
dipole-dipole interaction is not important as long as the in-
teratomic spacing is not extremely small [33,34]. Therefore,
this weak interaction and sideband resonance condition ensure
that the shape of the host atom’s Mollow triplet may not
be greatly deformed by the incorporation of the guest atom.
Therefore, it can keep the strong quantum correlation from
being destroyed. However, on the contrary, it is found that
the degree of the two-photon correlation can be enhanced to
break through the superbunching limit in a single two-level
atom via the interatomic coherence under the same condi-
tions. Apart from that, it can also sensitively response the
weak variation of the interatomic distance. This application
indicates that, in addition to being a treasurable quantum
pump to probe into the target quantum system, this strongly
correlated fluorescence may also be an excellent response to
characterize the internal perturbation of the quantum source
itself.

For another purpose, in the limit of large pass-band width,
we examine the physical mechanism of this strong quantum
statistics analytically from the perspective of conditional de-
tection [35–38]. In the case of filter-target spectral band reso-
nant detection for the central peak and a side peak, destructive
quantum interference between a pair of coupled two-photon
cascaded channels with opposite emission orderings gives rise
to the antibunching effect [10–12]. However, compared with
this resonant case, it is found from our investigation that the
superbunching effect turns out to be the consequence of con-
structive quantum interference. Interestingly, this mechanism
can be revealed transparently from our analytical approach
presented in this paper.

The outline of this paper is organized as follows. In Sec. II,
the cascaded quantum system under our consideration is
described. In Sec. III, in the limit of large filter width, ana-
lytical investigation for the stationary two-photon correlation
of the filtered fields is carried out from the conditional state.
Correspondingly, the physical mechanism of the fluorescent
radiations, especially the superbuching effect, is revealed
transparently. Section IV is devoted to discuss the applications
of this two-atom system in enhancing the superbunching
effect and precisely detecting the variation of the interatomic
distance. In Sec. V, a general case is also discussed in which
the filtered strong quantum correlation is resolved by two
filter-detector monitoring systems. Finally, a conclusion is
presented in Sec. VI.

FIG. 1. Schematic diagram of the cascaded quantum system
comprising the two-atom quantum radiating source and a filter-
detector monitoring system. Collective resonance fluorescence with
propagation vector�k0 is injected into a single-mode cavity to achieve
the strong quantum correlation when the cavity frequency is tuned
to halfway between the central peak and one of the side peaks.√

κγi (i = 1, 2) are the dissipative coupling strengths between the
ith atom and the target cavity, and θ is the observation angle.

II. CASCADED QUANTUM SYSTEM

We first consider a simple configuration, in which the quan-
tum radiating source is monitored by a single photodetector
with position vector �R, as sketched in Fig. 1. In this cascaded
configuration, the quantum radiating system is composed
of two two-level atoms with excited states |ei〉 and ground
states |gi〉 (i = 1, 2), spatially separated by a distance r12 =
|�r2 −�r1|. The host atom (labeled by atom 2) is driven by a
classical laser field with frequency ωl . At the same time, the
host atom is also coupled with a guest atom (labeled by atom
1) via the dipole-dipole interaction. A single-mode frequency-
tunable empty cavity of frequency ωc is applied to serve as
a Lorentzian filter. Therefore, it is activated unidirectionally
by the resonance fluorescence radiated from the laser-driven
quantum radiating system.

In the frame rotating of driving frequency and in the dipole
approximation, the dynamical evolution of the total cascaded
quantum system, described by the density operator ρ, is
dominated by the master equation [33,39–41]

dρ

dt
= − i

h̄
[H, ρ] + LCρ + LAρ + L12ρ + LACρ. (1)

The original Hamiltonian of the total system in Eq. (1) takes
the form of

H =
∑
i=1,2

h̄
	i

2
σ (i)

z + h̄	ca†a + h̄
�

2
(σ (2)

+ + σ
(2)
− )

+ h̄�12(σ (1)
+ σ

(2)
− + σ

(2)
+ σ

(1)
− ), (2)

where 	i = ω(i)
eg − ωl and 	c = ωc − ωl are, respectively, the

detunings of the ith atomic frequency ω(i)
eg and the cavity

resonance frequency ωc with respect to the driving frequency
ωl . The third term of the Hamiltonian describes the dipolar
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interaction between the host atom and the classical driving
field with Rabi frequency �. The last term of the Hamilto-
nian represents the coherent dipole-dipole interaction between
the two atoms with strength �12. In addition, the operators
σ

(i)
+ = |ei〉〈gi| and σ

(i)
− = |gi〉〈ei| are the atomic flip operators,

and σ (i)
z = |ei〉〈ei| − |gi〉〈gi| is the operator for population

inversion. The damping terms in the master equation take the
forms of

LCρ = κ

2
L[a]ρ, LAρ =

∑
i=1,2

γi

2
L[σ (i)

− ]ρ,

L12ρ = −γ12

2
([σ (1)

+ , σ
(2)
− ρ] + [σ (2)

+ , σ
(1)
− ρ]) + H.c.,

LACρ = −
∑
i=1,2

√
κγi([a

†, σ
(i)
− ρ]ei�k0·�ri + H.c.), (3)

with the Lindblad-type superoperator L[O]ρ = [Oρ,O†] +
[O, ρO†]. In Eq. (3), LCρ and LAρ represent the dissipations
of the target cavity mode and the atomic system to the
continuum background modes, respectively. The parameters
κ and γi are the decay rate of the cavity mode and the
spontaneous transition rates of the ith atom, respectively. The
third term in Eq. (3), L12ρ, describes the vacuum-induced
dissipative coupling between these two atoms via photon
exchange with strength γ12 [32–34]. The last term, LACρ,
denotes the unidirectional transmission of fluorescent photons
from the quantum source to the target cavity [29,30]. Note that
the exponential phase factors play important roles because
the atomic emission operator perceived by the detector (or the
cavity) in the far-field zone carries a phase difference. The
vector �k0 is the propagation vector of the fluorescent fields,
and we have applied the far-field approximation |�R −�ri| ≈
|�R| −�eR ·�ri, where �eR is the unit vector in the direction of
�R [32]. The explicit values of γ12 and �12 are determined by
the potential energy of dipole-dipole interaction E12 via the
relations �12 = Re[E12] and γ12 = −Im[E12], where [34]

E12 = − 3

2
√

γ1γ2

{
(1 − cos2�)

1

k0r12

+ (1 − 3cos2�)

[
i

(k0r12)2
− 1

(k0r12)3

]}
eik0r12 , (4)

with � being the dipole-polarized angle from the interatomic
axis, and k0 = 2π/λ0 (λ0 is the radiation wavelength). The
symbols “Re′′ and “Im′′ denote the real part and imaginary
part, respectively.

By working in the strong driving regime, i.e., � � γ1, γ2,
the description of the quantum radiating system is transformed
into the dressed two-atom collective representation with the
introduction of the dressed two-atom collective bases and the
corresponding energies

|1A〉 = |e1,+〉, E1 = h̄

2
(	̄ + �̄),

|2A〉 = |e1,−〉, E2 = h̄

2
(	̄ − �̄),

|3A〉 = |g1,+〉, E3 = − h̄

2
(	̄ − �̄),

|4A〉 = |g1,−〉, E4 = − h̄

2
(	̄ + �̄),

(5)

where |+〉 = c|e2〉 + s|g2〉, |−〉 = s|e2〉 − c|g2〉 are the semi-
classical laser-dressed bases of the driven host atom, in which
the parameters are c, s =

√
(�̄ ± 	2)/2�̄ with the general

Rabi frequency �̄ =
√

�2 + 	2
2 . The parameter 	̄ = 	1 −

	2 appearing in the eigenenergies is the detuning between the
two atoms’ transition frequencies. In this dressed two-atom
collective representation, the emission operators of the bare
atoms can be expressed by σll ′ = |lA〉〈l ′

A| (l, l ′ = 1, 2, 3, 4),
which describes the quantum transition between two levels
of two adjacent manifolds of the dressed two-atom collective
states. Therefore, the bare emission of atom 1 can be ex-
pressed as σ

(1)
− = S−

1 = σ31 + σ42. Whereas, the emission of
the driven atom can be decomposed into three parts as σ

(2)
− =

S−
T + S−

R + S−
F . The components S−

T = −c2(σ21 + σ43) and
S−

F = s2(σ12 + σ34) give rise to the higher-frequency side
peak of the resonance fluorescence spectrum labeled by “T′′

and lower-frequency side peak labeled by “F,′′ respectively.
The remaining one S−

R = cs(σ11 + σ33 − σ22 − σ44) gives rise
to the emission of central peak labeled by “R′′ at driving
frequency.

In order to keep the shape of the Mollow triplet and without
loss of generality, we assume that the spontaneous transition
of the undriven atom resonates with the higher-frequency Rabi
sideband of the laser-driven atom, i.e., 	̄ = �̄. This leads
to the near degeneracy between the states |2A〉 and |3A〉. In
this circumstance, we make a second rotating-wave transfor-
mation to only drop the fast-rotating terms involving atomic
variables. Therefore, the Hamiltonian of the total quantum
cascaded system is rewritten in terms of the dressed two-atom
collective states as

H̃ = H̃0 + H̃12, (6)

with the free part and the coherent coupling part

H̃0 = h̄�̄(σ11 − σ44) + h̄	ca†a,

H̃12 = −h̄�12c2(σ23 + σ32). (7)

The dissipations in Eq. (3) are also transformed as

L̃Cρ = κ

2
L[a]ρ, L̃Aρ = γ1

2
L[S−

1 ]ρ + γ2

2

∑
j=F,R,T

L[S−
j ]ρ,

L̃12ρ = −γ12

2
([S+

1 , S−
T ρ] + [S+

T , S−
1 ρ]) + H.c.,

L̃ACρ = −√
κγ1([a†, S−

1 ρ]ei�k0·�r1 + H.c.)

− √
κγ2

∑
j=F,R,T

([a†, S−
j ρ]ei�k0·�r2 + H.c.). (8)

Note that the original density operator is now transformed
as ρ̃(t ) = ei(H̃0/h̄)tρ(t )e−i(H̃0/h̄)t , but it is still labeled by ρ in
Eq. (8) and in the following. More noteworthy is that, in
our consideration, all the fluorescent peaks are included in
the unidirectional radiation into the cavity for completeness,
although the cavity mode may be far away from a side peak
when it is tuned between the R peak and another side peak. In
other words, all the atomic emission operators are not ignored
in our consideration. Therefore, the unidirectional dissipative
coupling from the atomic system to the cavity in Eq. (8), i.e.,
L̃ACρ, is completely equivalent to its original form LACρ in
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Eq. (3) because it is only rewritten in terms of the dressed two-
atom collective states. The rotating-wave approximation only
treating for atomic variables makes it possible to analytically
obtain the atomic populations [34], and its validity will be
demonstrated later.

III. CONDITIONAL DETECTION OF FILTERED
RESONANCE FLUORESCENCE

In this paper, we are mainly interested in the filtering pro-
cess with large filter pass-band width specified as κ � γ1, γ2

[10] with the aim of obtaining physically perspicuous results
to probe into the radiating mechanism of fluorescent photons.
In order to explore the frequency selection of the filter on
the fluorescent spectrum, let us focus on the case of � � κ .
In this case, the selection effects of the filtering function
on each peak band are different that it mainly extracts the
photons near the filter setting frequency. In addition, for the
sake of simplicity, we assume γ1 = γ2 = γ in the following
discussion.

Consider the situation that two filtered photons are detected
simultaneously. The stationary equal-time two-photon corre-
lation signal of the filtered fluorescence fields is expressed
by the operators of the target quantized cavity mode as
g(2) = 〈a†a†aa〉/〈a†a〉2. The unnormalized two-photon quan-
tum correlation signal, labeled by G(2), can be expressed as
G(2) = 〈a†a†aa〉 = Tr[aρra†], where ρr = aρa† is the condi-
tional (collapsed) state of the dressed collective atom-cavity
system conditioned by detecting a photon [35–38]. In the
filtering process, the cavity substituting a Lorentzian filter is
assumed to pass through only one fluorescent photon at a time
[42]. Therefore, the conditional state ρr can be determined
in a truncated Hilbert space with single-excitation regime
(|0a〉, |1a〉). In other words, the collapsed Hilbert space is
spaced by the state vectors |iA, na〉 with i = 1, 2, 3, 4 and
n = 0, 1. Interestingly, after solving the master equation in
stationary dynamics, it is found that the conditional state turns
out to be a very compact form as

ρr = ρs
11|ψ1〉〈ψ1| + ρs

22|ψ2〉〈ψ2| + ρs
33|ψ3〉〈ψ3|

+ ρs
44|ψ4〉〈ψ4| + ρs

23e−ik0r12cosθ |ψ2〉〈ψ3|
+ ρs

32eik0r12cosθ |ψ3〉〈ψ2|, (9)

where ρs
i j = 〈iA|ρs| jA〉 are the steady-state populations in

dressed two-atom collective representation for i = j and the
interatomic coherences for i 	= j. The parameter θ carried by
the coherences is the azimuthal angle of the detector from the
interatomic axis. The explicit expressions of ρs

i j are presented
in Appendix A. In Eq. (9), the state functions |ψi〉 triggered
by the initial atomic states |iA〉 are found as

|ψ1〉= C (1)
1,0|1A, 0a〉 + C (1)

2,0|2A, 0a〉+C (1)
3,0|3A, 0a〉+C (1)

1,1|1A, 1a〉
+ C (1)

2,1|2A, 1a〉 + C (1)
3,1|3A, 1a〉 + C (1)

4,1|4A, 1a〉,
|ψ2〉 = C (2)

1,0|1A, 0a〉 + C (2)
2,0|2A, 0a〉 + C (2)

4,0|4A, 0a〉
+ C (2)

1,1|1A, 1a〉 + C (2)
2,1|2A, 1a〉

+ C (2)
3,1|3A, 1a〉 + C (2)

4,1|4A, 1a〉,

|ψ3〉 = C (3)
3,0|3A, 0a〉 + C (3)

4,0|4A, 0a〉
+ C (3)

3,1|3A, 1a〉 + C (3)
4,1|4A, 1a〉,

|ψ4〉 = C (4)
3,0|3A, 0a〉 + C (4)

4,0|4A, 0a〉
+ C (4)

3,0|3A, 1a〉 + C (4)
4,1|4A, 1a〉. (10)

The explicit analytical expressions of all the conditional
transition probability amplitudes appearing in Eq. (10) are
given in Appendix B. Interestingly, their algebraic forms
correspond obviously to the transition channels in the energy
level diagrams shown in Fig. 2. In physical terms, C (i)

j,n (i, j =
1, 2, 3, 4, n = 0, 1) describe the physical state that, before
one of the photons is detected, the dressed collective atom
has completed the single-photon emission or the two-photon
cascaded emission triggered from the initial atomic state |iA〉.
After a probe, the atom is collapsed to the intermediate state
| jA〉 of two-photon cascaded path without leaving a photon
in the cavity (|0a〉), or collapsed to the final state | jA〉 of
two-photon cascaded path, remaining the second photon in
the cavity (|1a〉). Based on this understanding and the explicit
forms of the conditional transition probability amplitudes in
Appendix B, all the probability amplitudes involving probing
another photon conditioned on the first detection stem from
the quantum interference of two two-photon cascaded emis-
sion channels.

In this respect, in the above conditional state, only the
probability amplitudes of single-photon state |1a〉 contribute
to the final conditional detection probability. Therefore, the
unnormalized two-photon correlation signal G(2) can be ob-
tained naturally, which is written compactly as

G(2) = ρs
11

(∣∣C (1)
1,1

∣∣2 + ∣∣C (1)
2,1

∣∣2 + ∣∣C (1)
3,1

∣∣2 + ∣∣C (1)
4,1

∣∣2)
+ ρs

22

(∣∣C (2)
1,1

∣∣2 + ∣∣C (2)
2,1

∣∣2 + ∣∣C (2)
3,1

∣∣2 + ∣∣C (2)
4,1

∣∣2)
+ ρs

33

(∣∣C (3)
3,1

∣∣2 + ∣∣C (3)
4,1

∣∣2) + ρs
44

(∣∣C (4)
3,1

∣∣2 + ∣∣C (4)
4,1

∣∣2)
+ 2 Re

[
ρs

23

(
C (2)

3,1C
(3)∗
3,1 + C (2)

4,1C
(3)∗
4,1

)
e−ik0r12cosθ

]
. (11)

Ingeniously, it is the compact form of the conditional state in
Eq. (9) expressed by the transition amplitudes that serves as
the rudiment of the two-photon correlation given by Eq. (11).
One can notice from Eq. (11) that both the correlation com-
ponents determined by ρs

11 and ρs
22 consist of four terms. It

represents that, conditioned on the detection of a photon, the
another photon can be prepared at four different final atomic
states, respectively, as depicted in Figs. 2(a) and 2(b). The
conditional probability components determined by ρs

33 and ρs
44

are similar that both of them can prepare photons at final states
|3A〉 and |4A〉, as depicted in Figs. 2(c) and 2(d). Whereas, the
component involving ρs

23 (with ρs
32) is created from the atomic

coherence because two different initial states |2A〉 and |3A〉 can
reach common final states |3A〉 and |4A〉.

Figure 3 presents the stationary atomic populations and
interatomic coherence varying with the interatomic distance.
The solid lines, dashed lines, and dotted-dashed lines
represent the analytical results solved from the transformed
equations (6), (7), and (8) with the help of the rotating-wave
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FIG. 2. Fluorescent emissions in dressed two-atom collective levels involving central peak labeled by R (red arrows), lower-frequency side
peak labeled by F (yellow arrows), and higher-frequency side peak labeled by T (blue arrows) in resonance fluorescence spectrum. (a), (b), (c),
and (d) correspond to all possible two-photon cascaded emissions triggered by the initial atomic states |1A〉, |2A〉, |3A〉, and |4A〉, respectively.
The conditional states and single-photon bare (unfiltered) transition amplitudes are indicated.

approximation. At the same time, the circular lines are the
corresponding numerical results from the original equations
(1), (2), and (3). Obviously, only the populations ρs

33 and ρs
44

are dominant, which are mainly related to the host quantum
radiating source. Whereas, ρs

11 and ρs
22 come from the guest

atom, and make less contributions. Hence, let us concentrate
on these two dominant populations in more detail. Based on
the above analysis, it is natural to note that the components

ρs
33|C (3)

3,1|
2

and ρs
44|C (4)

4,1|
2

in Eq. (11) should be grouped into
the same physical consequence. Because it comes from the

FIG. 3. Stationary populations and coherence of the dressed
collective atom as functions of the interatomic distance r12 for the
parameters κ = 20γ , � = 100γ , 	2 = 0, and � = π/4. ρs

11 (black
dotted-dashed line and black circular line), ρs

22 (blue dashed line
and blue circular line), and |ρs

23| (red solid line and red circular
line) are plotted in (a). The dominant populations ρs

33 (black dashed
line and black circular line) and ρs

44 (red solid line and red circular
line) are plotted in (b). In each frame, the circular lines are the
numerical results from the original equations (1), (2), and (3) without
rotating-wave approximation, while the solid lines, dashed lines, and
dotted-dashed line represent the analytical results solved from the
transformed equations (6), (7), and (8) with the help of rotating-wave
approximation.

quantum interference between the cascaded emissions of

central peak photons (|3A〉 R−→ |3A〉 R−→ |3A〉 for ρs
33 and

|4A〉 R−→ |4A〉 R−→ |4A〉 for ρs
44) and the alternating cascaded

emissions of two opposite sideband photons (|3A〉 T−→
|4A〉 F−→ |3A〉 for ρs

33 and |4A〉 F−→ |3A〉 T−→ |4A〉 for ρs
44).

Actually, these processes obey two-photon far-off-resonance
condition when the cavity frequency is tuned to halfway
between the central peak and a sideband. Therefore, it gives

a very small probability. However, the component ρs
33|C (3)

4,1|
2

is the product of the quantum interference of two two-photon
cascaded channels involving R and T photons with opposite

emission orderings, i.e., |3A〉 T−→ |4A〉 R−→ |4A〉 and |3A〉 R−→
|3A〉 T−→ |4A〉, as shown in Fig. 2(c). These two two-photon
emissions interfered with each other are initiated from a
common state |3A〉 and terminated to a common state |4A〉.
Similarly, another term ρs

44|C (4)
3,1|

2
is the consequence of the

quantum interference of two two-photon cascaded channels
involving R and F photons with opposite emission orderings,

i.e., |4A〉 R−→ |4A〉 F−→ |3A〉 and |4A〉 F−→ |3A〉 R−→ |3A〉, as
shown in Fig. 2(d). More significantly, there is a significant
imbalance between these two parts when the cavity is tuned to
halfway between the central peak and a certain side peak. For
example, if the cavity frequency is tuned to halfway between
the central peak and the higher-frequency side peak, i.e.,
	c = �̄/2, the R photons and T photons are injected into the
cavity significantly, whereas the unidirectional radiations of
F photons are almost prevented by the frequency window of

the filter. Therefore, the probability component ρs
33|C (3)

4,1|
2

can
contribute a very large value accounting for the vast majority
of the total value of g(2) [which can be seen in Fig. 4(a)
later], and superbunching is displayed. Meanwhile, this case
gives negligible probability of detecting the lower-frequency
fluorescent radiations depicted by the yellow arrows in Fig. 2
because it is far from resonance with the target frequency.
Symmetrically, if the cavity is tuned at 	c = −�̄/2, the

component ρs
44|C (4)

3,1|
2

gives rise to a very large conditional
probability component. Correspondingly, the unidirectional
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FIG. 4. The value of g(2) varying with the interatomic distance r12

is decomposed into some components g(2)
i (i = 1, 2, 3, 4) and g(2)

int in
(a), (b), and (c), which are contributed from the steady populations
ρs

ii and the interatomic coherences ρs
23 (with ρs

32), respectively. (d),
(e), and (f) are the enlarged views of (a), (b), and (c), respec-
tively, for r12 ∈ [0.25λ0, 0.5λ0]. The parameters are κ = 20γ , � =
100γ , 	2 = 0, � = π/4, and θ = π/4.

radiations of higher-frequency fluorescent photons, depicted
by the blue arrows in Fig. 2, are almost suppressed in this
case.

Taking the case of 	c = �̄/2 as the example and with
the help of the introduced filtered transition amplitudes in
Appendix B, this strong quantum correlation can be attributed
to the constructive quantum interference between the coupled

two-photon cascaded channels, namely, |3A〉 T−→ |4A〉 R−→
|4A〉 and |3A〉 R−→ |3A〉 T−→ |4A〉. Furthermore, this construc-
tive quantum interference is the consequence of the fact that
bare two-photon cascaded transition amplitudes c3s and −c3s,
establishing destructive interference originally [10,12], are
modified into the Lorentzian type. When the filter setting
frequency approaches to halfway between the central peak
and the higher-frequency side peak, these two bare two-
photon transition amplitudes are modified to the greatest
extent with opposite filtering detunings, making it possible
that the complete destructive interference in bare is conversed
into the incomplete destructive interference, and finally into
the constructive interference.

As a brief physical summary of the above discussions, we
would like to stress the role of the filter-detector monitoring
system. On the one hand, from the compact structure of the
conditional state, the laser-dressed atomic system is prepared
at the superposition states both for intermediate or final states.
It means that the filter-detector system has no preferential
selectivity for the spectral bands and transition channels in the
situation of large detuning between the filter and the spectral
peak. Thus, quantum interference is displayed between sev-
eral paired two-photon cascaded channels coupled with each
other via common initial states and final states. On the other
hand, it is the effect of the filter on the monitored quantum
radiating system by dressing the atom’s unfiltered transition
amplitudes into the Lorentzian type that makes it possible to
export different photon statistics by frequency engineering.

IV. APPLICATIONS OF TWO-ATOM RADIATING SYSTEM

A. Single two-level atom limit

In addition to gaining the physical insight into the radiating
mechanism in the above investigation, another superiority of
the above analytical results is that it can be regressed into
the Mollow limit of the single two-level atom algebraically.
This case refers to the infinite interatomic distance. As shown
in Fig. 3, with the increase of the interatomic distance, the
collective atom can not be populated at |1A〉 and |2A〉 with the
interatomic coherence ρ23 vanishing. Whereas, the remaining
two states account for half of the total population for resonant
driving, i.e., 	2 = 0. The physical fact is that only the host
atom is radiating and gives rise to an independent Mollow
triplet. In this single-atom limit, the conditional state in Eq. (9)
can be truncated as

ρr
0 =ρ

s(0)
33 |ψ3〉〈ψ3| + ρ

s(0)
44 |ψ4〉〈ψ4|. (12)

Therefore, the unnormalized two-photon correlation function
in Eq. (11) is also simplified as

G(2)
0 = ρ

s(0)
33

(∣∣C (3)
3,1

∣∣2 + ∣∣C (3)
4,1

∣∣2) + ρ
s(0)
44

(∣∣C (4)
3,1

∣∣2 + ∣∣C (4)
4,1

∣∣2)
,

(13)

in which ρ
s(0)
33 and ρ

s(0)
44 are the populations of the single

laser-dressed atom, which can be easily obtained from the
collective atomic populations ρs

33 and ρs
44 when �12 = γ12 =

0. The filtered fluorescent spectral correlation in single two-
level atom has been developed systematically, especially con-
cerning the time orderings [10,19]. As we expected, after
straightforward algebraic arrangement, our analytical result
given by Eq. (13) reproduces the analytical form calculated
by the early fundamental method of two-photon detection
operator established by Nienhuis et al. [10]. This verification
can be found in Appendix C. Therefore, the strong quantum
correlation discussed in the above can be traced back to the
Mollow triplet of a single two-level atom. As reported in
Ref. [17], this underlying photon statistics is a promising
quantum excitation for applications, triggering a burgeoning
field called “Mollow spectroscopy¡±.” Its physical origin can
also be understood as the leapfrog transitions involving virtual
states [8,18]. Furthermore, this direct multiphoton cascaded
emission jumping over the intermediate manifold can also
display strong high-order quantum correlation [8]. Experi-
mentally, this strong quantum correlation of filtered resonance
fluorescence from a single two-level atom has been verified to
violate the Cauchy-Schwarz inequality and Bell’s inequality
[21–23], which indicates that it is still a subject of current
interest in quantum optics.

B. Enhancement of strong quantum correlation
via interatomic coherence

Now, turning back to the two-atom radiating system under
our consideration, an interesting question may arise naturally
that, in the presence of the guest atom, whether the interatomic
coherence can play an active role in breaking through the limit
of the strong quantum correlation obtained from a single two-
level atom under the same parametric conditions.
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In order to track down the possible conditions analytically,
let us still consider the two-photon correlation signal of the
two-atom radiating system with large filter width. The value
of g(2) is simultaneously dependent on the obtained unnor-
malized two-photon correlation G(2) and the steady filtered
radiation intensity G(1) = 〈a†a〉, which takes the form of [32]

G(1) = κγ c2s2

(
κ
2

)2 + 	2
c

+ κγ s4
(
ρs

22 + ρs
44

)
(

κ
2

)2 + (	c + �̄)2
+ κγ c4

(
ρs

11 + ρs
33

)
(

κ
2

)2 + (	c − �̄)2

+ κγ
(
ρs

11 + ρs
22

)
(

κ
2

)2 + (	c − �̄)2
− 2κγ c2Re

[
ρs

23e−ik0r12cosθ
]

(
κ
2

)2 + (	c − �)2
.

(14)

It is straightforward to note that the total filtered radiation
intensity can be decomposed into three parts. The first three
terms together constitute the complete filtered emission spec-
trum of the laser-driven host atom. Clearly, it is very similar
to the standard Mollow triplet, except that the linewidths are
modified by the filter. The fourth term is the independent
emission spectrum of the guest atom, which only radiates
the higher-frequency fluorescence. Whereas, the last term
of Eq. (14), which we shall call the “intensity interference
component” labeled by G(1)

int in the following, is more worthy
of our consideration. Because it exhibits the intensity inter-
ference of the fluorescent fields radiated from two quantum
light sources, i.e., the host atom and the guest atom. More
interestingly, it is not only determined by the internal inter-
atomic coherence ρs

23, but also by the steerable geometrical
factors r12, �, and θ [32]. As depicted in Fig. 2, Eq. (14) also
indicates that the lower-frequency spectral line proportional to
the populations ρs

22 and ρs
44 results from the atomic downward

transitions |2A〉−→|1A〉 and |4A〉−→|3A〉, respectively. Both
of them come from the driven atom, with the undriven atom’s
state unchanged. The intensity of higher-frequency spectral
line is proportional to the populations ρs

11, ρs
22, ρs

33, and the
interatomic coherence ρs

23. It corresponds to the four possi-
ble atomic downward transitions |1A〉−→|2A〉, |1A〉−→|3A〉,
|2A〉−→|4A〉, and |3A〉−→|4A〉, in which the fluorescent pho-
tons from |1A〉−→|2A〉 and |3A〉−→|4A〉 are radiated from
the driven atom, whereas the photons from |1A〉−→|3A〉 and
|2A〉−→|4A〉 are radiated from the undriven atom. The central
spectral line, however, is associated with all the populations
with the atomic downward transitions between the same states
of two adjacent manifolds of the dressed collective states.
Both downward transitions of R photons originate from the
driven atom.

Our strategy is to find some possible conditions for r12

and θ in an appropriate distance interval, in which the steady
populations ρs

11, ρs
22, and ρs

44 have less influence on the value
of g(2). We intend to adjust the geometrical factors including
the dipole-polarized angle � and detection angle θ to make
the coherence play a full role in regulating the value of g(2).
Therefore, taking an example that the cavity frequency is
tuned to 	c = �̄/2, let us search for the possible condition
for r12 and θ from the intensity interference.

The intensity interference G(1)
int can be rewritten as

G(1)
int = −2κγ c2

(
κ
2

)2 + (
�̄
2

)2 |ρs
32|cos

(
2π

r12

λ0
cosθ + ϕ32

)
, (15)

FIG. 5. Contour plot of ϒ as a function of the dipole-polarized
angle � and the interatomic distance r12 for κ = 20γ , in which
the detection angle θ and the interatomic distance r12 satisfy the
condition given by Eq. (16). Other parameters are � = 100γ , 	2 =
0. Optimal enhancement of g(2) corresponds to the red zone.

where ϕ32 is the phase angle of the atomic coherence, i.e.,
ρs

32 = |ρs
32|eiϕ32 . This form suggests that a condition for en-

hancing the value of g(2) is possible if the total intensity is
suppressed when r12 and θ satisfy the relation

cosθ = λ0

r12

(
m − ϕ32

2π

)
, m ∈ {0,±1,±2, . . .}, (16)

in which m is constrained by ( ϕ32

2π
− r12

λ0
) � m � ( ϕ32

2π
+ r12

λ0
).

For more clarity, the value of g(2) is decomposed in Fig. 4
for κ = 20γ , � = 100γ , 	2 = 0, � = π/4, and θ = π/4.
In Fig. 4, g(2)

i are the components determined by the sta-
tionary populations ρs

ii, and g(2)
int is the normalized correlation

interference component. All the components of g(2) are nor-
malized by the total intensity, i.e., g(2)

1 + g(2)
2 + g(2)

3 + g(2)
4 +

g(2)
int = g(2). In order to compare with the single-atom case,

the contributions from ρs
11 and ρs

22 should be minimized as
far as possible, and only give full play to the interatomic
coherence. Thus, the variation interval of r12 is temporarily
set to be [0.25λ0, 0.5λ0]. In this interval, m = 0 is the only
allowed value for the condition given by Eq. (16). In this
interval, compared with the correlation component given by
the interatomic coherence ρs

23, the contributions from the pop-
ulations ρs

11 and ρs
22 are very small to the total value of g(2), as

presented in Figs. 4(d), 4(e), and 4(f), which makes it possible
to manipulate the values of g(2) by the interatomic coherence.

In order to compare with the superbunching in a single-
atom limit quantitatively under the same parametric condi-
tions, we introduce ϒ = 	g(2)/g(2)

0 to characterize the enhanc-
ing rate of the value of g(2). In this definition, 	g(2) is the
deviation of g(2), i.e., 	g(2) = g(2) − g(2)

0 , with g(2) and g(2)
0

being, respectively, the values of two-photon correlation func-
tion of the two-atom radiating system under our consideration
and the single two-level atom, i.e., �12 = γ12 = 0, under the
same parameters. Figure 5 shows the variation of ϒ with the
dipole-polarized angle � and the interatomic distance r12 with
the parameters 	2 = 0, � = 100γ , and κ = 20γ , while the
detection angle θ is absorbed by r12 via Eq. (16). It can be
observed that the superbunching effect can be improved for a
larger range of � and r12. Furthermore, the optimized value
of ϒ can reach 35% for g(2) ≈ 29.06 and g(2)

0 ≈ 21.52 when
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FIG. 6. (a) The value of g(2) as a function of the cavity dissipation
rate κ for � = 100γ , 	2 = 0, � = π/2, θ = π/2, and r12 = 0.25λ0.
Normalized two-photon correlation g(2) as a function of the inter-
atomic distance r12 for large filter width κ = 20γ (b) and narrow
filter width κ = 0.5γ (c). Other parameters are � = 100γ , 	2 = 0,
� = π/2, and θ = π/2. The filtered radiation intensities in these
two case are inserted in (b) and (c), respectively.

r12 = 0.25λ0 and the atomic dipole moments are polarized at
� ≈ 0.85. Under these parameters, two appropriate observa-
tion angles θ1 = 1.9 and θ2 = 2π − θ1 = 4.38 can be deter-
mined corresponding to the minimum value of the filtered
radiation intensity. Fortunately, some reports have provided
the experimental feasibility of trapping the atoms with the
fixed atomic dipole moment and locations [43–46]. Our result
demonstrates that although a very significant superbunching
may not be achieved in the case of large filter width, the
superbunching limit in single-atom Mollow triplet can be still
broken with the help of the interatomic coherence in this
two-atom radiating system.

C. Precise detection of interatomic distance

As another application of the two-atom radiating system
we are considering, here we briefly discuss the feasibility of
precisely detecting the variation of the interatomic distance
via this superbunched fluorescent photon generated from this
interesting frequency.

Figure 6(a) presents the value of g(2) as a function of the
cavity dissipation κ when its frequency is tuned to the middle
of the R peak and T peak. It indicates that the degree of the
superbunching effect increases sharply as the cavity develops
from a broadband filter to a narrow-band filter. The main
reason is understandable. For a filter with narrow width, in
order to select photons with high-accuracy target frequency,
the resolving time of the filter, i.e., the reciprocal of the filter
width, should be prolonged [8]. It is equivalent to a very long
lifetime of photons in the cavity. Therefore, the coherence
between the incident photons will be significantly improved.
Although the photon number detected is greatly reduced in
this case, the conditional probability can be significantly
amplified. In other words, once a photon is detected, another
photon will be detected with great probability.

The values of g(2) varying with the interatomic distance
r12 are also presented for the case of large filter width with
κ = 20γ in Fig. 6(b) and narrow filter width with κ = 0.5γ

FIG. 7. Schematic diagram of a generalized cascaded quantum
system. The two-atom radiating source is monitored by two detectors
at two different geometrical points. Two single-mode cavities are
applied in front of the two detectors to resolve the fluorescent
photons with target frequency. The different observation directions
of the two detectors are characterized by the azimuth angles θa and
θb, and the corresponding propagation vectors �ka, �kb of the target
fluorescent photons.

in Fig. 6(c), respectively. It can be observed that, with the
variation of the interatomic distance, the deviation of the two-
photon correlation signal outputted from a narrow-band filter
is more significant than that in the case of the broadband filter
in the same parameter regime, although the signal detected
from the broadband filter is also able to clearly reflect the
weak variation of the distance. However, in contrast, the
outputted filtered radiation intensity seems powerless in this
application, which can be observed from the intensity signals
inserted in Figs. 6(b) and 6(c).

V. STRONG QUANTUM CORRELATION MONITORED BY
TWO FILTER-DETECTOR SYSTEMS

In this section, we generalize our cascaded quantum sys-
tem discussed in the above to the case of two filter-detector
monitoring systems with the purpose of investigating the
directionality of the filtered strongly correlated photon pairs.

As sketched in Fig. 7, in this generalized system, two
photodetectors labeled by 1 and 2 are located at two different
positions �R1 and �R2, respectively, to simultaneously monitor-
ing the filtered fluorescent photons. Two single-mode empty
cavities are applied in front of them, respectively, to resolve
the fluorescent photons radiated from the two-atom system.
Due to the different azimuth angles θa and θb of the two
filter-detector monitoring systems, the radiating directions of
the fluorescent photons monitored by detector 1 and detector
2 are identified by their respective propagation vectors �ka and
�kb. The corresponding quantum cavity fields in cavity 1 and
cavity 2 are labeled as mode a and mode b, respectively.

Suppose that the condition of higher-frequency sideband
resonance between the two atoms is still satisfied. Therefore,
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the master equation of the generalized total quantum cascaded
system in the dressed two-atom collective representation is
the same as that in the case of a single filter, except for
including two cavity fields in the Hamiltonian of Eq. (7) and
the cavity dissipations of Eq. (8). In addition, the atom-cavity
unidirectional dissipative coupling L̃ACρ in Eq. (8) should be
generalized as

L̃ACρ = −
∑

c=a,b

√
κcγ1([c†, S−

1 ρ]ei�kc·�r1 + H.c.)

−
∑

c=a,b

∑
j=F,R,T

√
κcγ2([c†, S−

j ρ]ei�kc·�r2 + H.c.),

(17)

where κa and κb are the decay rates of the cavity 1 and
cavity 2, respectively. Based on the same analytical process
of conditional detection as before, the normalized two-mode
filtered fluorescent correlation signal

g(2)
ab (�R1,�R2) = 〈a†b†ba〉

〈a†a〉〈b†b〉 (18)

can be calculated straightforwardly. For the sake of simplicity,
we assume that the decay rates of the cavity fields κa = κb =
κ , and the cavity frequencies 	ca = 	cb = 	c. Then, the un-
normalized two-photon correlation G(2)

ab (�R1,�R2) = 〈a†b†ba〉
filtered by the two cavities is generalized as

G(2)
ab (�R1,�R2)

= ρs
11

[∣∣C (1)
1,1

∣∣2 + ∣∣C (1)
2,1

∣∣2 + η(θa, θb)
(∣∣C (1)

3,1

∣∣2 + ∣∣C (1)
4,1

∣∣2)]
+ ρs

22

[∣∣C (2)
1,1

∣∣2 + ∣∣C (2)
2,1

∣∣2 + η(θa, θb)
(∣∣C (2)

3,1

∣∣2 + ∣∣C (2)
4,1

∣∣2)]
+ ρs

33

(∣∣C (3)
3,1

∣∣2 + ∣∣C (3)
4,1

∣∣2
)

+ ρs
44

(∣∣C (4)
3,1

∣∣2 + ∣∣C (4)
4,1

∣∣2)
+ 2 Re

[
ρs

23

(
C (2)

3,1C
(3)∗
3,1 + C (2)

4,1C
(3)∗
4,1

)
ξ (θa, θb)

]
, (19)

with the spatial geometrical factors

η(θa, θb) = 1
2 {1 + cos[k0r12(cos θa − cos θb)]},

ξ (θa, θb) = 1
2 (e−ik0r12cosθa + e−ik0r12cosθb ). (20)

Clearly, it can be checked that if two cavity-detector monitor-
ing systems overlap at the same geometrical point, i.e., θa =
θb = θ , �R1 = �R2 = �R, then the introduced geometrical fac-
tors are simplified as η(θa, θb) = 1 and ξ (θa, θb) = e−ik0r12cosθ .
Therefore, the generalized unnormalized two-mode correla-
tion G(2)

ab (�R1,�R2) reproduces the obtained result in Eq. (11).
In addition, compared with Eq. (14), the stationary filtered
radiation intensity of mode a (or mode b), i.e., 〈a†a〉 (or 〈b†b〉),
does not need to be changed, just the detection angle θ should
be concretized into θa (or θb).

From this generalized analytical result given by Eq. (19),
it is worthwhile to discuss the physical origin of the ge-
ometrical factors. One can notice that, in addition to the
two-photon correlation interference term being dependent on
the geometric factor ξ (θa, θb), there are also four probabil-
ity components that are modulated by the spatial geometry
η(θa, θb). This geometrical factor originates from the quan-
tum interference when two atoms alternately emit photons
in different emission orderings. For example, the probability

amplitude C (1)
3,1 corresponds to the quantum interference be-

tween two alternative two-photon cascaded emissions with

opposite emission orderings, namely, via |1A〉 R−→ |1A〉 T−→
|3A〉 and |1A〉 T−→ |3A〉 R−→ |3A〉. In each two-photon emis-
sion orderings, the fluorescent photons R and T are radiated
from the driven atom and the undriven atom, respectively.
Thus, two opposite emission orderings of two atoms exhibit
quantum interference modulated by the geometry. However,
other terms independent of the geometrical factors represent
the processes in which both the two photons emitted suc-
cessively come from the same atom. It is not difficult to
notice that the two processes in which two atoms alternately
emit photons in opposite emission orderings can be interfered
destructively when η(θa, θb) = 0, and we obtain

cosθa − cosθb =
(

m + 1

2

)
λ0

r12
, m ∈ {0,±1,±2, . . .}.

(21)

Correspondingly, the condition of constructive quantum inter-
ference corresponding to the maximum geometrical modula-
tion is given by η(θa, θb) = 1, which gives the condition of

cosθa − cosθb = m
λ0

r12
, m ∈ {0,±1,±2, . . .}. (22)

Since the geometrical factor appears in the undominant pop-
ulations ρs

11 and ρs
22, this geometrical modulation effect will

disappear with the increase of the interatomic distance. There-
fore, we specify the interatomic distance as r12 = 0.25λ0.
In this case, η(θa, θb) = 0 when θa = 0, θb = π , or θa = π ,
θb = 0, as depicted by the red arrows in Fig. 8(a). This also
means that two possible processes of two-atom alternating
radiation are interfered destructively when the two atoms
radiate photons along the interatomic axis in the opposite
directions. However, the constructive quantum interference of
two photons radiated from two atoms, respectively, is given by
a simple relation cosθa = cosθb, i.e., θa = θb or θa = 2π − θb,
as depicted by the green arrows in Fig. 8(a). To describe
the sensitivity of two-photon correlation to the geometrical
modulation, we explore the difference of g(2)

ab between these
two cases, i.e., 	g(2)

ab = g(2)
ab+ − g(2)

ab−, where g(2)
ab+ and g(2)

ab−
are the two-photon correlation in the cases of η(θa, θb) =
1 and η(θa, θb) = 0, respectively. Figure 8(b) displays the
distribution of 	g(2)

ab with the dipole-polarized angle � and
the detection angles θa = θ with θb = 2π − θ . The maximum
difference can reach 	g(2)

ab = 11.5, corresponding to the di-
rection in which the geometrical modulation has the most
significant effect on the two-photon correlation.

We now turn to consider the spatial angular distribution
of two-mode correlation in this generalized case. Since the
filtered radiation intensity only depends on the corresponding
detection angle, the filtered radiation intensities of mode a
and mode b are spatially equivalent. Figure 8(c) presents the
stationary filtered radiation intensity of cavity mode a for
the corresponding detection angle θa and the dipole-polarized
angle � with parameters � = 100γ , κ = 20γ , r12 = 0.25λ0.
As we have demonstrated, � = 0.85 is a possible appropri-
ate value for optimal enhancement of g(2)

ab , and it gives two
special detection angles θa1 = 1.9 and θa2 = 2π − θa1 = 4.38
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FIG. 8. (a) Possible detecting orientations for η(θa, θb) = 0 (red
arrows) and η(θa, θb) = 1 (green arrows) when r12 = 0.25λ0. (b) Dis-
tribution of 	g(2)

ab with the dipole-polarized angle � and detection
angle θa = θ (θb = 2π − θ ) for � = 100γ , 	2 = 0, κa = κb = 20γ ,
	a = 	b = �̄/2, and r12 = 0.25λ0. (c) Filtered radiation intensity
monitored by photodetector 1 as a function of its detection angle θa

and the dipole-polarized angle �. When � = 0.85, which may give
rise to the optimal enhancement of g(2)

ab , an appropriate observation
angle corresponding to the minimum value of the filtered radiation
intensity is θa1 = 1.9 labeled in the frame (c), i.e., the labeled point
is (� = 0.85, θa1 = 1.9), and another possible angle θa2 = 2π −
θa1 = 4.38 is not marked. (d) Two-dimensional angular distribution
of the filtered two-photon correlation signal g(2)

ab (θa, θb) for � =
100γ , 	2 = 0, κa = κb = 20γ , 	a = 	b = �̄/2, r12 = 0.25λ0, and
� = 0.85.

corresponding to the minimum value of 〈a†a〉. Therefore,
the same is true for cavity mode b. Figure 8(d) presents the
two-dimensional angular distribution of the normalized two-
mode quantum correlation g(2)

ab (θa, θb). Four distinct peaks can
be observed corresponding to (θa1, θb1), (θa1, θb2), (θa2, θb1),
and (θa2, θb2), in which two peaks on the antidiagonal line
represent the simple case of a single filter. However, in ad-
dition to the case of single filter, this two-dimensional angular
distribution suggests that the collective detection of two filter-
detector systems located at two geometric points can provide
more possible observation angle combinations (θa1, θb2) or
(θa2, θb1) to realize directional strong quantum correlation. In
other words, it refers to a fact that two filtered photons radiated
from halfway between the central peak and a side peak are
still highly correlated along these two special directions to
break through the superbunching effect in the single-atom
limit, even though they are spatially separated.

However, if one detector is applied to detect the filtered
photons emitted along the atomic axis, the quantum cor-
relation seems to have changed. For example, when only
the detector 2 is located at θb = 0 to achieve its maximum
filtered radiation intensity under the given parameters, the
value of two-mode quantum correlation is reduced, even if
another detector 1 is still placed at two special angles, i.e.,

θ1 = θa1 or θa2. This result can be attributed to the difference
between the electric dipole operators of the collective atomic
system coupled with two cavity modes along two different
orientations, respectively. More specifically, the component
of the electric dipole moments of the two atoms detected by
the detector 1 at θa = θa1 exhibit in an opposite phase. This
leads to the destructive interference of the radiation intensities
〈a†a〉 from the two quantum radiating sources. On the con-
trary, the filtered photons monitored by the detector 2 along
the direction θb = 0 are radiated from the two atoms whose
electric dipole moments are in phase, which give rise to the
maximum intensity of 〈b†b〉. This suggests that the counting
rates of the two-atom system towards these two directions are
different, which results in a reduction of the probability of
simultaneously detecting two photons in different directions.
Overall, however, the intrinsic superbunching effect can still
be maintained regardless of these geometrical factors.

VI. CONCLUSION

In conclusion, the frequency-resolved photon correlation
of resonance fluorescence has been investigated in a two-atom
radiating system with the aim of exploring the underlying ap-
plications of the strong quantum correlation in this collective
quantum system, including the enhancement of superbunch-
ing effect and precise detection for the weak variation of the
interatomic distance. In addition, our analytical investigation
makes it possible to probe into the physical mechanisms of
the superbunching effect built up from halfway between the
central band and one of the sidebands. In the case of large
filter width, the conditional atom-photon state is studied in a
truncated Hilbert space with single excitation for the cavity
mode. The physical advantage of our approach lies in the
fact that it can clearly present how the conditional state is
developed into the two-photon correlation signal with evident
analytical and physical correspondence. From our analytical
formalism, the superbunching effect occurring between the
central band and a sideband can be interpreted as the product
of the constructive quantum interference between a pair of
two-photon cascaded transitions, which is essentially the con-
sequence of the modulation effect of the unfiltered transition
amplitudes by the filter. As the second part of this paper, some
applications of this two-atom radiating system have been also
discussed. It has been shown that the interatomic coherence
caused by the dipole-dipole interaction may play an active
role in breaking through the superbunching limit obtained
in an independent two-level atom. At the same time, it has
been found that the strongly correlated photon pairs built up
from this mechanism are robust to the weak variations of the
interatomic distance. This suggests that, in addition to being
a treasurable quantum pump, it can also serve as a promising
quantum response to reflect this weak variation in the interior
of the quantum radiating source itself. Finally, as the third
part of this paper, we have generalized our investigation to
the case of two filter-detector monitoring systems to explore
the directionality of this superbunching effect. It has been
found that this filtered strong quantum correlation can be also
maintained even though the two photons are spatially sep-
arated and maximized at specific two-dimensional detection
angle combinations. This preservation and directionality may
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provide potential feasibility of engineering the filtered photon
correlations in space.
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APPENDIX A: ANALYTICAL FORMS OF THE
STATIONARY POPULATIONS AND ATOMIC COHERENCE

The coincidence of the stationary populations in dressed
two-atom collective representation between the numerical
solutions from the original master equations given by Eqs. (1),
(2), and (3), and its analytical solutions from the transformed
equations (6), (7), and (8), has been demonstrated in Sec. III.
In this Appendix, we give the explicit analytical expressions
of the dressed two-atom populations, which can clearly show
the relationship between the two-atom system and the single
two-level atom.

From Eqs. (6), (7), and (8), the steady-state populations in
two-atom collective representation can be obtained straight-
forwardly, which are given by

ρs
22 = χ0χ1

χ3χ4 − χ1χ2
, ρs

33 = χ0χ4

χ3χ4 − χ1χ2
,

ρs
11 = χ0χ1γ−

(χ3χ4 − χ1χ2)(γ1 + γ+)
, (A1)

with the closed relation ρs
44 = 1 − ρs

11 − ρs
22 − ρs

33. Whereas,
only the atomic coherence ρs

23 is nonzero, which is given by

ρs
23 = −γ̃12

(
2ρs

11 − ρs
22 − ρs

33

) − 2ic2�12
(
ρs

22 − ρs
33

)
γ1 + γ+ + γ− + 4γ0

.

(A2)

In the above solutions, the related coefficients are defined as

χ0 = γ−(γ1 + γ+)(γ1 + γ+ + γ− + 4γ0),

χ1 = (γ1 + γ+)
(
γ̃ 2

12 + 4c4�2
12

)
,

χ2 = −γ−(γ+ + γ−)(γ1 + γ+ + γ− + 4γ0)

− γ̃ 2
12(2γ− − γ1 − γ+) + 4c4�2

12(γ1 + γ+),

χ3 = (γ1 + γ+)(γ+ + γ−)(γ1 + γ+ + γ− + 4γ0)

+ (γ1 + γ+)
(
4c4�2

12 − γ̃ 2
12

)
,

χ4 = γ1(γ1 + γ+ + γ−)(γ1 + γ+ + γ− + 4γ0)

+ γ̃ 2
12(2γ− − γ1 − γ+) + 4c4�2

12(γ1 + γ+),

(A3)

where the dressed-state transition rates are given by γ+ =
γ2c4, γ− = γ2s4, γ0 = γ2c2s2, and γ̃12 = γ12c2. In addition, it
can be examined straightforwardly that when �12 → 0 and
γ12 → 0, both the populations ρs

11, ρs
22 and coherence ρs

23
approach to zero, and the dominant populations are simplified
as ρ

s(0)
33 = s4

c4+s4 and ρ
s(0)
44 = c4

c4+s4 . This is the simple result of
an independent laser-dressed two-level atom, i.e., the major
quantum radiating source in the two-atom system under our
consideration.

APPENDIX B: ANALYTICAL FORMS OF THE FILTERED
TRANSITION AMPLITUDES IN EQ. (10)

In this Appendix, we give the explicit analytical forms
of the filtered transition amplitudes in Eq. (10). In order to
express these amplitudes with physically transparent forms,
let us introduce the following single-photon filtered transition
amplitudes for the filtered fluorescent photons from R peak, T
peak, and F peak, respectively, as

C+
R = cs

√
κγ

κ
2 + i	c

, C−
R = −cs

√
κγ

κ
2 + i	c

, C+
T =

√
κγ

κ
2 + i(	c − �̄)

,

C−
T = −c2√κγ

κ
2 + i(	c − �̄)

, CF = s2√κγ
κ
2 + i(	c + �̄)

. (B1)

Actually, these forms are understandable. Due to the fact
that the laser-dressed atom has two possible channels to give
rise to the R peak in Mollow triplet, we use C+

R and C−
R

to distinguish these two different transitions with unfiltered
amplitudes cs and −cs, respectively. Similarly, the radiation of
T peak is built up from two channels, the undriven atom’s tran-
sition and the laser-dressed atom’s transition, with unfiltered
amplitudes 1 and −c2, respectively. Therefore, we use C+

T and
C−

T to express their filtered forms, respectively. The F peak
corresponds to the isolated transition from the dressed atom
with unfiltered amplitudes s2. Therefore, its filtered amplitude
is labeled by CF. It is apparent from Eq. (B1) that the filter,
i.e., the target cavity, modulates the bare (or unfiltered) tran-
sition amplitudes of single fluorescent photon into Lorentzian
type through dissipative coupling strength

√
κγ . In terms of

these definitions, all the probability amplitudes appearing in
Eq. (10) can be completely determined as follows:

C (1)
1,0 = C (3)

3,0 = C+
R , C (2)

2,0 = C (4)
4,0 = C−

R ,

C (1)
3,0 = C (2)

4,0 = C+
T , C (1)

2,0 = C (3)
4,0 = C−

T ,

C (2)
1,0 = C (4)

3,0 = CF,

C (1)
1,1 = C (3)

3,1 = −√
κγ

κ
2 + i	c

(csC+
R + s2C−

T ),

C (2)
2,1 = C (4)

4,1 = −√
κγ

κ
2 + i	c

(−c2CF − csC−
R ),

C (1)
2,1 = C (3)

4,1 = −√
κγ

κ
2 + i

(
	c − �̄

2

) (−c2C+
R − csC−

T ),

C (2)
1,1 = C (4)

3,1 = −√
κγ

κ
2 + i

(
	c + �̄

2

) (s2C−
R + csCF),

C (1)
3,1 = −√

κγ

κ
2 + i

(
	c − �̄

2

) (C+
R + csC+

T ),

C (1)
4,1 = −√

κγ
κ
2 + i(	c − �̄)

(C−
T − c2C+

T ),

C (2)
3,1 = −√

κγ
κ
2 + i	c

(CF + s2C+
T ),

C (2)
4,1 = −√

κγ

κ
2 + i	c − �̄

2

(C−
R − csC+

T ). (B2)
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Obviously, all the conditional single-photon filtered ampli-
tudes are originated from the quantum interference between
different two-photon cascaded channels, and the algebraic
forms of these filtered transition amplitudes can correspond
exactly to the cascaded transition channels depicted in the
energy level diagrams, as shown in Fig. 2.

APPENDIX C: FILTERED TWO-PHOTON CORRELATION
IN SINGLE-ATOM LIMIT

In this Appendix, we verify the equivalence between our
result of single-atom limit and the results in the existing liter-
atures in terms of both analytical and numerical aspects. The
unnormalized filtered two-photon correlation of the single-
atom limit can also be calculated straightforwardly by the
fundamental analytical method of the two-photon temporal
detection operators proposed by Nienhuis et al. [10]. Accord-
ing to the spirit of this fundamental method, the unnormalized
two-photon correlation can be expressed as G(2)

0 = 〈F †F 〉, in
which F is the two-photon temporal detection operator. If
all the spectral peaks are taken into account, the two-photon
temporal detection operator should be generalized from the
specific case of resonant detection discussed in Ref. [10]. The
general form of F is expressed as

F = CFRS−
F S−

R + CFTS−
F S−

T + CRFS−
R S−

F + CRRS−
R S−

R

+ CRTS−
R S−

T + CTFS−
T S−

F + CTRS−
T S−

R , (C1)

in which the two-photon collective emission operators S−
α S−

β

(α, β = F, R, T) express that the atom radiates a β photon
before the α photon is radiated. Therefore, the corresponding
coefficients Cαβ can be understood as the two-photon temporal
emission amplitudes, which turn out to be

CFR = λ2

(λ + i	c)
[
λ + i

(
	c + �̄

2

)] ,

CFT = λ2

[λ + i(	c − �̄)](λ + i	c)
,

CRF = λ2

[λ + i(	c + �̄)]
[
λ + i

(
	c + �̄

2

)] ,

CRT = λ2

[λ + i(	c − �̄)]
[
λ + i

(
	c − �̄

2

)] ,

CTF = λ2

[λ + i(	c + �̄)](λ + i	c)
,

CTR = λ2

(λ + i	c)
[
λ + i

(
	c − �̄

2

)] ,

CRR = λ2

(λ + i	c)2
, (C2)

with λ being the filter width. With this two-photon temporal
emission operator, we get the result

G(2)
0 = ρ

s(0)
33 (c2s2|CFT − CRR|2 + cs3|CRT − CTR|2)

+ ρ
s(0)
44 (c3s|CFR − CRF|2 + c2s2|CRR − CTF|2). (C3)

So far, we have quantitatively demonstrated that our result
in single-atom limit given by Eq. (13) is completely equiva-
lent to Eq. (C3) obtained from the fundamental method for
frequency-resolved fluorescent spectral correlations with the
time orderings being taken into account. The only difference
between Eqs. (13) and (C3) is the scaling factor. The scaling
factor in Eq. (13) is κ2γ 2, while that of the latter is λ4.
However, these factors can be canceled algebraically after
normalization by the filtered radiation intensity.

On the other hand, the values of g(2) calculated numerically
from the cascaded quantum system under our consideration
have been verified by comparing it with the given experimen-
tal results. For example, according to Ref. [22], we chose the
parameters γ = 0.2, 	2 = −1, κ = 0.5, and � = 1.6. Under
these parameters, the cascaded approach in our consideration
gives the two-photon correlation signal g(2) ≈ 5.4 for 	c =
−�̄/2 and g(2) ≈ 4.4 for 	c = �̄/2, which basically agree
with the experimental results in Ref. [22].
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