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Reduced bases for a three-level atom interacting with a two-mode radiation field

S. Cordero, O. Castaños, R. López-Peña,* and E. Nahmad-Achar
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543,

04510 México Cd. Mx., Mexico

(Received 8 November 2018; published 6 March 2019)

Reduced bases are obtained for a single three-level atom interacting dipolarly with a two-mode electromag-
netic field in a cavity. A truncation scheme for the infinite dimensional Hilbert space of the system is proposed,
which we take it as the exact ground-state solution. This is used to determine the quantum phase diagram of the
atomic � configuration and to judge the goodness of the reduced bases. This provides us with a mathematical
technique that can be used to solve systems where the number of atoms and excitations grow, yielding a Hilbert
space with enormous dimensions, more effectively than with the currently available methods. Additionally, the
sudden changes suffered by the ground-state solution can be observed through the calculation of the purity and
the occupation probabilities.
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I. INTRODUCTION

The study of a finite number of three-level atoms interact-
ing dipolarly with an electromagnetic field in a cavity deserves
attention in applications such as quantum memories and for
other quantum information and quantum optics purposes. For
instance, alkali metals, as confirmed by the electromagneti-
cally induced transparency effect, are good approximations to
three-level systems in the � configuration, and schemes have
been presented for various quantum gates using three-level
atoms and trapped ions [1,2]. Moreover, off-resonant systems
protect one from spontaneous emission and have thus been
favored in practical applications because of their advantage
when subjected to coherent manipulations. The ground-state
phase diagram as a function of the coupling strengths has
been established for the V -type atomic configuration and a
single-mode quantized field but whose components posses
different phase factors, which is very similar to our results
considering two-mode radiation fields [3,4]. In many-body en-
tanglement studies, the collective interactions between matter
and light have played an important role for quantum infor-
mation processing, for example, in the generation of quantum
correlations and nonclassicalities, i.e., negative values of the
Wigner function for the light [5,6].

Three-level atoms are only an approximation to real atoms,
but the design and construction of artificial quantum structures
allows one to refer to so-called artificial atoms [7–9] that
possess a finite number of levels. It is therefore interesting
to consider three-level systems without loss of generality. The
importance of their phase diagrams has drawn the attention of
some authors [10–13], and there have been various contribu-
tions to the study of their phase transitions (cf., e.g., Ref. [14]
and references therein). The phase control of coherent dy-
namics for one three-level atom in the V configuration has
been experimantally studied [15] for potential applications in
quantum sensing and quantum information processing. Other
studies considering one three-level atom include a reduction

*Corresponding author: lopez@nucleares.unam.mx

to an effective two-level model for the � configuration [16]
and the electromagnetically induced transparency beyond a
steady-state analysis [17].

Recently, we have shown that a three-level system in-
teracting dipolarly with a two-mode radiation field exhibits
a universal parametric curve associated with the number of
photons and the relative population between the levels, similar
to what happens in a two-level system interacting with one
mode of radiation field [18,19].

The purpose of this work is to establish reduced bases for
a single three-level atom interacting dipolarly with a two-
mode radiation field in a cavity, without using the rotating-
wave approximation. This reduction is guided by the ground-
state variational solution together with the parity invariants.
These were used on the system as a test bed to measure their
effectiveness. The quality of the reduced bases is determined
by means of the calculation of the fidelity with respect to
the numerically exact ground-state solution of the system. We
show that the sequence of ever approximating bases for the
infinite-dimensional Hilbert space leads to an excellent agree-
ment with the exact behavior with much less expenditure. This
provides us with a mathematical technique that can be used
to solve systems where the numbers of atoms and excitations
grow, yielding a Hilbert space with enormous dimensions,
more effectively than with the currently available methods.

For the numerically exact ground-state solution, we carry
out a truncation of the infinite-dimensional Hilbert space
by asking for the ground state to be unchanged up to a
pre-established precision. Therefore, for fixed values of the
frequencies of the atomic levels and the modes of the cavity,
the ground state is determined as a function of the matter-field
coupling parameters. By means of the fidelity concept, the loci
of points where phase transitions occur in the � configuration
are calculated. The phase diagram exhibits continuous and
discontinuous transitions. Of the four discontinuous transi-
tions present, three are associated to changes in the parity
invariants while the fourth is related to the transition between
two-level subsystems, i.e., from the region S13 where one
photon mode �13 dominates, to the region S23 dominated
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by the other mode �23, or vice versa. For the continuous
transitions, while preserving the parity, the behavior changes
from a normal regime (where the decay is proportional to the
number of atoms Na, and there are zero photons contributing
to the ground state) to a super-radiant regime (where the
decay is proportional to N2

a , and there is a nonzero number
of photons contributing to the ground state). This behavior
is clearly shown in the plots of the expectation values of the
number of photons.

We make use of a sequence of ever approximating bases for
the infinite-dimensional Hilbert space H. A fidelity criterion,
which may be set according to the problem to be tackled,
is used to truncate the dimension of H and from it the one-
particle phase diagram of the ground state is obtained. The
parity of the ground state and the type of photons dominat-
ing the excitations is studied in each region. Guided by a
ground-state variational solution, together with the help of
the preserved parities of the Hamiltonian, a sequence of ever
approximating reduced bases is constructed and the results
obtained from these are compared with those from the exact
basis. We show that a reduced basis may be chosen which
leads to an excellent agreement with the exact behavior with
much less expenditure. As an example, the � configuration is
considered in detail.

This paper is organized as follows: Section II introduces
the model and splits the Hilbert space into subspaces ac-
cording to the preserved parities, establishing a quantitative
procedure to truncate the infinite-dimensional Hilbert space
of the system. The geometry of the phase diagram is also
reviewed for each atomic configuration. Section III shows
how to construct the sequence of reduced bases, in terms
of the order parameter O given in (12). Section IV gives
some applications for the � configuration, as, for example,
the calculation of the quantum phase diagram for Na = 1 by
means of the fidelity concept. A comparison of the ground
states associated to the reduced and exact bases is also done,
and the behavior of the purity and occupation probabilities
is established in the coupling parameter space. Section V
presents a summary and conclusions.

II. MODEL

We consider the multipolar Hamiltonian which may be
written as [4,20,21] (taking h̄ = 1)

H = HD + Hint, (1)

where HD and Hint are the diagonal and interaction contribu-
tions, respectively, given by

HD =
3∑

j<k

� jk a†
jk a jk +

3∑
j=1

ω j A j j , (2)

Hint = − 1√
Na

3∑
j<k

μ jk (A jk + Ak j )(a jk + a†
jk ) . (3)

Here a†
jk, a jk are the creation and annihilation photon

operators for the mode connecting the atomic levels j and k,
and Ai j = |i〉 〈 j| are the matter operators obeying the U(3)
algebra

[Ai j, Alm] = δ jl Aim − δim Al j , (4)
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FIG. 1. Atomic configurations �, �, and V . The ith atomic
energy level (h̄ = 1) is denoted by ωi with the convention ω1 � ω2

� ω3, and the coupling parameter between levels i and j is μi j . The
field frequencies are denoted by �i j .

with
∑3

k=1 Akk = I . We have denoted the field frequencies
by � jk and assumed that the atomic frequencies satisfy ω1 �
ω2 � ω3. Furthermore, μi j is the coupling parameter between
levels i and j, and the different atomic configurations are
chosen by taking the appropriate value μi j = 0 (cf. Fig. 1).

The ground-state energy for the different atomic configu-
rations as a function of the dimensionless coupling constants
x = μ/μc, with μc being the two-level critical coupling, has
been calculated using the variational method and is given in
Fig. 2 [4]. In addition, the separatrices (white lines, regions
of points where a sudden change in the ground state of the
system is happening) and their corresponding order of the
quantum phase transitions are shown. In each case, we can
see a normal region, N , for small values of x where atoms
emit and absorb independently, and two super-radiant regions
where they show a collective behavior. For large values of
x, the collective subregion Si j is completely dominated by
photons of type νi j .

The Hamiltonian system (1) is invariant under parity trans-
formations of the form

�1 = ei π K1 , �2 = ei π K2 , (5)

where Ks, s = 1, 2, are constants of motion when the
rotating-wave approximation (RWA) is taken. These are found
by setting [�j, H] = 0 and having Ks be a linear operator,

Ks = η
(s)
12 ν12 + η

(s)
13 ν13 + η

(s)
23 ν23 +

3∑
k=1

λ
(s)
k Akk , (6)

where ν12, ν13, and ν23 denote the number of photons of each
one of the modes of the electromagnetic field. The coefficients
of the operators are given in Table I for the different atomic
configurations.

Notice that the operators Ks have non-negative integer
eigenvalues; thus, the Hilbert space H can be divided into four
subspaces of the form

H = Hee ⊕ Heo ⊕ Hoe ⊕ Hoo ,

where the subscripts σ = {ee, eo, oe, oo} denote the even e or
odd o parity of �1 and �2, respectively.
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FIG. 2. Phase diagrams and energy surfaces, in resonance, for
Na = 1 atom in the � (top), V (middle), and � (bottom) configura-
tions. The separatrices (white lines) and the order of the transitions
are shown. The normal regions are labeled by N (black). The super-
radiant region is divided into subregions Si j and Sk where modes �i j

and �k dominate, respectively. In all cases, matter and field are in
resonance, and the axes are xi j = μi j/μ

c
i j , where μc

i j is the two-level
critical coupling. In this and other plots, the energy is measured in
units of [h̄ω3] and xi j are dimensionless.

Given that the parity is preserved, each one of the sub-
spaces Hσ can be written in the form

Hσ = ⊕∞
r=0H(π1+2 r,π2+2 r) ,

TABLE I. Coefficients corresponding to the Ks operators in
Eq. (6) are given for the atomic �, �, and V configurations.

Conf. Ks η
(s)
12 η

(s)
13 η

(s)
23 λ

(s)
1 λ

(s)
2 λ

(s)
3

� K1 0 1 1 0 0 1
K2 0 0 1 1 0 1

� K1 1 0 1 0 1 2
K2 0 0 1 0 0 1

V K1 1 1 0 0 1 1
K2 0 1 0 0 0 1

with (π1, π2) = {(0, 0), (0, 1), (1, 0), (1, 1)} associated to the
parity of the operators �1 and �2, respectively, and H(k1,k2 )

are the subspaces given by the values of K1 and K2.
Thus, a three-level atom interacting dipolarly with a two-

mode field in a cavity generates an infinite-dimensional
Hilbert space. The basis states are denoted by |ν12, ν13, ν23〉 ⊗
|n1, n2, n3〉 with n1 + n2 + n3 = 1 and ν jk = 0, 1, . . . ,∞. A
truncation criterion is therefore necessary to study the eigen-
system of the Hamiltonian, and this is obtained by asking con-
vergence of the fidelity between base states | ψ (k1max, k2max)〉
and | ψ (k1max + 2, k2max + 2)〉, where (k1max, k2max) are the
maximum eigenvalues taken by the operators K1 and K2 in
the current approximation, to an error of the order err = 10−10,
i.e.,

1 − F (k1, k2) � 10−10 . (7)

where F (k1, k2) = | 〈ψ (k1, k2)|ψ (k1 + 2, k2 + 2)〉 |2. This fi-
delity constraint is arbitrary and may be set according to the
problem to be tackled; we have chosen the approximation
given in Eq. (7) as good because we have found that to this
approximation the expectation value of the energy of the
ground state remains fixed up to 10−8 even for large values
of the coupling constants. The basis Bσ so obtained will be
called hereafter the exact basis, for the different parity Hilbert
subspaces.

III. REDUCED BASES

Given the infinite-dimensional nature of the Hilbert space,
and the necessity of truncating its basis to obtain what we
have called the exact basis for operational purposes, the fact
remains that this exact basis, while allowing us to calculate
energies and phase transitions as will be shown below, is still
the basis of a Hilbert space of large dimensions. If we want to
extend this work for a larger number of atoms, the dimensions
will grow unwieldy (cf. Refs. [19,22]).

This fact begs the question of whether one can still reduce
the dimension of the Hilbert space while still obtaining es-
sentially the same results as with the exact basis. The logic
behind our methodology rests in two facts obtained from the
variational results:

(i) We have previously derived a method [4] for reducing a
system of n-level atoms interacting with radiation to a system
of (n − 1)-level atoms, where the transitions between two
given atomic levels are promoted only by one mode. Applying
this method iteratively, one reaches two-level systems. Thus,
looking at the number of atoms to be allowed in each of
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the two two-level subsystems of our three-level atom will be
essential.

(ii) We have also shown [4,14] that the polychromatic
phase diagram for n-level atoms interacting with  modes
of an electromagnetic field divides itself naturally into
monochromatic subregions, where a single electromagnetic
mode dominates. Then, checking the total number of excita-
tions allowed in each of the two two-level subsystems will be
crucial.

The first statement will be relevant for studies of Na-
particle systems; here we describe the methodology for con-
structing an ever approximating sequence of bases BF (O)
for Na = 1 atom. For the general case of many atoms, see
Ref. [22].

For three-level atoms, the phase diagram is constituted by
the so-called normal region and three super-radiant subregions
S12, S13, and S23. Each one of these subregions behaves as
the super-radiant region of a two-level system. Recall that
only two coupling parameters are diferent from zero for each
atomic configuration (cf. Fig. 1), which means that each
configuration has only two super-radiant subregions.

For the particular case of two-level atoms interacting
dipolarly with one mode � jk of electromagnetic field, with
( jk) = {(12), (13), (23)}, the Hamiltonian associated to the
mode � jk possesses only one parity operator, namely

� jk = eiπM jk , M jk = ν jk + Akk , (8)

where M jk stands for the total number excitations operator,
which is a constant of motion when the rotating-wave approx-
imation is considered. From the variational calculation [21],
one finds that this system presents a phase transition at

μ̄c
jk := 1

2

√
� jk ωk j ; ωk j := ωk − ω j ,

where j < k. It is convenient to study the solutions to the
three-level systems in terms of dimensionless matter-field
coupling and detuning parameters,

x jk := μ jk

μ̄c
jk

, � jk := � jk

ω jk
− 1 . (9)

In this form, all two-level systems with the same value of the
detuning parameter � jk will have the same phase diagram
when plotted as a function of x jk; in other words, they are
equivalent.

For each one of the Hilbert spaces Hσ , there is a corre-
sponding exact basis which we denote by Bσ . The matter
sector constitutes a three-dimensional space generated by the
Fock states, BM = {|100〉, |010〉, |001〉}.

The field basis states are generated by the Fock states
{|ν12 ν13 ν23〉}, where νi j denotes the eigenvalue of the
photon number operator νi j . For each one of the modes
{�12,�13,�23}, and if we ask for the ground state to be
unchanged in, say, one part in 10−10, a maximum number of
photons can be established by the corresponding maximum
eigenvalue mi j of the total number of excitations operator
Mi j , which depends on the matter-field coupling strengths, as
shown in Fig. 3. The basis states are then given by

BF = {|ν12 ν13 ν23〉 | νi j � mi j (xi j )} , (10)
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FIG. 3. Eigenvalue m of the total number of excitations operator
M as a function of the matter-field coupling strength x. It is shown
above for different detuning values: 0.5 (bottom, yellow), 0 (middle,
blue), and −0.5 (top, green). Below, for resonant conditions, and for
convergence to 10−10 (bottom, blue) and to 10−15 (top, orange).

with (i j) = {(12), (13), (23)} and the exact basis for the three-
level system is constructed with the tensor product BF ⊗ BM .

That a truncation scheme can be proposed for the field
sector of the basis states is due to the result of the variational
calculation in determining the ground state of the system. In
the parameter space x12, x13, x23, there are subregions where
only one mode of the electromagnetic field dominates.

For instance, if we are in the S12 sector, we take ν12 �
m12(x12) and for the other electromagnetic modes we propose
the truncation,

BF12 (O) = {|ν12 ν13 ν23〉 | ν12 � m12(x12) ,

ν13 � min{2 O + 1 , m13(x13)} ,

ν23 � min{2 O + 1 , m23(x23)}}, (11)

with the order O in the interval

0 � O � max

{⌊
m12(x12)

2

⌋
,

⌊
m13(x13)

2

⌋
,

⌊
m23(x23)

2

⌋}
.

(12)

Similar expressions can be obtained for the other subregions
of the collective behavior of the three-level system.

Then the ordered sequence of reduced bases for the elec-
tromagnetic field can be written as the direct sum of the basis
states for the different subregions,

BF (O) := BF12 (O) ⊕ BF13 (O) ⊕ BF23 (O) . (13)
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TABLE II. Maximum values r̃ j as function of the k̃ j for each parity.

σ (π1, π2) π1 + 2 r̃1 π2 + 2 r̃2

(e, e) (0,0) k̃1 k̃2

(e, o) (0,1) k̃1 k̃2 + 1
(o, e) (1,0) k̃1 + 1 k̃2

(o, o) (1,1) k̃1 + 1 k̃2 + 1

Therefore the reduced bases are obtained by the tensorial
product Bσ (O) = BF (O) ⊗ BM , with O indicating the approx-
imation order.

IV. APPLICATION TO THE � CONFIGURATION

As an example, we consider the atomic � configuration in
the resonant case, �13 = �23 = 0 [cf. Eq. (9)], with atomic
levels ω1 = 0, ω2 = 1/10, and ω3 = 1, where all the energies
are normalized in units of ω3.

The operators K1 and K2 in Eq. (5) may be selected as
(cf. Table I)

K1 = ν13 + ν23 + A33 = M13 + ν23 ,

K2 = ν23 + A11 + A33 = M23 + A11 , (14)

where M13 and M23 denote the total number of excitations of
the two-level subsystems.

Following the procedure indicated in the previous sec-
tion, we ask convergence of the fidelity between base
states | ψ (k1max, k2max)〉 and | ψ (k1max + 2, k2max + 2)〉, where
(k1max, k2max) are the maximum values for the operators K1

and K2, to an error of the order err = 10−10 [cf. Eq. (7)]. Here-
after, we define k̃1 = k1max and k̃2 = k2max. These maxima are
determined as follows:

Consider any arbitrary two-level subsystem. Since x in
Eq. (9) is a normalized coupling strength, the minimum eigen-
value m of M in Eq. (14) which satisfies the criterion in Eq. (7)
will be the maximum value m needed for the construction of
the basis. This leads to

k̃1 = m13(x13) + m23(x23) , k̃2 = m23(x23) + 1 . (15)

By assuming that the maximum values of the last expressions
are even integers, one is able to establish the basis states
for the four parity subspaces mentioned before, as shown in
Table II. (If one of them is not even, we add 1 to it without
losing precision.)

We have proved that the values given in Eq. (15) satisfy
the fidelity criterion. The exact basis so constructed will be
denoted by Bσ .

The ground state of the system, for any parity Hilbert space
σ [denoted also by (π1, π2)], may be written as

|�(x13, x23)〉π1,π2

=
r̃1∑

r1=0

r̃2∑
r2=0

1∑
n2,n3=0

cn2,n3 (π1 + 2 r1, π2 + 2 r2)

× |π1 + 2 r1 − π2 − 2 r2 − n2 − n3 − 1, π2

+ 2 r2 + n2 − 1〉 ⊗ |1 − n2 − n3, n2, n3〉 , (16)

where the Fock states for the field and matter sectors appear
in the second row. The π j and r̃ j values can be taken from
Table II. The coefficients cn2,n3 are obtained by diagonalizing
the Hamiltonian matrix for given values of x13 and x23, with
respect to the exact basis.

In this way, for each parity subspace of the Hilbert space,
one is able to determine the lowest energy state of the atomic
configuration as a function of the dimensionless coupling con-
stants x13, and x23. From these four lowest energy states, we
select the global minimum of the energy, called the quantum
energy surface E� of the system

E� = min {Eee, Eeo, Eoe, Eoo} , (17)

together with the corresponding eigenstates.
This quantum minimum energy surface may be compared

with the variational energy surface given in Fig. 2. By means
of a similar procedure, the quantum energy surfaces of the �

and V atomic configurations can be obtained.

A. Phase diagram

The fidelity concept emerges in classical information the-
ory, which measures the accuracy of a transmission in a
communication protocol [23]. In the 1990s, it was introduced
in the quantum information formalism as a measure of the
similarity between two probability distributions or as the
overlap of the input qubit with the output in a transmission
of information process. This can be, for example, the overlap
between the input qubit and the teleported one.

A tool based on the fidelity and fidelity susceptibility to
determine the quantum phase transitions of a physical system
has been proposed [21,24,25]. Here, we use it to calculate the
overlap of the ground state of the system, for certain values
of the coupling strengths, with the corresponding ground state
with an infinitesimal change in the parameters x13 or x23, i.e.,

F = |〈�(x13 + δx13, x23 + δx33)|�(x13, x23)〉|2 . (18)

When the fidelity reaches its minimum value, one can say that
there is a singularity in the system which leads to a phase
transition in its ground state. The actual procedure is carried
out by fixing the dipolar strength x13 and leaving x23 free
or vice versa, for all the selected range in parameter space.
Notice that one may also calculate the overlap of the ground
state of the system with an arbitrary representative state of
the Hilbert space in order to detect the sudden changes in the
structure of the ground state of the system [26].

Figure 4 (top) shows, for the ground state of the � configu-
ration, the quantum phase diagram so obtained superimposed
on the energy surface. The structure of the ground state
changes significantly in each region. Each transition across the
darker (black) lines changes the parity of the subspace where
the ground state lies. At top left, the ground state lies in Hee,
at bottom right it is in Heo, and in the middle region it lies in
Hoo. Figure 4 (bottom) shows the contour plot of the fidelity.
Once again, the darker (black) lines show changes in the parity
of the ground state. The blue lines (thicker, at bottom right
and upper left) and orange lines (thicker, at upper right) show
continuous phase transitions where the parity is conserved.
The transitions crossing the blue lines keep the same kind of
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FIG. 4. For the atomic � configuration in parameter space
{x13, x23}, we show the quantum phase diagram on the energy
surface (top) and the contour plot of the fidelity (bottom), for the
ground state, showing the regions where the ground state changes
significantly. The darker (black) lines show changes in the parity of
the ground state. The blue lines (thicker, at bottom right and upper
left) and orange lines (thicker, at upper right) show continuous phase
transitions where the parity is conserved. The transitions crossing
the blue lines keep the same kind of photons, while across the orange
lines the kind of photon that dominates changes.

photons, while across the orange lines the kind of photon that
dominates changes.

A quantum phase diagram for a finite number of atoms
for the V configuration in the corresponding parameter space
has been found by means of a similar procedure. In this case,
the even-even parity subspace dominates completely and in
consequence there are no parity transitions in the ground
state [19].

Figure 5 (top) compares the quantum phase diagrams for
Na = 1 (solid lines) and Na → ∞ (dot-dashed blue curve).
This latter phase diagram is independent of the parity, so
the surface energy for it completely lies in Hee. Preliminary
calculations show that, as Na increases, the thick black lines
where the parity of the ground state changes closes in toward
the thermodynamic phase transition, and the thick blue lines
where the transition keeps the photon kind slide towards
the vertical and horizontal thermodynamic transitions. The
same is suggested from calculations for three-level systems
with one radiation mode [12]. Figure 5 (bottom) shows the

FIG. 5. Top: Comparison of the quantum phase diagrams for
Na = 1 (solid lines) and Na → ∞ (dot-dashed blue curve). Bottom:
Expectation value of the number of photons for each mode, in the �

configuration.

expectation value of the number of photons for each mode.
We see that even when we have a single atom, the loci where
the number of photons for each mode grows significantly
different from zero follows exactly the phase transition of the
variational solution for Na → ∞.

This plot also shows a continuous quantum phase transition
within the collective regime, from a region in which one mode
dominates to another where the roles of the photon types are
interchanged.

B. Exact vs reduced basis states

Following the procedure described above for generating
reduced bases, Table III shows the dimension of each Hilbert
subspace for different reduction orders Bπ1,π2 (O). For the
two-level system in resonance, at x = 4, we have m = 22, so
the exact basis, from Eq. (12), is Bπ1,π2 = Bπ1,π2 (11). Note
that there is a difference of a factor greater than 2 between the
dimension of the full Hilbert subspace and the one reduced to
order 0.
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TABLE III. Dimension of the Hilbert subspaces for different
reduction orders Bπ1,π2 (O).

O B0,0(O) B0,1(O) B1,0(O) B1,1(O)

0 177 165 166 176
1 218 205 207 216
2 255 241 244 252
3 288 273 277 284
4 317 301 306 312
5 342 325 331 336
6 363 345 352 356
7 380 361 369 372
8 393 373 382 384
9 402 381 391 392
10 407 385 396 396
11 408 385 396 396

The ground-state energy surface is determined together
with the corresponding eigenvectors in the coupling parameter
space.

The exact basis B for the ground state is taken from the
lowest energy state of each one of the parity sectors, that is,
from the energy surface [cf. Eq. (17)]. As shown in Fig. 4,
the ground state is constituted by one of the Hilbert subspaces
Hee, Heo, and Hoo, depending on the coupling values x13 and
x23. We proceed similarly for the reduced basis B(O).

The fidelity between the ground state of the exact basis
B and the ground state obtained by using the reduced basis
B(0), B(1), and B(2) is shown in Fig. 6. Note the scale of the
ordinate axes: For the B(2) basis the disagreement between
the ground states is of the order of 10−8 at most, and only in a
vicinity of the phase transition between the collective regions.
Even for the B(1) basis, the disagreement is of the order of
10−5 at most. This means that, depending on the properties
under study and their purpose, using our reduced bases leads
to excellent agreement with the exact behavior with much less
expenditure.

C. Purity and occupation probabilities

The object under study is a pure bipartite matter-field
system, for which the entanglement may be calculated by
means of the linear entropy or the von Neumann entropy. For
our purposes, the linear entropy is enough, and this is defined
as 1 − P where P is the purity of the reduced density matrix
for the matter or for the field sectors. We use here the matter

FIG. 7. Purity of the ground state along circumferences of differ-
ent radii, drawn over the quantum phase diagram for both the Na = 1
and Na → ∞ cases. Na → ∞ corresponds to the continuous, blue
lines; same as the white lines shown in Fig. 2 bottom.

reduced density matrix

ρM = trF (|ψgs〉〈ψgs|) . (19)

The purity of (the matter sector of) the quantum ground
state is defined as tr(ρ2

M ), and measures the quantum cor-
relations between matter and field. This is shown along cir-
cumferences of different radii, drawn over the quantum phase
diagram for both the Na = 1 and Na → ∞ cases, in Fig. 7 for
the exact basis B. A pure state in the normal region becomes
more entangled as we move out into the super-radiant regions.
In the vicinity of the separatrix, the purity falls even further.

To obtain the occupation probability for each atomic level
ωi, we use Eq. (19) to calculate

〈Aii〉 = tr(ρM Aii ) . (20)

For the exact basis B, the occupation probability for the
� configuration, along circumferences of different radii, is
shown in Fig. 8. The red dots correspond to the population
of level 1 and the green dots to the population of level 2.
These are drawn over the quantum phase diagram for both the
Na = 1 and Na → ∞ cases. Note the change of roles of the
occupation probabilities for the levels as one crosses the main
separatrix, indicating that the behavior of the quantum ground
state is governed by a two-level subsystem. It is important
to also note that the occupation probability detects the phase
transition.

FIG. 6. Fidelity between the ground state of the exact basis B and the ground state obtained by using the B(0) basis (left), the B(1) basis
(middle), and the B(2) basis (right).
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FIG. 8. Occupation probability for the � configuration, along
circumferences of different radii. The red dots correspond to the
population of level 1 and the green dots to the population of level
2. These are drawn over the quantum phase diagram for both the
Na = 1 and Na → ∞ cases. Na → ∞ corresponds to the continuous,
blue lines, the same as the white lines shown in Fig. 2 bottom.

V. SUMMARY AND CONCLUSIONS

The quantum phase diagram for a single three-level
atom interacting with a two-mode electromagnetic field was
determined in the generalized Dicke model. It comprises
three regions with well-defined parity. The behavior of
the ground state is dominated by a two-level subsystem
in two of these regions. In the third region, the quantum
ground state is governed by an excited state of the two-level
subsystem.

By using a fidelity criterion, an efficient way to truncate
the infinite-dimensional Hilbert space for a three-level atom
interacting dipolarly with a two-mode radiation field in a
cavity was presented. The criterion used here was 1 − F �
10−10. This fidelity constraint is arbitrary and may be set
according to the problem to be tackled; we have chosen the
approximation given in Eq. (7) as good because we have found
that to this approximation the expectation value of the energy
of the ground state remains fixed up to 10−8 even for large
values of the coupling constants.

The exact truncated basis allowed us to obtain the finite
phase diagram of the ground state and compare it with
the phase diagram for the limit Na → ∞. For Na = 1, we see
the radical changes of the ground state as we cross from one
region to another, not only in shape but in parity and in the
type of photons that the state has. In fact, the expectation value
in the number of photons for each mode grows significantly
different from zero precisely at the separatrix for Na → ∞.

A sequence of ever approximating reduced bases was
constructed guided by the ground-state variational solution to-
gether with the help of the constants of motion of the system.
The fidelity was once again used to compare the properties
obtained from these reduced bases with those from the exact
solution. We have shown that we can get a disagreement
of the order of 10−8 at most, and only in a vicinity of the
phase transition between the collective regions, by using a
basis with half the number of states. With an even smaller
basis, the disagreement is of the order of 10−5 at most. This
means that, depending on the properties under study and their
purpose, using our reduced bases leads to excellent agreement
with the exact behavior with much less expenditure, and this
mathematical method allows for the study of systems with a
large number of atoms and/or excitations [22].

The quantum correlations between matter and field have
been calculated using the purity of the matter sector of the
ground state. We observe that a pure state in the normal
region becomes more entangled as we move out into the
super-radiant subregions. In the vicinity of the separatrix, the
purity falls even further.

Finally, by using the reduced density matrix for the matter
sector, the occupation probability was calculated and we see
that it is very sensitive to the phase transitions, as expected.

This work may be extended to multilevel atoms, larger
number of atoms, and indeed many-body systems (work in
progress).
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