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Ray dynamics and wave chaos in circular-side polygonal microcavities

Min Tang, Yue-De Yang,* Hai-Zhong Weng, Jin-Long Xiao, and Yong-Zhen Huang†

State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

(Received 11 November 2018; published 6 March 2019)

We systematically study mode characteristics in circular-side polygonal microcavities (CSPMs), particularly
in these cavities with chaotic ray dynamics, in order to gain insights into the wave chaos in the CSPMs. The
circular sides could improve the light confinement of the CSPMs as concave mirrors, in that regular islands
are formed around the stable fixed points in the Poincaré surface of sections (SOS). However, the fixed points
become unstable under some specific deformations, and global chaos with quasistable “star islands” appears
around these fixed points in the Poincaré SOS accordingly. The phenomenon can be well explained by the ray
dynamic analysis under the second-order approximation, and the results show that the high-order terms play an
important role in the motions of light rays and destroy the regular islands in the phase space leading to chaotic
ray dynamics. The destruction of regular islands results in degradation of mode quality factors and dispersed
mode field distributions according to the finite-element method simulation of the confined modes. Furthermore,
an unusual variation of mode quality factor is observed by varying the refractive index of the outside media for
the CSPM with chaotic ray dynamics.
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I. INTRODUCTION

Whispering-gallery mode (WGM) optical microcavities,
which confine light rays by continuous total internal reflec-
tions (TIRs) at the cavity boundaries, have attracted great
attention in both fundamental physics studies and practical
device applications [1–4]. By storing optical energy in small
volumes, the WGM microcavities could greatly enhance the
light-matter interactions [5–7] and the phonon-photon cou-
pling [8–10]. Among the WGM microcavities with various
shapes, circular microcavities with a circularly symmetric ge-
ometry have achieved the most successes in the demonstration
of ultralow-threshold microlasers, thanks to their ultrahigh-
quality (Q) WGMs [11,12]. However, the circular rotational
symmetry results in homogeneous lasing emission along the
cavity rim, which limits the practical applications of the cir-
cular microcavity lasers in photonic integration. Especially for
the semiconductor microcavities, the Q factors of the WGMs
are typically limited by both the material absorption and the
vertical radiation losses [13]. Thus designing a cavity shape to
properly break the rotational symmetry is required to achieve
efficient in-plane directional emission with moderately high Q
factor [14].

Various asymmetric resonant cavities (ARCs), including
spiral-shaped cavity [15], limaçon cavity [16], and the “Face”
cavity [17], have been proposed and demonstrated experimen-
tally for realizing directional emission. The mechanism of di-
rectional emission for the ARCs is explained as chaos-assisted
tunneling (CAT) and unstable manifolds escape, which is
the heart of quantum chaos and nonlinear dynamics in an
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open system [18–22]. Chao-assisted channeling (CAC) was
proposed and proved to realize directional emission from
the chaotic microcavities with long-lived resonances [23].
Besides realizing directional emission, the chaotic ARCs were
also demonstrated to achieve broadband and fast momentum
transformation [24], enhance energy storage [25], and sup-
press spatiotemporal instabilities [26]. In addition, the wave
chaos in ARCs affected the competition between the lasing
modes and resulted in single-mode operation [27,28].

Apart from the ARCs with smooth boundaries, WGM
microcavities with regular polygonal shapes have also been
investigated intensively due to their special mode properties
[29–37]. Recently, we proposed and demonstrated circular-
side square microcavity semiconductor lasers to enhance the
mode Q factors and the transverse mode interval simulta-
neously, and suppress the undesired high-order transverse
modes [38,39]. The circular sides introduce an additional
degree of freedom for manipulating the WGMs in circular-
side polygonal microcavities (CSPMs), and may lead to novel
applications of these microcavities. However, there is still a
lack of a global understanding for the regulation mechanism
of the WGMs in the CSPMs. In this paper, we systematically
study the ray dynamics and the corresponding wave solutions
for the CSPMs, particularly the cavities with chaotic ray
dynamics. The orbits connecting the midpoints of the sides are
inherent periodic orbits (POs) of the CSPMs, which appear
as fixed points in the Poincaré surface of sections (SOSs).
Based on the analyses of the ray dynamics, the circular sides
of the CSPMs typically lead to regular islands around the
stable fixed points in the Poincaré SOSs. The size of the
islands varies with the deformation parameter. Interestingly,
a transition of POs from stable to unstable is observed under
a few specific deformations, and global chaos appears as
the regular islands degrade to quasistable “star islands.” The
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FIG. 1. Schematic diagram of two adjacent sides of a CSPM.

unstable POs, which form scarred modes in microcavities
[40–42], were first investigated in the subject of chaos [43,44]
and later extended to photonics research [16,18]. Unstable
POs could also arise from the local perturbations of an in-
tegrated billiard, and lied in the chaotic sea as marginally
unstable POs [45,46]. Compared with the unstable POs re-
ported before, the star islands result from high-order terms
in paraxial approximation, and therefore are relatively stable
occupying a large area in the phase space, which is a benefit
for the formation of long-lived modes. The destruction of the
boundary between the islands and the chaotic sea allows direct
transfer between the photons in these two regions, which may
dramatically affect the confined modes. The finite-element
method (FEM) is performed to simulate the characteristics of
the WGMs. Decreased mode Q factors and dispersed mode
field distributions are observed for the WGMs in the CSPMs
with chaotic ray dynamics, which can be well explained by
the ray dynamic analyses.

II. RAY DYNAMIC ANALYSIS FOR THE CSPMs

A schematic diagram of two adjacent sides of a CSPM
is shown in Fig. 1. For the sake of simplification, the other
sides are not presented in the figure owing to the rotational
symmetry of the CSPM. The cavity geometry is determined
by the following three parameters: the side number of the
regular polygonal microcavity N , the distance between the
midpoints of adjacent sides D, and the deformation degree m
defined as

m = D/ f , (1)

where f is the focal length along the line connecting the mid-
points of adjacent sides as shown in Fig. 1. The focal length
f can be obtained as f = f ′ cos(θ ) = R cos(θ )/2, where f ′
and R are the paraxial focal length and the radius of circular
sides, respectively, and θ is the incident angle of the light
ray propagating along the line connecting the midpoints of
adjacent sides. The CSPM is a regular polygonal microcavity
with m = 0 and is a circular microcavity with m = 4. In the
following discussion, we restrict the deformation degree m in
the range from 0 to 4 covering all the shapes deformed from
the regular polygonal microcavity to the circular microcavity.

Basically, varying the deformation degree m will not
change the symmetry properties of the CSPMs. The confined
modes can still be classified into irreducible representations
of the point group CNv, which gives the general rules of
the degeneracy of the WGMs [33]. Thus part of the double-

FIG. 2. POs of the CSPMs with N = 3, 4, 5, 6, and 8. The orbits
marked by the blue and green dashed lines are degenerate orbits, and
the orbits reflected between the opposite sides for the CSPMs with
even side numbers are neglected.

degenerate modes will split into two nondegenerate standing-
wave modes with different mode frequencies and Q factors.
However, the converging effect of the circular-side concave
mirrors will reduce the light scattering at the vertices greatly
[38], and lead to a decrease of the differences in the mode fre-
quencies and Q factors compared with the regular polygonal
microcavities.

We first study the influence of the side number N on the
ray dynamics. The POs of the CSPMs with different side
numbers of 3, 4, 5, 6, and 8 are shown in Fig. 2, where the
orbits reflected between the opposite sides for the CSPMs with
even N are neglected because these light rays cannot be totally
reflected. Different from the regular polygonal microcavities,
which have multiple periodic orbit families, the inevitable
fixed orbits in the CSPMs are the light rays connected to
the midpoints of the circular sides. Here we define l as the
side-number difference between the ray-connected sides, and
in the case l = 1 the light ray propagates between the adjacent
sides, and the corresponding modes are denoted as adjacent
reflection modes (ARMs). If the light ray returns to the initial
side after p times of reflections, l p = MN should be satisfied,
where M is a positive integer. Then p can be solved as

p = N

(N, l )
, (2)

where (N , l) is the maximum common divisor of N and
l . (N, l ) is also the degeneracy of this type of POs, and it
has proved useful in the formation of long-lived resonances
[47–49]. For example, the orbits constructed by reflections
between next-nearest-neighbor sides in the hexagonal mi-
crocavity are doubly degenerate, as shown in Fig. 2, which
is coincident with (6, 2). We can derive that the number
of periodic orbits for a CSPM is

∑[N/2]
i=1 (N, i), where the

square brackets is the rounding operation. The number of POs
increases as N increases. If N is a prime number, the POs
number is (N − 1)/2.

The analyses above reveal the regularity of POs in the
CSPMs. In order to demonstrate the ray dynamics, the
Poincaré SOSs of the CSPMs with m = 1.5, and N =
3, 4, 11, and 12 are calculated and shown in Figs. 3(a)–3(d),
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FIG. 3. Poincaré SOSs of the CSPMs with N = (a) 3, (b) 4,
(c) 11, and (d) 12. The deformation degrees of the CSPMs are 1.5.

respectively, where χ is the incident angle of the light ray on
the boundary, S is the distance from one of the vertices along
the boundary in a counterclockwise direction, and Smax is the
perimeter of the CSPM. In the calculation of the Poincaré
SOS, we use 200 light rays with random initial conditions
in the phase space and record the first 500 reflections for
each ray. Only the upper half of the SOSs are shown in the
figures, as the lower half will have similar structure due to the
symmetry of the CSPMs.

In general, the phase space of a regular polygonal micro-
cavity is constructed by segmented horizontal lines, and that
of a circular microresonator is constructed by horizontal lines.
The Poincaré SOSs of a square microcavity and a circular
cavity are illustrated in Figs. 4(a) and 4(b), respectively. In
the SOSs of the CSPMs, these orbits evolve into many regular
islands arranged in an array, and chaotic sea appears around
the islands. From the top to the bottom of the phase space,
each row of the islands represents the POs with l varied from
1 to [N/2]. Figures 3(a) and 3(c) show the SOSs of the CSPMs
with N equaling prime numbers of 3 and 11, where 1 and 5
kinds of nondegenerate orbits are observed and the islands
on the same horizontal line have similar structure. For the
case N = 4 as shown in Fig. 3(b), there is a nondegenerate
orbit reflected by the adjacent sides (top islands with l = 1)
and double-degenerate orbits reflected by the opposite sides
(bottom islands with l = 2). For the case N = 12 as shown in
Fig. 3(d), the islands on the same horizontal line have a variety
of structures and the degeneracies from the top islands to the
bottom islands are 1, 2, 3, 4, 1, and 6, respectively.

When the side number is fixed, the cavity shape can be
changed by varying the deformation degree m, and the ray
dynamics will be modulated accordingly. In the following
discussion, we mainly consider the ARMs with the light ray
reflections between the adjacent sides of the CSPMs, as these
light rays have the largest incident angle benefiting the TIR.
A 2 × 2 monodromy matrix T (m) for the reflections between
the adjacent sides around the midpoints under the first-order
paraxial approximation is obtained as (the axis is chosen as

FIG. 4. Poincaré SOSs of (a) a square microcavity, (b) a circular
cavity, and the CSPMs with N = 4 and m = (c) 1, (d) 2, (e)
(3 + √

5)/2, and (f) 3. (g) Zoom-in view of the regions around the
island center of the SOSs shown in (c)–(f).

the line connecting the midpoints of the adjacent sides)( δφ j+1

D
δθ j+1

sin(π/N )

)
=

( m
2 − 1 −√

2
m√

2
− m2

4
√

2
m
2 − 1

)( δφ j

D
δθ j

sin(π/N )

)
, (3)

where δφ j and δθ j are the position offset and the incident
angle offset, respectively. The determinant of T (m) equals
1. Similar to the steady condition in the coaxial spherical
cavity, T (m) should satisfy the same stability condition that
the half of the sum of the matrix diagonals is between −1
and 1 [50]. Thus, the stable condition can be obtained as
0 < m < 4, which means that the CSPM considered here is
always a stable cavity for the paraxial light rays under the
first-order approximation. The mapping relation in Eq. (3)
results in concentric ellipses in the SOS except for some
specific deformations that we will discuss below.

One interesting phenomenon is the generation of fixed
points under the evolution of the ray trajectories. The condi-
tion [T (m)]r = I can give a sequence mr with r � 3, where I
is the identity matrix. The corresponding mr can be obtained
as [50]

mr = 2 cos(2qπ/r) + 2, (4)
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where q is a positive integer satisfying q < r/2. Then the
incident angle offsets and the position offsets will loop after
r times of reflections. Each regular island will degenerate to
discrete fixed points with a number of r/(r, N ) for a single ray
trajectory, where (r, N ) is the maximum common divisor of
r and N . The Poincaré SOSs of the CSPMs with N = 4 and
m = 1, 2, (3 + √

5)/2, and 3 corresponding to m3, m4, m5,
and m6 are presented in Figs. 4(c)–4(f), respectively. Based on
the transmission analysis under the first-order approximation,
the fixed points will appear as triple, single, quintuple, and
triple patterns near the center of each island, which is verified
by the zoom-in view of the island center as shown in Fig. 4(g)
considering the rotational symmetry. However, the island cen-
ters of the SOSs are not exactly discrete fixed points. With the
deformation degrees of m3, m4, and m5, the islands degener-
ate to hyperbolalike curves, and the light rays become unstable
even for these rays close to the island center. In a SOS, the
regions are always separated as Kolmogorov-Arnold-Moser
(KAM) curves, chaotic seas, and closed islands. The islands
in Figs. 4(c)–4(e) are different from these three situations,
and we term the quasistable islands with discrete fixed points
as the star islands. As these islands are no longer stable, a
transition to global chaos is observed for the four-bounced
light rays in the CSPMs with these specific deformations. In
addition, hexagonal-shaped regular islands could be identified
in Fig. 4(f) with the deformation degree of m6. The star
islands in the CSPMs are similar to the unstable POs along
the long axes of ellipses [51], but are much more stable. The
reason is that Eq. (3) under first-order paraxial approximation
gives stable and unstable motions for the POs in CSPMs and
ellipses, respectively, which indicate that the unstable motion
of the star islands may result from high-order terms.

According to the above discussion, the Poincaré SOSs
show unstable ray dynamics under some specific deforma-
tions, which are conflicted with the analytical results under
the first-order paraxial approximation. The motion of the ray
trajectories in the phase space should be guided by the high
order of mapping relations for the fixed points. The mapping
from (δφ j , δθ j) to (δφ j+1, δθ j+1) considering the second-order
terms can be expressed as

δθ j = sin

(
π

N

)[(
m

2
− 1

)
δφ j

D
− δφ j+1

D
+

(
m

4
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)
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(
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m
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]
,
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(5)

The detailed derivation process could be found in the
Appendix. We restrict the initial conditions near the center
of the island and calculate the SOS in the phase space for
the CSPM with N = 4 and m = 1. We calculated 500 ray
trajectories with random initial condition confined in a square
region with a normalized side length of 5 × 10−3 and centered
at one of the fixed points in the SOS. Each ray trajectory is

FIG. 5. Fractal structures of the star islands in CSPM with N = 4
and m = 1. (a) Star islands calculated by strict SOS, (b) star islands
calculated under second-order approximation, and (c) schematic
diagram of the motions of the ray trajectories for the star islands.

reflected for 500 times. The SOSs obtained without approx-
imation and with second-order approximation are calculated
and shown in Figs. 5(a) and 5(b), respectively. We could
identify mutually similar fractal structures in Figs. 5(a) and
5(b), which is the center of the star islands. The results show
that Eq. (5) under the second-order approximations can give
good characterization of the ray trajectories. The schematic
diagram of the motion of the ray trajectories around the star
islands is plotted in Fig. 5(c), which could be verified by
calculating the single ray in Fig. 5(a) or 5(b). The star island
is not a conservative system and ray trajectories will move
out of the islands in the directions as the arrows present.
Besides, the ray trajectories will move in the islands in other
directions. Different from the regular islands in a SOS, the
star islands have leakage channels directly coupled to the
chaotic sea through the high-order terms of the transformation
matrix.

Furthermore, the second-order approximation still gives
discrete fixed points for the star islands with m = m4 and
m5, which means that the unstable motion of the light rays
may arise from the higher-order terms. The relatively large
white areas of these star islands, as shown in Fig. 4(g), also
indicate high stability for the light rays around the island
center. Although the ray dynamics in the star islands is not
stable as with the regular islands, the lifetimes of the corre-
sponding light rays are much longer than that of the light rays
in the chaotic sea, which indicates that moderately high Q
modes may exist in the CSPMs with chaotic ray dynamics.
Furthermore, similar ray dynamics relative to the deforma-
tion degree are observed for the CSPMs with different side
numbers.

III. NUMERICAL SIMULATIONS OF CSPMs

For the two-dimensional (2D) WGM microcavities with a
refractive index distribution of n(x, y), the Maxwell’s equa-
tions for the confined optical field can be replaced by the
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FIG. 6. Mode Q factors vs normalized size of the CSPMs with
N = 4 and m = 1, 1.5, and 2.

scalar wave equation

−∇2ψ (x, y) = n2(x, y)
ω2

c2
ψ (x, y), (6)

where ω is the angular frequency, c is the light speed in vac-
uum, and ψ represents the field distribution. We numerically
simulate the transverse-electric (TE) polarized modes in the
CSPMs by the FEM (COMSOL MULTIPHYSICS 5.0) to verify the
above analyses of the ray dynamics and explore their impact
on the mode characteristics. A perfectly matched layer with a
width of 0.5 μm is used to absorb the outgoing waves and
terminate the simulation window. The maximum grid sizes
are set as λ/6n to ensure the computation accuracy, where
λ is the mode wavelength and n is the refractive index. The
refractive indices of the CSPMs (nin) and outside media (nout)
are set to 3 and 1.5, respectively. The mode Q factors can be
extracted from the obtained complex mode frequency through
Q = Re(ω)/|2Im(ω)|.

The Q factors of the fundamental transverse modes in the
CSPMs with N = 4 and different m are plotted as functions
of normalized cavity size (ninkD). In the simulation, D is
varied from 3 to 10 μm, and the wavelengths of the selected
modes are kept around 1550 nm. With m = 1, the CSPMs is
close to a chaotic cavity, as shown in Fig. 4(c), and the Q
factor increases from 1.1 × 103 to 2.8 × 104 as the cavity
size increases from 3 to 10 μm. The slope of the curve shows
a saturation of the Q factors and also exhibits a decrease
trend with the further increase of the cavity size, as mode
light can escape from the star islands quickly. For the CSPMs
with m = 1.5, the modes are confined in the regular island,
as shown in Fig. 3(b), and the Q factor increases dramatically
from 2.0 × 103 to 2.4 × 108 with the increase of cavity size.
For the CSPMs with m = 2 and the ray dynamics as shown in
Fig. 4(d), the Q factor increases from 2.0 × 103 to 4.6 × 106.
In such situation, the ray dynamics of CSPMs is also chaotic,
but the instability of ray dynamics induced by higher-order
terms of the transmission matrix and the areas of the islands
are larger than CSPMs with m = 1, as shown in Fig. 4(g).
Thus the light confinement and Q factors are between the two
situations above.

FIG. 7. |Hz| field distributions of the modes in the CSPMs with
D = 3 μm and (a) m = 1, (b) m = 1.5, (c) m = 2, and D = 10 μm
and (d) m = 1, (e) m = 1.5, and (f) m = 2. The red lines show the
boundary of the CSPMs.

Figure 7 shows the magnetic field (|Hz|) distributions of
the fundamental transverse WGMs in the CSPMs with N = 4.
The magnetic fields of simulated modes are antisymmetric
and symmetric relative to the x and y axes, respectively. Fig-
ures 7(a)–7(c) show the field distributions of the modes in the
CSPMs with D = 3 μm and m = 1, 1.5, and 2, respectively.
The field distributions and scattering fields around the micro-
cavities show similar structures. When D increases to 10 μm,
the scattering fields are much weaker. Figures 7(d)–7(f) show
the field distributions of the modes in the CSPMs with D =
10 μm and m = 1, 1.5, and 2, respectively. A dispersed mode
field distribution is found in Fig. 7(d), which indicates the
wave chaos and high mode loss. As a comparison, the field
distributions shown in Figs. 7(e) and 7(f) for the CSPMs with
m = 1.5 and 2 indicate better mode confinement. The mode
field distributions are consistent with the Q factor variation
shown in Fig. 6.

Figure 8 shows the mode Q factors and the wavelengths of
the ARMs in the CSPMs versus the deformation degree m. In
the simulation, ND is kept as a constant. The Q factors exhibit
a dip around m = 1 due to the chaotic ray dynamics for the
CSPMs with different N . In the case of ND = 50 μm, the low-
est Q factors are 1.2 × 104, 4.7 × 103, 3.1 × 103, 2.0 × 103 at
the deformation degrees of 1.1, 1, 1, and 0.9, and the highest
Q factors are 1.4 × 1010, 1.1 × 108, 3.2 × 105, and 1.0 × 104

for the CSPMs with N = 4, 5, 6, and 7, respectively. The
CSPM with N = 8 show a positive correlation relation be-
tween the Q factor and m. In the case of ND = 100 μm, the
lowest Q factors are 1.1 × 104, 1.0 × 104, 4.5 × 103, 3.3 ×
103, and 4.3 × 103 at the deformation degrees of 1, 1, 1.1, 1.1,
and 1.2, and the highest Q factors are 2.9 × 1010, 7.2 × 1010,
3.0 × 108, 8.3 × 105, and 1.1 × 104 for the CSPMs with N =
4, 5, 6, 7, and 8, respectively. The ray dynamics analyses
predict the degradation of the mode Q factors around m = 1,
which agrees well with FEM simulation results with a slight
difference in position where the lowest Q appears. When
the side number N increases, the optical path will be closer
to the vertices, resulting in the increase of pseudointegrable
leakage and the decrease of Q factors [31]. Thus the ARMs
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FIG. 8. (a) Mode Q factors and (b) mode wavelengths of the
ARMs vs the deformation degree m in the CSPMs with ND =
50 μm, and N = 4, 5, 6, 7, and 8. (c) Mode Q factors and (d) mode
wavelengths of the ARMs vs the deformation degree m in the CSPMs
with at ND = 100 μm, and N = 4, 5, 6, 7, and 8. For the CSPM with
N = 8 and m = 1.1, the ARMs are coupled with other modes and we
cannot derive the Q factors and wavelengths directly.

are not necessarily the mode groups with the highest Q factors
in the CSPMs with N > 4 [49]. Figures 8(b) and 8(d) shows a
negative correlation between the mode wavelengths of ARMs
and m. The reason is that the effective cavity area decreases
with the increase of m when N and D are kept as a constant.
A change of the slope is found around m = 1 due to the
large variation of field distributions caused by the chaotic ray
dynamics.

To further support our claim of the motions for the star
islands in the phase space, we project two typical modes
onto the phase space using the Husimi function [52,53]. The
Husimi projections of the chaotic mode and the four-island
mode are shown in Figs. 9(a) and 9(b), respectively, and the
corresponding mode patterns are shown in the insets. Here the
refractive index of outside media is decreased to 1 to better

FIG. 9. Husimi projections of the ARMs in the CSPMs with
m = (a) 1 and (b) 1.5. Insets show the corresponding |Hz| field
distributions. The (a) blue arrows and (b) circle embedded in the
second top island are diagrams of the flow of the ray trajectories in
the phase space.

FIG. 10. Mode Q factors and mode wavelengths of the ARMs in
the CSPMs with N = 4, D = 10 μm, and m = (a) 1.5 and (b) 1 vs the
refractive index of outside media. The insets give the island shapes
for the Husimi projections.

exhibit the chaotic mode. The geometries of the cavities are
the same as that shown in Figs. 7(d) and 7(e), and the increase
of the degree of chaos is revealed due to the increased refrac-
tive index contrast. The corresponding Q factors are 2.9 × 103

and 4.4 × 1010, respectively. In both situations, the islands are
centered at χ = ±45◦ and S/Smax = 1/8, 3/8, 5/8, and 7/8.
The islands in the top of Fig. 9(a) are right-hand triangles
and in the bottom are left-hand triangles; the angle-oriented
positions for the star islands are the same with outgoing
directions of the star island presented in Fig. 5(c). As a
comparison, the islands in Fig. 9(b) are well isolated from the
chaotic sea resulting in extremely high Q factor.

We consider the microcavities with different refractive
index contrast to further identify the modes in the CSPMs with
chaotic ray dynamics, which may give another perspective of
the mode characteristics. Figures 10(a) and 10(b) show the
mode Q factors and wavelengths of the ARMs in the CSPMs
with N = 4, D = 10 μm, and m = 1.5 and 1, respectively.
The insets show the island shapes of the Husimi projections
for the corresponding modes. The mode wavelengths increase
when the refractive index of outside media is increased, due
to the weakened mode confinement. However, the variation
of Q factor is not a simple monotonic relation. For the mode
with regular island ray dynamics shown in Fig. 10(a), the
Q factor is essentially unchanged with the order of 1010 as
nout is increased from 1 to 1.4, which may be limited by the
accuracy of the numerical simulation. When the refractive
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index is increased further, the Q factor decreases dramatically
as the islands are exposed beneath the TIR condition. For
the mode with chaotic ray dynamics shown in Fig. 10(b), a
peak around nout = 1.6 appears in the variation of Q factors.
The reason for the decrease of Q factors for large nout is
the same as the nonchaotic cavity. The dominant loss is the
incomplete reflection of the light rays close to the island
center. Interestingly, if nout decreases from 1.6 to 1, the Q
factor decrease because of the strong coupling between the
island centers and leakage channels, and the modes turns from
regular orbit mode to chaotic mode. The dominant loss is the
leakage loss through the channels, as shown in Fig. 5(c). The
insets of Fig. 10(b) show the transform of the islands from
ellipse to right oriented triangles, which is a sign of chaos
and can be verified in Figs. 5(a) and 5(c). The oscillation of
Q factors is induced by the mode coupling between different
transverse modes, which also leads to the discontinuities in
the variation of the mode wavelength.

IV. DISCUSSIONS AND CONCLUSIONS

In summary, we have studied the ray dynamics and wave
chaos in the CSPMs. Unstable fixed points appear in the
Poincaré SOSs of the CSPMs with specific deformations.
The light rays around the island center can directly couple to
chaotic sea in the phase space through the high-order terms
in the transmission matrix. Such phenomena are found in the
CSPMs with different side numbers and different deforma-
tion degrees. The unstable fixed points and surrounding ray
trajectories form quasistable star islands with discrete fixed
points around the island center based on the ray dynamics
analyses. Although the light rays in the star island are not
really stable, the lifetimes are relatively long, which can
support moderately high Q modes in the CSPMs. The chaotic
ray dynamics leads to triangle-shaped islands in the Husimi
projection and dispersed mode field distributions according
to the FEM simulation. The leakage through the outgoing
channels is also influenced by the refractive index contrast of
the microcavities, which may modulate the Q factors accord-
ingly. The mechanism of the ray dynamics with star islands
presented here is not restricted in the geometry of CSPMs,
but can also be exploited to other microcavities with the local
boundaries that fulfill the same reflection relationships.
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APPENDIX: THE MAPPING RELATIONS FOR ADJACENT
REFLECTION MODES

The fixed points usually support POs in the SOSs. Equa-
tions (3) and (5) describe the regularity of the ray trajectories

FIG. 11. Schematic diagram of the adjacent sides and single
reflection rays. O is the center point of the CSPM; A and B are the
center point of each curve side. A′O′ parallels to the AO and B′O′

parallels to BO. The extension cords of AO and B′O′ intersect at R.
O′P is perpendicular to AO, and OQ is perpendicular to BO.

surrounding the fixed points, which are derived from the
mapping relations of the adjacent reflection modes (ARMs).

As shown in Fig. 11, AO = BO = H , B′O′ = a, A′O′ =
b, A′B′ = d , O′P = 
x, OQ = 
y,

�

AA′ = δφx,
�

BB′ = δφy,
AP = hx, B′Q = hy, the radius of the curve side is r, the angle
between AO and BO is 2π/N , and the reflection angles are θx

and θy, respectively.
The position offsets are

δφx = r arcsin (
x/r),

δφy = r arcsin (
y/r). (A1)

For the triangle A′B′O′, the side lengths are expressed as

a = hy − 
x/ sin(2π/n0) + 
y/ tan(2π/N ),

b = hx + 
y/ sin(2π/n0) − 
x/ tan(2π/N ), (A2)

d = [a2 + b2 − 2ab cos(2π/N )]1/2,

where hx = √
r2 − 
x2 − r + H , hy =

√
r2 − 
y2 − r + H .

The angular offsets are

δθx = arcsin[a sin(2π/N )/d]

− π/2 + π/N + arcsin(
x/r),

δθy = arcsin[b sin(2π/N )/d]

− π/2 + π/N − arcsin(
y/r). (A3)

The Taylor series of position offsets to second order about

x and 
y are

δφx =
(

δφx + ∂δφx

∂
x

x + 1

2!

∂2δφx

∂
x2

x2

)∣∣∣∣
x=0 = 
x,

δφy =
(

δφy + ∂δφy

∂
y

y + 1

2!

∂2δφy

∂
y2

y2

)∣∣∣∣
y=0 = 
y.

(A4)
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For the angular offsets, the Taylor series are

δθx =
(

1

r
− 1

2H

)

x − 1

2H

y + (H − r) cot(π/N )

4H2r

x2

− (H − r) cot(π/N )

4H2r

y2,

δθy = 1

2H
δφx −

(
1

r
− 1

2H

)
δφy − (H − r) cot(π/N )

4H2r
δφ2

x

+ (H − r) cot(π/N )

4H2r
δφ2

y . (A5)

Substitute (A4) into (A5) and we have relations

D = 2Hsin(π/N ),

f = r

2
sin(π/N ), (A6)

D/ f = m.

Then Eq. (5) can be obtained. As for Eq. (3), the squared terms
in (A5) are neglected.
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