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Dynamics of shape-invariant rotating beams in linear media with harmonic potentials

Juan Chen, Fushun Zhang, Kai Bian, Chaojie Jiang, Wei Hu, and Daquan Lu*

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices,
South China Normal University, Guangzhou 510631, China

(Received 14 July 2018; published 5 March 2019)

We introduce a type of shape-invariant rotating beam in linear media with harmonic potentials. This type of
beam is constructed by superposing a series of properly selected Laguerre-Gaussian beams of different orders.
During propagation, the beam is shape invariant, but the pattern rotates and its size varies periodically. The
transverse position of the beam at the exit plane of a medium can be steered by tuning the input parameters, even
if the transverse position at the entrance plane is fixed.
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I. INTRODUCTION

The manipulation of light beams is an important subject
in the region of light transmission optics. In recent years,
the external potentials, such as linear potentials and harmonic
potentials, have been introduced as effective tools to manipu-
late beams. In linear potentials, it has been found that the prop-
agation direction of Airy beams can be changed while preserv-
ing their nondiffracting properties [1,2], multicolor plasmonic
Airy beams can be routed into different directions [3], the
autofocusing points and strength can be steered [4–6], and an
Airy beam can even propagate in any predefined path [7]. As
for harmonic potentials, researchers have made in-depth in-
vestigation on various types of beams, such as Airy-Gaussian
beams, hypergeometric beams, and beams carrying orbital
angular momentum [8–17]. Some interesting effects, such as
the periodic focusing [18], the designable self-Fourier beams
[19], the periodic inversion [9,10], the phase transition [8,9],
and the anharmonic oscillation [8,9,20], have been revealed.
Besides, researchers have investigated the propagation dyna-
mics of beams or pulses in other types of potentials, such as
localized potentials [21], smooth-interface sigmoid-type pot-
entials [21], and higher-order power-law potentials [22]. Some
unique behaviors, such as the adjustable trajectory [21] and
the revival or antirevival effects [22], have been discovered.

In this work, we report a type of combined beam, which
is constructed by superposing a series of Laguerre-Gaussian
(LG) beams of different orders, in linear media with harmonic
potentials. If the constituent beams are properly selected, the
combined beam keeps shape invariant and rotating during
propagation. Beyond studying the rotation, we also go a step
further to take into account the initial kick on the beam and the
initial transverse displacement of the beam from the potential
center, which together influence the transverse position of the
beam at the exit plane of a medium with fixed length.

The rest of this paper is organized as follows: In Sec. II,
by using the technique of variable transformation, we get
the analytical solution of the shape-invariant rotating beam
in a harmonic potential. In Sec. III, based on the analytical
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solution, we investigate the propagation dynamics of this type
of beam. We conclude in Sec. IV.

II. MODEL

We consider beams in a linear medium with an external
harmonic potential. In this case, the paraxial propagation of a
beam is governed by the linear (2 + 1)D Schrödinger equation
[8,13]

2ik
∂�

∂z
+ ∂2�

∂x2
+ ∂2�

∂y2
− k2α2r2� = 0, (1)

where �(x, y, z) is the complex envelop of the optical field,
k is the wave number, and α determines the width of the
external harmonic potential, which can be easily achieved, for
example, in gradient-index media.

We construct the shape-invariant rotating beam by super-
posing a series of properly selected LG beams of different
orders. The input field is

�(r, 0) =
∑
p,l

bp,l�p,l (r, 0)

=
∑
p,l

bp,l exp

(
−|r − r0|2

2w2
0

)( |r − r0|
w0

)|l|

× L|l|
p

( |r − r0|2
w2

0

)
exp[ilϕ(0)] exp(iC0 · r), (2)

where bp,l are weight coefficients, r = (x, y) represents the
two-dimensional (2D) transverse coordinate vector, w0 is the
beamwidth at z = 0, L|l|

p (·) is the generalized Laguerre poly-
nomial, p = 0, 1, 2, . . . , |l| = 0, 1, 2, . . . , C0 = (C0x,C0y)
represents the initial kick on the beam to move it in the
transverse direction, r0 = (r0x, r0y) is the initial transverse
displacement of the beam from the potential center, ϕ(0) is
the azimuthal angle around the beam center r = r0. As will
be shown in Sec. III, the combined beam can be kept shape
invariant and rotating if the constituent LG beams are properly
selected.

It is not easy to solve Eq. (1) directly. Fortunately, in
our previous work [23] we have established a relationship
between Eq. (1) and the paraxial propagation equation for
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beams in free space, i.e.,

2ik
∂φ

∂z f
+ ∂2φ

∂x2
f

+ ∂2φ

∂y2
f

= 0. (3)

Therefore, if its counterpart in free space [i.e., φ(r f , z f ),
where r f = (x f , y f )] is known, the solution of Eq. (1) can be
obtained based on the one-to-one correspondence [23]

�(r, z) = F1F2 × φ(F1r, F3), (4)

where

F1(z) = (−1)a

[
1 + tan2
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a(z) = 1

π

{
z

zc0
− arctan

[
tan

(
z

zc0

)]}
, (8)

zc0 = kw2
c , wc = 1√

kα
. (9)

Now the question becomes solving Eq. (3) to get the
solution in free space for the input field,

φ(r f , 0) =
∑
p,l

bp,l exp

(
−|r f − r0|2

2w2
0

)( |r f − r0|
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)|l|
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0

)
exp[ilϕ f (0)] exp(iC0 · r f ),

(10)

where r f = (x f , y f ), ϕ f (0) is the azimuthal angle around the
beam center r f = r0.

Because of the mathematical complexity induced by the
initial kick C0 and the initial displacement r0, it is still not
easy to directly get the solution of Eq. (3) for the input field
shown in Eq. (10). However, we note that, if we introduce a
set of transformation relations

r′
f = r f − r0 − C0

k
z f , z′

f = z f

and the variable transformation

φ(r f , z f ) = ψ (r′
f , z′

f ) exp

(
iC0 · r f − iC2

0

2k
z f

)
, (11)

Eq. (3) becomes
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f
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f
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f

= 0, (12)

which in form is identical to Eq. (3). However, in the reference
frame (r′

f , z′
f ), the input field becomes
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where r′
f = (x′

f , y′
f ), ϕ′

f (0) is the azimuthal angle around the
beam center r′

f = 0.
As shown in Eq. (13), in the reference frame (r′

f , z′
f ), the

input field is no longer with the initial kick and transverse
displacement. Under this condition, we can easily obtain the
solution of Eq. (12), which is the coaxial superposition of LG
beams of different orders [24],
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where w(z′
f ) = w0[1 + (z′

f /z0)2]1/2, R(z′
f ) = z′

f [1 + (z0/z′
f )2], z0 = kw2

0.
Based on Eqs. (14), (11), and (4), we finally obtain the exact analytical solution of Eq. (1) as

�(r, z) =
∑
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up,l (r, z) exp
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0
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(19)
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FIG. 1. Evolution of the shape-invariant rotating beam for different input conditions. Upper row: C0x = 3/w0, C0y = 7/w0,
�(r, 0) = 2�0,1(r, 0) + 0.3�1,3(r, 0) + 0.1�2,5(r, 0). Bottom row: C0x = −3/w0, C0y = −7/w0, �(r, 0) = 2�0,−1(r, 0) + 0.3�1,−3(r, 0) +
0.1�2,−5(r, 0). The values of the other parameters are r0x = 6w0, r0y = 3w0, w0/wc = 0.85.

s(z) = 1

(−1)a
[
1 + tan2

(
z

zc0

)]1/2

[
r0 + C0

k
zc0 tan

(
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,

(20)
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ν(z) = C0 · r0 sin2
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[
r2

0

zc0
− zc0

(
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k

)2
]
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(
2z

zc0

)
; (22)

ϕ(z) is the azimuthal angle around the beam center r = s(z),
which varies during propagation.

Equation (15) is the main result, which describes the
propagation of the shape-invariant rotating beam in a linear
medium with an external harmonic potential. We will discuss
the propagation dynamics in the next section.

III. PROPAGATION DYNAMICS

Based on the analytical solution, i.e., Eq. (15), we can
study the propagation dynamics of the shape-invariant rotating
beam in this section. Figure 1 shows the general propagation
properties: the pattern shape is invariant but its size changes
periodically; the pattern rotates clockwise or anticlockwise
around the beam center; and the transverse position of the
beam continuously changes in the transverse plane. Below we
will discuss these properties in detail.

A. Prerequisite of the shape-invariant rotation

The rotation of the beam can be explained in the view of
the relation between the phase vortex and the Gouy phase
shift of each constituent beam. As shown in Eq. (19), during
propagation each constituent beam experiences its own Gouy
phase shift, i.e., δp,l (z). Therefore, the intensity distribution of

the combined beam can be written as

|�|2 =
∣∣∣∣∣∣
∑
p,l

up,l (r, z) exp[ilϕ(z) + iδp,l (z)]

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑
p,l

up,l (r, z) exp {il[ϕ(z) − ϕ0(z)] + iχ (z)}
∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑
p,l

up,l (r, z) exp {il[ϕ(z) − ϕ0(z)]}
∣∣∣∣∣∣
2

, (23)

where

ϕ0(z) = 2p + |l| + β

l

{
aπ + arctan

[
w2

c

w2
0

tan

(
z

zc0

)]}
,

(24)

χ (z) = (β − 1)

{
aπ + arctan

[
w2

c

w2
0

tan

(
z

zc0

)]}
; (25)

β is an arbitrary real number. We note that when the prerequi-
site { 2p+|l|+β

l = const (for β �= 0)

2p+|l|+β

l = const ∨ p = l = 0 (for β = 0)
(26)

is satisfied, the phase vortex of each constituent beam at
z = z is rotated by the same angle ϕ0(z), which increases
monotonically with the propagation distance z. Subsequently,
the pattern of the combined beam, which is induced by the
coherent superposition of the constituent beams, is shape
invariant but rotates in synchronization with the phase vortex
during propagation. As shown in Eqs. (23) and (24), the pat-
tern rotates clockwise (anticlockwise) when the topological
charges l < 0 (l > 0).

In the special case that

p

l
= 1, (27)
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FIG. 2. Some examples of the intensity pattern of the rotating beam at the entrance plane for different l , which is the minimum interval
of the topological charges for the constituent beams. (a) �(r, 0) = �0,1(r, 0) + �1,3(r, 0) + 0.3�2,5(r, 0), (b) �(r, 0) = 10�0,1(r, 0) +
40�2,5(r, 0) + 0.1�4,9(r, 0), (c) �(r, 0) = 10�0,1(r, 0) + 100�3,7(r, 0) + 0.01�6,13(r, 0), (d) �(r, 0) = 30�0,1(r, 0) + 900�4,9(r, 0) +
0.001�8,17(r, 0).

the intensity distribution of the shape-invariant rotating beam
becomes

|�|2 =
∣∣∣∣∣
∑

n

un,n(r, z) exp {in[ϕ(z) − ϕ0(z)]}
∣∣∣∣∣
2

, (28)

which is the superposition of the LG beams with the minimum
interval of the indices, i.e., p = l = 1, where n = p = l =
0, 1, 2 . . .. In Ref. [8], Zhang et al. have investigated this kind
of shape-invariant rotating beam for the case that p = l =
1, 2, 3, 4 and σ 2a = 2 (here σ and a are the parameters in
Ref. [8]). But different from our study in this paper, they only
considered the evolution of the beam under the condition that
the axis of each constituent LG beam is identical to the center
of the harmonic potential, and the initial kick on the beam
(i.e., C0) and the initial transverse displacement of the beam
from the potential center (i.e., r0) was not taken into account.

B. Evolution of the rotating pattern

During propagation, the rotating pattern is shape invariant
but size variant if the prerequisite in Eq. (26) is satisfied.
The pattern shape is closely related to the minimum interval
of the topological charges l for the constituent LG beams,
represented by l . It is l that makes the intensity change
periodically with the increase of the azimuthal angle ϕ(z).
The reason is as follows: For the constituent LG beams

with different topological charges, the phases increase along
the azimuthal angle with different growth rates. Therefore
the constituent beams experience constructive and destructive
interference alternatively with the increase of ϕ(z). This leads
to a periodical change of the intensity along the azimuthal
angle ϕ(z), and the intensity variation period ϕ is connected
with l by the relation (as shown in Fig. 2)

ϕ = 2π

l
. (29)

Although the rotating pattern is shape invariant, its size
varies periodically during propagation with the period z =
πzc0, as shown in Eq. (17). Only when the input beamwidth
w0 is exactly equal to wc (we call it the critical beamwidth)
can the beamwidth be kept constant during propagation. Oth-
erwise the beamwidth periodically oscillates about the critical
beamwidth (as shown in Fig. 3).

As shown in Eqs. (17) and (24), both the evolution of the
rotation angle ϕ0(z) and that of the beamwidth w(z) are related
to the input beamwidth w0 and the critical beamwidth wc.
Then there may be a question of whether there is a relationship
between the two. The answer is yes. In fact, from Eqs. (17) and
(24) we have

∂

∂z
ϕ0(z) = 1

w2(z)

2p + |l| + β

kl
. (30)

FIG. 3. Evolutions of the beamwidth w(z) (blue dashed line, right ordinate) and the pattern’s azimuthal orientation ϕ0(z) (green dash-dotted
line, left ordinate) for different input beamwidths w0 in the case of (2p + |l| + 1)/l = 2. The red solid line represents the critical beamwidth
wc for comparison.
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FIG. 4. Different transverse positions of the beam at the exit plane resulting from different initial kicks C0. (a) The intensity pattern at
the entrance plane. (b)–(e) The intensity patterns at the exit plane for (C0x = −6/w0, C0y = 0) (b), (C0x = 0, C0y = 6/w0) (c), (C0x = 6/w0,
C0y = 0) (d), and (C0x = 0, C0y = −6/w0) (e). The values of the other parameters are r0x = −5w0, r0y = −6w0, w0/wc = 1, L = πzc0/2.
�(r, 0) = 2�0,1(r, 0) + �1,3(r, 0) + 0.1�2,5(r, 0).

Obviously, the rotation speed is kept constant only without
variation of the beamwidth. Otherwise the rotation speed
changes periodically with the period z = πzc0, which is
equal to that for the variation of the beamwidth. In each
period, the larger (smaller) the beamwidth is, the slower
(faster) the rotation speed will be (as shown in Fig. 3).

C. Steerable transverse position of the rotating
beam at the exit plane

As shown in Eq. (20), during propagation, there is a contin-
uously varied displacement [i.e., s(z)] of the shape-invariant
rotating beam from the center of the harmonic potential. In
fact, for a medium with a fixed length L, the displacements
in the x and y directions at the exit plane can be separately
written as

sx(L) =
[

C2
0x

k2
z2

c0 + r2
0x

]1/2

sin

[(
L

zc0

)
+ θx

]
, (31)

sy(L) =
[

C2
0y

k2
z2

c0 + r2
0y

]1/2

sin

[(
L

zc0

)
+ θy

]
, (32)

where

θx = arctan

(
kr0x

zc0C0x

)
+ πε(C0x ),

θy = arctan

(
kr0y

zc0C0y

)
+ πε(C0y),

ε(x) = 0 (for x � 0) or 1 (for x < 0). Equations (31) and (32)
show that the displacements in the x and y directions at the exit
plane can be steered independently. In detail, the displacement
in the x direction can be steered by tuning the initial kick
C0x and the initial displacement r0x at the entrance plane.
The maximum displacement can be obtained as (C2

0xz2
c0/k2 +

r2
0x )1/2. For the case that (C2

0xz2
c0/k2 + r2

0x )1/2 = const, the
magnitude of the displacement in the x direction arrives at its
maximum when L/zc0 + θx = (m + 1/2)π (m = 0, 1, 2 . . .),
and becomes zero when L/zc0 + θx = mπ , and so does the
displacement in the y direction.

Figure 4 gives an example for the steerable transverse
position of the shape-invariant rotating beam at the exit plane.
It shows that one can obtain different transverse positions

at the exit plane by tuning the initial kicks in the x and y
directions, even if the transverse position at the entrance plane
is fixed.

Besides, because the initial kick and displacement make
the beam sinusoidally oscillate in the x and y directions,
the beam undergoes an elliptically spiral trajectory during
propagation (as shown in Fig. 1).

IV. CONCLUSION

In conclusion, we have theoretically investigated the prop-
agation dynamics of a type of shape-invariant rotating beam
in linear media with an external harmonic potential. By using
the technique of variable transformation, we get the analyt-
ical solution of the shape-invariant rotating beam, which is
constructed by superposing a series of properly selected LG
beams with different orders. Based on the analytical solution,
we study the propagation properties, which include three as-
pects: (i) The rotating pattern keeps shape invariant but its size
changes periodically. (ii) The pattern rotates either clockwise
or anticlockwise around the beam center, depending on the
sign of the topological charges of the constituent LG beams,
i.e., l . (iii) The transverse position of the beam at the exit plane
of a medium can be steered by tuning the input parameters,
even if the transverse position at the entrance plane is fixed.

The general formula Eq. (26) can be used as a general
method to construct various shape-invariant rotating beams by
superposing LG beams of different orders, which may lead
to potential applications in particle manipulation. The steer-
ability of the transverse position of the beam at the exit plane
might be of interest for signal processing. In addition, because
the diffraction of the shape-invariant rotating beam can be
balanced by the focusing effect of the harmonic potential, it
is possible to construct a rotating linear bullet by combining
this type of beam with an Airy pulse in time, which is the only
known dispersion-free one-dimensional wave packet.
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