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In-phase and antiphase dynamics of Rydberg atoms with distinguishable resonances
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We study the correlated evolutions of two Rydberg atoms, interacting via a van der Waals (vdW) potential
V6 and driven by a laser field of detunings �1 and �2. The two atoms may exhibit the in-phase dynamics with
identical Rydberg populations or the antiphase dynamics with complementary Rydberg populations, depending
on their initial states. For a moderate vdW potential far from the blockade regime, the in-phase or antiphase
dynamics can be attained along two intersecting lines in the parameter space of �1 and �2 with an exact or
approximate figure of merit, respectively. Note, in particular, that the exact in-phase dynamics is trivial because
it requires identical detunings while the approximate in-phase, exact antiphase, and approximate antiphase
dynamics are nontrivial because they require distinct detunings. The specific requirements on �1 and �2 for both
in-phase and antiphase dynamics can be understood by considering the balanced transitions from two initially
populated states to two initially empty states in the double-atom state basis.
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I. INTRODUCTION

Rydberg atoms have many interesting features, one of
which is the long-range dipole-dipole interaction (DDI), usu-
ally manifested as a van der Waals (vdW) potential. The vdW
potential may induce a large resonance shift for a double
Rydberg excitation so that the excitation of one Rydberg
atom strictly suppresses the excitation of another Rydberg
atom, yielding then the so-called blockade effect [1–3]. But
it is also viable to realize the simultaneous excitation of two
Rydberg atoms by compensating the vdW induced resonance
shift with a suitable atom-light detuning, which is usually
referred to as the antiblockade effect [4–6]. With the blockade
or antiblockade effect, Rydberg atoms have been proven to be
a promising platform for implementing many quantum tasks
[1] to realize, e.g., diverse quantum entanglement [7–11],
efficient quantum gates [12–16], photonic devices [17–21],
and deterministic single-photon sources [22–25].

Note, in particular, that a cooperative absorptive nonlin-
earity has been found for Rydberg atomic ensembles in the
regime of electromagnetically induced transparency (EIT),
manifested as the output spectra of a probe field sensitive
to its input intensity [26–29]. More importantly, the output
probe photons may exhibit strong repulsive interactions, as
they suffer a largely modified statistics of remarkable anti-
bunching features. This allows the realization of a nonlinear
EIT medium transparent to single photons but opaque to
multiple photons, and has aroused great interest in developing
theories on single-photon propagation dynamics [30–33]. The
cooperative nonlinearity for Rydberg atomic ensembles will
turn from absorptive to dispersive if one works inside an EIT
window of very large atom-light detunings [34]. This then
yields the attractive single-photon interactions constituting the
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basis of two-photon and three-photon bound states [35–37].
The repulsive (absorptive) or attractive (dispersive) interac-
tions (nonlinearities), as a long-standing goal in quantum
photonics, enable usually unavailable applications in quantum
information science like single-photon gates [38–40] and
memories [41–43].

On the other hand, benefiting from the fast development of
experimental technologies, we now can capture single atoms
in optical microtraps and arrange them to one-dimensional
(1D) chains or two-dimensional (2D) arrays. Such Rydberg
atomic structures may serve as an alternative platform differ-
ent from Rydberg atomic ensembles for implementing various
quantum tasks, including the realization of quantum gates in
terms of atomic qubits [44–49] and the simulation of spin
dynamics in terms of excitation transport [50–53]. In addition,
the 1D Rydberg chains or 2D Rydberg arrays have been
explored to examine nonequilibrium phase transitions [54],
magnetization quantum revivals [55], correlated population
oscillations [56], etc. In most of the above studies and other
relevant works [57–60], dynamic evolutions of collective
Rydberg excitations are inevitably considered as the direct
or indirect evidences of concerned issues for a given vdW
potential. But it is not clear yet how Rydberg atoms transit
from the completely independent to the strongly correlated
oscillations as the vdW potential gradually increases until
entering the blockade regime.

Here we consider two Rydberg atoms of different atom-
light detunings �1 and �2 to examine their correlated evolu-
tions in the presence of a vdW potential V6. Our numerical
results show that they can exhibit the in-phase dynamics
referring to identical Rydberg populations and the antiphase
dynamics referring to complementary Rydberg populations
for different initial states. These are attained at the middle
stage as the vdW potential is increased to result in the continu-
ous transitions of complete independence – weak correlation –
moderate correlation – strong correlation – rigid blockade.
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To be more specific, the realization of exact (approximate) in-
phase dynamics requires �1 = �2 (�1 + �2 = 3V6/2) while
the realization of exact (approximate) antiphase dynamics re-
quires �1 + �2 = V6 (�1 − �2 = V6/2). These requirements
reflect the fact that two initially empty states in the double-
atom state basis should remain equal populations, which can
only be attained when they have identical or opposite detun-
ings to two initially populated states. Finally, we stress that
our findings can be extended to design reliable schemes for
implementing the dynamic control of atomic entanglement,
e.g., by considering two pairs of closely lying Rydberg atoms.
In this case, it is viable to attain a high-fidelity entangled state
(|gr〉 + |rg〉)/

√
2[(|gg〉 − |rr〉)/

√
2], far from the blockade

regime, by exploring the antiphase (in-phase) dynamics.

II. MODEL AND EQUATIONS

We consider in Fig. 1 a pair of two-level atoms loaded
into different optical traps with the ground states |g1,2〉 and
the Rydberg states |r1,2〉. They are assumed to be driven by
a common laser field of frequency ωd and amplitude Ed in
the presence of different transition frequencies ω1,2. They also
interact through a van der Waals (vdW) potential V6 = C6/R6

12
with C6 being the vdW coefficient and R12 the interatomic
distance. Then, with the rotating-wave and electric-dipole
approximations, we can write down the the total Hamiltonian

H = h̄

⎛
⎜⎜⎜⎝

0 �∗
2 �∗

1 0

�2 �2 0 �∗
1

�1 0 �1 �∗
2

0 �1 �2 �1 + �2 − V6

⎞
⎟⎟⎟⎠, (1)

in the double-atom state basis of |g1g2〉, |g1r2〉, |r1g2〉, and
|r1r2〉. In Eq. (1), we have defined �1,2 = ωd − ω1,2 as detun-
ings and �1,2 = Ed d1,2/2h̄ as Rabi frequencies, accounting

FIG. 1. (a) Two Rydberg atoms loaded into different traps of
distance R12, coupled via a vdW interaction of potential V6, and
driven by a common laser of frequency ωd . (b) The corresponding
level configuration with ground states |gj〉 and Rydberg states |r j〉
coupled by the common laser of detunings � j and Rabi frequencies
� j . The vdW interaction can result in the in-phase and antiphase
dynamics for different initial conditions.

for the near-resonant interactions between the driving field
and both Rydberg atoms, with d1,2 being the electric dipole
moments on relevant transitions.

The dynamics of one atomic system is governed by the
master equation for density operator ρ

∂tρ = − i

h̄
[H, ρ] + L(ρ), (2)

with L(ρ) = ∑
j � j[σgr j ρσr j g − 1

2 (ρσr j gσgr j + σr j gσgr j ρ)] de-
scribing the dissipation processes arising from the Rydberg
decay rates � j , where σr j g = |r j〉〈g| and σgr j = |g〉〈r j | have
been introduced to represent the raising and lowering opera-
tors for relevant transitions. Using the total Hamiltonian H, it
is straightforward to expand Eq. (2) into the following density
matrix equations:

∂tρg1g1,g2g2 = +�1ρr1r1,g2g2 + �2ρg1g1,r2r2 − i
(
�1ρg1r1,g2g2 − �∗

1ρr1g1,g2g2

) − i
(
�2ρg1g1,g2r2 − �∗

2ρg1g1,r2g2

)
,

∂tρg1g1,r2r2 = +�1ρr1r1,r2r2 − �2ρg1g1,r2r2 − i
(
�1ρg1r1,r2r2 − �∗

1ρr1g1,r2r2

) + i
(
�2ρg1g1,g2r2 − �∗

2ρg1g1,r2g2

)
,

∂tρr1r1,g2g2 = +�2ρr1r1,r2r2 − �1ρr1r1,g2g2 + i
(
�1ρg1r1,g2g2 − �∗

1ρr1g1,g2g2

) − i
(
�2ρr1r1,g2r2 − �∗

2ρr1r1,r2g2

)
,

∂tρg1r1,g2g2 = −(i�1 + �1/2)ρg1r1,g2g2 + �2ρg1r1,r2r2 − i
(
�2ρg1r1,g2r2 − �∗

2ρg1r1,r2g2

) + i�∗
1

(
ρr1r1,g2g2 − ρg1g1,g2g2

)
,

∂tρg1g1,g2r2 = −(i�2 + �2/2)ρg1g1,g2r2 + �1ρr1r1,g2r2 − i
(
�1ρg1r1,g2r2 − �∗

1ρr1g1,g2r2

) + i�∗
2

(
ρg1g1,r2r2 − ρg1g1,g2g2

)
, (3)

∂tρg1r1,r2g2 = −[i(�1 − �2) − (�1 + �2)/2]ρg1r1,r2g2 − i�∗
1

(
ρg1g1,r2g2 − ρr1r1,r2g2

) − i�2
(
ρg1r1,r2r2 − ρg1r1,g2g2

)
,

∂tρg1r1,g2r2 = −[i(�1 + �2 − V6) + (�1 + �2)/2]ρg1r1,g2r2 − i�∗
1

(
ρg1g1,g2r2 − ρr1r1,g2r2

) + i�∗
2

(
ρg1r1,r2r2 − ρg1r1,g2g2

)
,

∂tρg1r1,r2r2 = −[i(�1 − V6) + (�1/2 + �2)]ρg1r1,r2r2 + i
(
�2ρg1r1,g2r2 − �∗

2ρg1r1,r2g2

) + i�∗
1

(
ρr1r1,r2r2 − ρg1g1,r2r2

)
,

∂tρr1r1,g2r2 = −[i(�2 − V6) + (�2/2 + �1)]ρr1r1,g2r2 + i
(
�1ρg1r1,g2r2 − �∗

1ρr1g1,g2r2

) + i�∗
2

(
ρr1r1,r2r2 − ρr1r1,g2g2

)
,

constrained by
∑

ik ρii,kk = 1, ρii,kl = ρ∗
ii,lk , ρi j,kk = ρ∗

ji,kk ,
and ρi j,kl = ρ∗

ji,lk with {i, j} ∈ {g1, r1} for the first Rydberg
atom and {k, l} ∈ {g2, r2} for the second Rydberg atom. Then
we can solve Eq. (3) with a certain initial condition [e.g.,
ρg1g1,g2g2 (0) = 1 or ρg1g1,r2r2 (0) = 1] to calculate the reduced
density matrices ρ1 = Tr2(ρ) and ρ2 = Tr1(ρ). This allows us
to examine whether the two Rydberg atoms of different reso-

nant frequencies ω1,2 (driving detunings �1,2) can exhibit the
in-phase [characterized by ρr1r1 (t ) = ρr2r2 (t ) and ρg1r1 (t ) =
ρg2r2 (t )] or the antiphase [characterized by ρr1r1 (t ) = ρg2g2 (t )
and ρg1r1 (t ) = ρr2g2 (t )] dynamics, in the presence of an ap-
propriate vdW potential V6. It is also easy to see that V6

appears only in the last three rows in Eq. (3), which account
for one double-photon transition (|g1g2〉 → |r1r2〉) and two
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single-photon transitions (|g1r2〉 → |r1r2〉 and |r1g2〉 →
|r1r2〉) of the same final state.

Note, however, that incorrect results will be attained if
we change the order of solving density matrix equations and
making partial traces as mentioned above. That is, it is not
logical if we first attain from Eq. (3)

∂tρr1r1 = −�1ρr1r1 + i
(
�1ρg1r1 − �∗

1ρr1g1

)
,

∂tρg1r1 = −[i(�1 − V6) + �1/2]ρg1r1

+ i�∗
1

(
ρr1r1 − ρg1g1

)
,

∂tρr2r2 = −�2ρr2r2 + i
(
�2ρg2r2 − �∗

2ρr2g2

)
,

∂tρg2r2 = −[i(�2 − V6) + �2/2]ρg2r2

+ i�∗
2

(
ρr2r2 − ρg2g2

)
, (4)

constrained by ρg j g j + ρr j r j = 1 and ρg j r j = ρ∗
r j g j

in the
single-atom state basis of |gj〉 and |r j〉 and then calculate
ρr j r j with a certain initial condition. The reason is simply
that a reduction from Eq. (3) to Eq. (4) will erase important
contributions of the double-photon transition |g1g2〉 → |r1r2〉.
In other words, the traced-out elements ρg1r1,g2r2 should have
a significant influence on the dynamic evolutions of two
interacting atoms.

The deviation degree of in-phase dynamics for a double
Rydberg excitation can be measured by

Din(t ) = ∣∣ρr2r2 (t ) − ρr1r1 (t )
∣∣, (5)

whose time-averaged value, as a figure of merit, should be
calculated through the integral

Din = lim
T →∞

1

T

∫ T

t=0
Din(t )dt, (6)

with the optimal (worst) in-phase dynamics attained in the
case of Din → 0 (Din → 1).

The deviation degree of antiphase dynamics for a double
Rydberg excitation can be measured by

Danti(t ) = ∣∣∣∣ρr2r2 (t ) − 0.5
∣∣ − ∣∣ρr1r1 (t ) − 0.5

∣∣∣∣, (7)

whose time-averaged value, as a figure of merit, should be
calculated through the integral

Danti = lim
T →∞

1

T

∫ T

t=0
Danti(t )dt, (8)

with the optimal (worst) antiphase dynamics attained in the
case of Danti → 0 (Danti → 1).

Now we consider two 87Rb atoms with the Ryd-
berg states |r1〉 = |r2〉 = |90S, J = 1/2, mJ = 1/2〉 and the
ground states |g1〉 = |5S1/2, F = 2, mF = −1〉 and |g2〉 =
|5S1/2, F = 2, mF = 1〉 as an example. Then it is easy to know
�1 = �2 	 2.0 kHz and C6 	 2π × 1.67 × 1013 s−1μm6

[61,62], yielding thus a vdW potential in the range of V6 ∈
{1 ↔ 60} MHz for a distance in the range of R12 ∈ {8 ↔
16} μm. We further argue that our proposal could be re-
alized in a three-level model by introducing the middle
states |e1〉 = |e2〉 = |5P1/2, F = 1, mF = 0〉. An equivalent
two-level model can be attained by adiabatically eliminating
|e1〉 and |e2〉 in the case of very small two-photon detunings
and very large single-photon detunings [60]. For this equiv-
alent two-level model, the difference between detunings �1

and �2 can be easily tuned by an inhomogeneous magnetic
field with the Zeeman effect. Note also that (i) a linearly
polarized laser field can be applied to generate left and right
circularly polarized components of identical amplitudes and
(ii) the |g1〉 → |e1〉 and |g2〉 → |e2〉 transitions share the same
electric dipole moments de1g1 = de2g2 [63]. In this case, it
is reasonable to set �1 = �2 = � and use � (1/�) as the
frequency (time) scale in what follows.

III. IN-PHASE DYNAMICS

In this section, we study via numerical calculations under
what conditions and to what extent the two Rydberg atoms can
exhibit the in-phase dynamics. This is done by first plotting in
Fig. 2 in-phase deviation degree Din against vdW potential
V6 and initial population ρg2g2 (0) with ρg1g1 (0) = 1, �1/� =
0.2, and �2/� = 0.7. It is clear that a larger difference in
the initial ground populations typically results in a larger
deviation degree of the in-phase dynamics except V6 is close
to zero. It is of particular interest that a vanishing deviation
degree only appears at a specific point defined by ρg2g2 (0) = 1
and V6/� = 0.6. As detunings �1 and �2 are changed, this
specific point of Din → 0 is found to simply move along the
V6 axis with ρg2g2 (0) ≡ 1 (not shown).

We then plot in Fig. 3 single-atom Rydberg populations
ρriri (t ) and in-phase deviation degree Din(t ) against time t
with initial condition ρg1g1,g2g2 (0) = 1, for a few typical values
of vdW potential V6. Figures 3(a1) and 3(a2) show that the two
Rydberg atoms oscillate independently with different periods
due to �1 �= �2, in the case of a vanishing vdW interac-
tion. For a weak vdW interaction, we find from Figs. 3(b1)
and 3(b2) that the two Rydberg atoms still oscillate out of
phase, though they have been mutually coupled to result in
additional beating-like oscillations. It is of particular interest
to note from Figs. 3(c1) and 3(c2) that the two Rydberg
atoms exhibit pretty good in-phase oscillations, as the vdW
potential has a moderate value. For a strong vdW interaction,

0

ρg2g2(0)
0.5

10
0.5V6/Ω

1
1.5

0.5

0.4

0.1

0

0.3

0.2

2

D
in

FIG. 2. Deviation degree Din against vdW potential V6 and initial
population ρg2g2 (0) with ρg1g1 (0) = 1, �1/� = 0.2, �2/� = 0.7,
and �1/� = �2/� = 0.0002.
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FIG. 3. Dynamic evolutions of Rydberg populations ρriri (t ) (left)
and deviation degree Din (t ) (right) with V6/� = 0.0 (a1, a2); V6/� =
0.2 (b1, b2); V6/� = 0.6 (c1, c2); V6/� = 1.5 (d1, d2); V6/� =
10 (e1, e2). Other parameters are the same as in Fig. 2 except
ρg1g1,g2g2 (0) = 1.

we find from Figs. 3(d1) and 3(d2) that the in-phase evo-
lutions are somewhat destroyed with revived fluctuations in
the deviation degree. As the vdW interaction is sufficiently
strong, Figs. 3(e1) and 3(e2) display quite peculiar evolution
dynamics: the maximal oscillation amplitudes are suppressed
to ∼0.5 as a manifestation of the dipole blockade effect;
the two Rydberg populations, though of same periods, are
not in-phase because they exhibit alternatively enhanced and
reduced amplitudes.
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FIG. 4. Din against �1/� and �2/� with V6/� = 0.2 (a1);
V6/� = 0.4 (a2). The two curves in (b1) and (b2) are respectively
extracted from (a1) and (a2) to compare the cases of �1 = �2 (blue-
dashed) and �1 + �2 = 3V6/2 (red-solid). Other parameters are the
same as in Fig. 2.

General conditions for observing the in-phase dynamics
can be found by plotting Din against �1 and �2 for two
different values of V6 in Figs. 4(a1) and 4(a2). It is easy to
conclude from a series of such plots that there always exist
two intersecting dark lines accounting for the minimal in-
phase deviation degree: a trivial one corresponding to �1 =
�2 and a nontrivial one corresponding to �1 + �2 = 3V6/2.
Figures 4(b1) and 4(b2) further show that Din (i) remains van-
ishing along the trivial dark line, indicating the exact in-phase
dynamics; (ii) exhibits a smooth window along the nontriv-
ial dark line, indicating the approximate in-phase dynamics.
This in-phase window is centered at �1 = �2 = 3V6/4 with
its width depending somewhat on V6. To be more specific,
pretty good in-phase dynamics (e.g., with Din � 0.05) can be
attained in the range |�1 − �2|/� � 0.65 (|�1 − �2|/� �
0.50) for V6/� = 0.2 (V6/� = 0.4).

IV. ANTIPHASE DYNAMICS

Now we turn to examine antiphase dynamics in a way
similar to that used in the last section. We first plot in Fig. 5
antiphase deviation degree Danti against vdW potential V6 and
initial population ρg2g2 (0), with the same parameters as in
Fig. 2. We find that Danti in Fig. 5 exhibits different behaviors
as compared to Din in Fig. 2. For instance, it is a smaller
difference in the initial ground populations that results in a
larger deviation degree of the antiphase dynamics except V6

is close to zero. In addition, a vanishing deviation degree
appears instead at the specific point defined by ρg2g2 (0) = 0
and V6/� = 0.9. Of course, the specific point of Danti → 0
will move along the V6 axis with ρg2g2 (0) ≡ 0, as detunings
�1 and �2 are changed (not shown).

We then plot in Fig. 6 single-atom Rydberg populations
ρriri (t ) and antiphase deviation degree Danti(t ) against time
t with initial condition ρg1g1,r2r2 (0) = 1, for a few typical
values of vdW potential V6. Figures 6(a1) and 6(a2) show
that the two Rydberg atoms oscillate independently with large
fluctuations in the deviation degree due to �1 �= �2, as the

1
0.8

ρg2g2(0)
0.6

0.4
0.2

00
0.5

1

V6/Ω

1.5
2

0.2

0.4

0.5

0

0.1

0.3

D
a
n
ti

FIG. 5. Deviation degree Danti against vdW potential V6 and
initial population ρg2g2 (0) with ρg1g1 (0) = 1, �1/� = 0.2, �2/� =
0.7, and �1/� = �2/� = 0.0002.
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FIG. 6. Dynamic evolutions of Rydberg populations ρriri (t ) (left)
and deviation degree Danti (t ) (right) with V6/� = 0.0 (a1, a2);
V6/� = 0.6 (b1, b2); V6/� = 0.9 (c1, c2); V6/� = 1.8 (d1, d2);
V6/� = 10 (e1, e2). Other parameters are the same as in Fig. 5 except
ρg1g1,r2r2 (0) = 1.

vdW interaction is vanishing. For a weak vdW interaction, we
find from Figs. 6(b1) and 6(b2) that the two Rydberg atoms
become mutually coupled to result in additional beating-like
oscillations with greatly suppressed fluctuations in the de-
viation degree. It is surprising to find from Figs. 6(c1) and
6(c2) that the two Rydberg atoms exhibit the exact antiphase
oscillations because V6 has a moderate value. For a strong
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FIG. 7. Danti against �1/� and �2/� with V6/� = 0.2 (a1);
V6/� = 0.5 (a2). The two curves in (b1) and (b2) are respectively
extracted from (a1) and (a2) to compare the cases of �1 − �2 = V6/2
(blue-dashed) and �1 + �2 = V6 (red-solid). Other parameters are
the same as in Fig. 5.

vdW interaction, Figs. 6(d1) and 6(d2) show that the antiphase
evolutions are obviously destroyed with revived fluctuations
in the deviation degree. Since the vdW interaction is suffi-
ciently strong, Figs. 6(e1) and 6(e2) display quite peculiar evo-
lution dynamics: ρr1r1 (t ) and ρr2r2 (t ) are not antiphase, though
exhibiting alternatively enhanced and reduced amplitudes in
most time, with their sum � 1.0 as a manifestation of the
dipole blockade effect.

General conditions for attaining the antiphase dynamics
can be found by plotting Danti against �1 and �2 for two
different values of V6 in Figs. 7(a1) and 7(a2). It is easy
to conclude from a series of such plots that there always
exist two intersecting dark lines accounting for the minimal
antiphase deviation degree, which correspond respectively to
�1 − �2 = V6/2 and �1 + �2 = V6 and therefore are both
nontrivial. Figures 7(b1) and 7(b2) further show that Danti (i)
remains vanishing along the line determined by �1 + �2 =
V6, indicating the exact antiphase dynamics; (ii) exhibits a
sharp window along the line determined by �1 − �2 = V6/2,
indicating the approximate antiphase dynamics. Comparing
Figs. 4 and 7, we can say that the nontrivial antiphase dy-
namics could be exact while the nontrivial in-phase dynamics
is always approximate for two interacting atoms with different
driving detunings (resonant frequencies).

V. DISCUSSION

With regard to Fig. 8(a), we first discuss why the exact and
approximate in-phase dynamics are observed along two inter-
secting dark lines in the space of �1 and �2. For two atoms
initially prepared in |g1g2〉 or |r1r2〉, the in-phase dynamics
requires that they have identical transition probabilities to-
ward |g1r2〉 and |r1g2〉. Otherwise, ρg1g1,r2r2 and ρr1r1,g2g2 will
become unbalanced so that it is impossible to have ρr1r1 =
ρr2r2 . Intuitively, such identical transition probabilities can
be attained when transitions |g1g2〉 → |g1r2〉 and |g1g2〉 →
|r1g2〉 have the same or opposite detunings �2 = ±�1 as
well as transitions |r1r2〉 → |g1r2〉 and |r1r2〉 → |r1g2〉 have
the same or opposite detunings −(�1 − V6) = ∓(�2 − V6).
Both conditions of the same detunings can be satisfied with
�1 = �2, which then yields the exact in-phase dynamics.
The two conditions of opposite detunings, however, result in
contradicting requirements �1+�2 = 0 and �1+�2 = 2V6

FIG. 8. (a) Relevant transitions for two atoms initially prepared
in |g1g2〉 or |r1r2〉, which allows for the in-phase dynamics under ap-
propriate conditions. (b) Relevant transitions for two atoms initially
prepared in |g1r2〉 or |r1g2〉, which allows for the antiphase dynamics
under appropriate conditions.
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so that only the approximate antiphase dynamics can be ob-
served along the line �1 + �2 = 3V6/2. This can be regarded
as an average of the three detunings from |g1g2〉 to |g1r2〉,
|r1g2〉, and |r1r2〉.

Looking at Fig. 8(b), we now discuss why the exact and
approximate antiphase dynamics are observed along two in-
tersecting dark lines in the space of �1 and �2. For two
atoms initially prepared in |r1g2〉 or |g1r2〉, the antiphase
dynamics requires that they have equal transition probabilities
toward |g1g2〉 and |r1r2〉. Otherwise, ρr1r1,r2r2 and ρg1g1,g2g2 will
become unbalanced so that it is impossible to have ρr1r1 =
ρg2g2 . Intuitively, such equal transition probabilities can be
attained when transitions |r1g2〉 → |g1g2〉 and |r1g2〉 → |r1r2〉
have the same or opposite detunings �2 − V6 = ∓�1 as well
as transitions |g1r2〉 → |g1g2〉 and |g1r2〉 → |r1r2〉 have the
same or opposite detunings �1 − V6 = ∓�2. Both conditions
of same detunings can be satisfied with �1 + �2 = V6, which
then yields the exact antiphase dynamics. The two conditions
of opposite detunings, however, result in contradicting re-
quirements �1 − �2 = −V6 and �1 − �2 = V6 so that only
the approximate antiphase dynamics can be observed along
the line �1 − �2 = V6/2. This can be regarded as an average
of the three detunings from |g1r2〉 to |g1g2〉, |r1r2〉, and |r1g2〉.

Finally, we note that a pair of closely lying Rydberg atoms
can only be in the ground state |gg〉 and the symmetric state
(|gr〉 + |rg〉)/

√
2 but are forbidden to be in the asymmetric

state (|gr〉 − |rg〉)/
√

2 due to destructive interference and the
double Rydberg state |rr〉 due to dipole blockade [60]. Thus,
each Rydberg atom with states |g〉 and |r〉 in our model may
be replaced by a pair of closely lying Rydberg atoms with
states |gg〉 and (|gr〉 + |rg〉)/

√
2. In this case, it is viable to

have a reliable scheme for implementing the in-phase and
antiphase dynamic control of atomic entanglement, when the
two pairs of Rydberg atoms are spaced far enough to yield a
moderate vdW potential (V6 	 �). In addition, we note from
Ref. [60] that it is important to attain a high-fidelity Bell
state (|gr〉 + |rg〉)/

√
2 in the blockade regime. This Bell state

[another Bell state (|gg〉 − |rr〉)/
√

2] can also be attained,
far from the blockade regime without requiring an infinitely
large vdW potential (V6 � �), by exploring the antiphase
(in-phase) dynamics in our model. The only requirement is
to switch off the driving field at the beating nodes where
ρr1r1 = ρr2r2 = 0.5 [see Figs. 3(c1) and 6(c1)]. Our alternative
scheme for attaining these entangled states has two main

advantages: (i) it works with a moderate and tunable vdW
potential without needing to enter the blockade regime; (ii)
it works in the presence of an inhomogeneous magnetic field
without requiring the same atom-light detunings.

VI. CONCLUSIONS

In summary, we have studied a pair of two-level Rydberg
atoms interacting via a vdW potential V6 to examine their
correlated dynamic evolutions. The two atoms can exhibit
the exact or approximate in-phase dynamics, when they are
both prepared in the ground states at the initial time. The
exact ones are found to require �1 = �2 and deemed as
trivial because they hold even for V6 = 0. The approximate
ones require instead �1 + �2 = 3V6/2 and are therefore non-
trivial because they hold only for V6 �= 0. In particular, the
approximate one manifests as a narrow window in which
deviation degree Din gradually increases as detuning differ-
ence |�1 − �2| becomes larger. The two atoms may also
exhibit the exact or approximate antiphase dynamics, when
they are respectively prepared in the ground and Rydberg
states at the initial time. The exact and approximate ones
are both nontrivial because they require �1 + �2 = V6 and
�1 − �2 = V6/2, respectively. In particular, the exact ones
exist in a much wider range of �1 and �2 in which deviation
degree Danti is vanishing, independent of detuning difference
|�1 − �2|. Requirements for in-phase and antiphase dynam-
ics can be understood by considering the balanced transitions
from two initially populated states to two initially empty
states in the double-atom state basis. Our results should be
instructive in devising schemes of quantum manipulation on
atomic entanglement, though they are not easily extended for
more Rydberg atoms in the 1D chains or 2D arrays.
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