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High-order harmonic generation in an active grating
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We study theoretically and experimentally high-order harmonic generation (HHG) using two noncollinear
driving fields focused in gases. We show that these two fields form a nonstationary blazed active grating in the
generation medium. The intensity and phase structure of this grating rule the far-field properties of the emission,
such as the relative amplitude of the diffraction orders. Full macroscopic calculations and experiments support
this wave-based picture of the process, complementing and extending its standard “photon” picture. This insight
into the HHG process allows us to envision structuration schemes to convert femtosecond lasers to attosecond
pulses with increased efficiency.

DOI: 10.1103/PhysRevA.99.033806

I. INTRODUCTION

Attosecond pulses are becoming ultimate tools to address
ultrafast processes in matter, whether in gases or solids.
Using ex situ pump-probe schemes like transient absorption
and photoionization spectroscopies, they are now used to
investigate ultrafast photoionization dynamics in atoms and
molecules with attosecond resolution [1,2]. As examples of
some very recent progress, time delays in photoionization
were identified in both atoms and molecules [3–5]. Auger
decays [6] or the buildup of Fano resonances in noble gases
were followed in real time [7–9]. The deformation of the
atomic potential due to the presence of a strong field was
measured [10]. Dynamics of holes following photoionization
was followed in amino acids [11]. In solids, energy-dependent
time delays of photoemission, including their variation with
the angular momentum of the initial state, or of the final state
were measured [12–14]. Elastic and inelastic scattering times
were identified in dielectric nanoparticles [15]. Dynamics
of magnetization could be probed [16]. As a counterpart of
these ex situ schemes, in which attosecond beams are used
downstream from the generation region to probe matter, high-
order harmonic generation (HHG) also appears as an efficient
tool to interrogate highly nonlinear processes in matter. Here,
HHG radiation from a pumped sample is analyzed to probe
ultrafast processes at play in a so-called in situ approach. In
particular, the relative phase of concurrent processes triggered
by a strong field has been investigated using various schemes,
shedding new light on ultrafast nonlinear processes in atoms
and molecules, including chiral molecules and biologically
relevant ones [17–27].

Interestingly, for both probing schemes, the use of light-
induced gratings has lately been promoted. First, the long-
known transient grating spectroscopy has been adapted to
harmonic spectroscopy, allowing background-free detection
[28]. Here, the generating medium is pumped by two beams
forming an interference intensity pattern, while a third beam
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generates harmonics at a delayed time. Second, it was shown
that generating harmonics with two beams of equal wave-
length crossing in the HHG medium allows imparting a great
variety of properties to the outgoing high-order harmonics.
Here, for a given harmonic number, a series of diffraction
orders are observed along the line formed by the differ-
ence of the wave vectors of the two beams. This approach,
theoretically proposed in Ref. [29], was first experimentally
investigated by Bertrand et al. [30] and further analyzed by
Heyl et al. [31]. It was realized that conservation of parity,
energy, and linear momentum play a central role to explain the
presence or absence of certain channels. In brief, for harmonic
q, its properties are given by the sum of the properties of the
n photons absorbed or stimulated emitted from the first beam
and m photons of the second beam, where q = m + n. Due
to linear momentum conservation, these different channels
are spatially separated in the far field and readily identifiable,
making attractive sources of tailored attosecond pulses. These
conservation rules were extended to the conservation of spin
angular momenta and orbital angular momenta when using
driving pulses carrying these angular momenta [32–35], and
to collinear schemes with beams of different wavelengths.
However, a series of questions remains unresolved: should
either sum frequency generation or difference frequency gen-
eration be favored (SFG or DFG)? Contradictory results are
presented in Refs. [30,31] on this question. Why does the yield
of some diffraction orders decrease when the perturbation
intensity increases? Can it be fully accounted for by phase-
matching arguments, generalizing the conclusion of Ref. [31]
to nonperturbative cases? In this work, we address theoret-
ically and experimentally these questions by first analyzing
the driving field at focus. We predict in a wide range of
perturbation levels the location of the dominant diffraction
orders. The toy model proposed is tested in Sec. IV against
a full theory of HHG and against experimental data in Sec. V.
We conclude that, although conservation rules are useful for
insights into possible mechanisms, they are insufficient to
describe the whole process which, on the contrary is highly
dependent on the wavelength scale interferences at focus, in
agreement with our toy model.
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II. STRUCTURE OF A TWO BEAM FOCUS

Like any nonlinear process, HHG is dramatically influ-
enced by phase matching. In general, the phase-matching
condition for harmonic q reads

��kXUV = �kq − q�k1 − �K, (1)

where ��kXUV is the phase mismatch that should be minimized
for efficient conversion, �kq (respectively, �k1) is the wave
vector of the harmonic (respectively, driving) beam and �K
is grouping the gradients of the intensity-dependent atomic
phase, which is linked to the HHG process at the atomic level,
the Gouy phase of the driving beam, and the phases due to
the electron and neutral dispersions in the generating medium.
This analysis has been extremely successful for understanding
spatiospectral structures of the emitted harmonics driven by
a single beam [36,37], and drives the design of efficient
generating schemes (see, e.g., [38–43]). Of particular interest
are maps of the modulus of ��kXUV, which inform us about the
dominant generating regions of the gas target, while the di-
rection of �kq determines the emission direction. This analysis
has been generalized to HHG with two noncollinear beams in
Ref. [31]. A geometric additional wave vector was identified,
and made responsible for the experimental observation that
either DFG or SFG may dominate, depending on the focusing
parameters [31] or ionization [44]. We here argue that this
“macroscopic” approach, which disregards the fine structure
of the two-beam focus, is only an approximation limited to
weak perturbations. On the contrary, we show that “meso-
scopic” aspects, at the wavelength scale, play the central part.

To illustrate this, we plotted in Fig. 1 the intensity map
formed by two Gaussian beams of equal angular frequency
ω, linearly polarized along x [45], and wave vectors �k1 and
�k2 forming an angle θ . The main beam, propagating along
the z axis, has an amplitude E1, while the “perturbative”
beam has the amplitude E2 = αE1. In the focal volume, the
intensity forms the grating of planes parallel to (yOz) which
is found in optics textbooks. More subtle is the structure of
the electric field also plotted in Fig. 1. At a given time and in a
given transverse plane, the interference pattern is retrieved.
However, careful inspection shows that we can no longer
associate planes of equal phases parallel to (yOz) [see the
vertical cut along (xOz) where fringes are pointing slightly
downward]. Defining a unique wave vector for the field thus
becomes impossible and Eq. (1) should be made local:

��kXUV(�r) = �kq(�r) − q�ks(�r) − �K (�r), (2)

where �r is the coordinate vector in the medium and �ks(�r)
is the local wave vector associated to the sum of the two
driving fields. It should be noted that in previous analysis (e.g.,
Refs. [36,37]), this “local” form of the phase-matching rela-
tion was implicitly used for both�kq(�r) and �K (�r). However, the
local form of the driving wave vector was mostly discarded:
the general case of spatiotemporal transient phase matching
was considered in detail [46,47] but only a few specific
practical cases of “guided generation” were demonstrated,
taking into consideration the longitudinal variations of the
fundamental wave vector [48,49].

FIG. 1. (a) Schematic of HHG with two noncollinear beams.
(b) Intensity map close to focus, when the second beam has an
amplitude of 20% compared to the main beam. (c) Corresponding
electric field, with a zoom over the white rectangle plotted in the
inset. The first beam is propagating along z, and the second z′.

A. Plane continuous waves

1. Analytical signal associated to an interference pattern

To illustrate pedagogically why this spatial dependence
should be introduced, we first consider a field with no enve-
lope, either spatially or temporally. The total field in the jet
reads

Es = Re[E1eiωt−i�k1·�r + αE1eiωt−i�k2·�r] (3)

= E1Re[eiωt−i�k1·�r (1 + αe−i ��k·�r )], (4)

where the expression in brackets is the analytical signal,
denoted Ẽs, associated to the real field Es and ��k = �k2 −
�k1. Cuts of the electric field through the (xOz) plane are
displayed in Figs. 2(a), 2(d) and 2(g) for three amplitudes
of the perturbation (α = 5%, 20%, and 80%). The perfect
plane waves isoamplitude curves along the Ox direction are
progressively destroyed as the perturbation increases, finally
yielding a checkerboard pattern of high-intensity zones, where
HHG will occur. This pattern can be decomposed in the form
of an analytical signal associated to the real field, yielding
the amplitude and phase maps displayed in Fig. 2, second
and third columns. We retrieve the usual intensity map of an
interference pattern with increasing contrast as α increases.
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FIG. 2. (a) Left column: electric field at focus resulting from
the superposition of two beams making an angle of 2◦ with relative
amplitude of 1:0.05 (top line), 1:0.2 (middle line), and 1:0.8 (bottom
line). One beam is horizontal; the second, less intense is coming from
the top left of the figure. Middle and right columns: modulus and
phase of the associated complex analytical signal. The color bars are
the same for all columns.

More interesting for our topic are the phase maps. They show
a small modulation along the x direction, which progressively
transforms into a sawtooth pattern. Interestingly, the zones
of high amplitude of the analytical signal are associated to a
stationary and downward tilted wavefront [see, e.g., Figs. 2(h)
and 2(i)]. We can thus anticipate an HHG emission favored
downstream, in the direction of SFG.

2. Local wave vector

To get more insight, we now derive an expression of the
local wave vector. We reorder the last part of Eq. (4) as

1 + αe−i ��k·�r = fm(α, ��k ·�r)e−iϕ(α, ��k·�r) (5)

with

fm(α, ��k ·�r) =
√

1 + α2 + 2α cos( ��k ·�r), (6)

ϕ(α, ��k ·�r) = arctan
α sin( ��k ·�r)

1 + α cos( ��k ·�r)
. (7)

We thus get the analytical representation of the composite
field

Ẽs = E1 fm(α, ��k ·�r)eiωt−i�k1·�r−iϕ(α, ��k·�r). (8)

The local wave vector of the sum of the two fields, denoted
�ks(�r), is given by the spatial gradient of the phase. Some
standard algebra leads to [50]

�ks(�r) = �k1 + �∇ϕ = �k1 + α[α + cos( ��k ·�r)]

1 + α2 + 2α cos( ��k ·�r)
��k. (9)

In the (xOz) plane, we denote (ks, θs) the polar coordinates of
the wave vector:

�ks =
[

ks sin θs

ks cos θs

]
. (10)

FIG. 3. Wave-vector modulus (a) and angle with respect to hor-
izontal (b) across the transverse direction (x) for different ratios of
the two fields: 1:0.05 (blue), 1:0.2 (orange), 1:0.4 (green), 1:0.6
(red), 1:0.8 (purple), and 1:1 (brown). The data corresponding to
amplitudes of the analytical signal below 10% of its maximum has
been discarded. (c),(d) Histograms of the distributions of |ks |−|k1|

|k1| and
θs for the case of α = 0.6. Each vertical cut is a histogram for a given
field amplitude Ẽ giving finally these 2D histograms. The amplitude
of the analytical signal Ẽs has been normalized to 1.

As expected, we find that the initial wave vector is perturbed
by an almost orthogonal contribution [along ��k, last part
of Eq. (9)], with an amplitude that strongly depends on
the location in the medium. The relative amplitude of this
“active grating” contribution and its angle with respect to
the horizontal z axis are displayed in Figs. 3(a) and 3(b)
for a series of α against the transverse dimension. At very
low perturbation levels, both the wave vector amplitude and
angle vary sinusoidally against x. The excursion is perfectly
up-down symmetric. However, as soon as the perturbation
increases, the spectral content gets richer, finally converging
to constant values for α = 1, θs = θ/2 for the angle, and
|�k1|/|k1| � −1.5 × 10−4. The angle is simply the bisector
of the two beams, as expected for two equally intense inter-
fering beams. In the following, we first consider this general
expression giving the full map of the wave vector in the cases
of weak and strong perturbations, before focusing on vertical
lines where it is stationary, e.g., at x = 0.

3. Strong perturbation case

In quite a few current schemes, equally strong fields are
asked for (e.g., Ref. [32]). To get the wave vector in this case,
we set α = 1 − β, with β � 1 in Eq. (9). We then get

�ks(�r) = �k1 +
��k

2
− β

1 + cos( ��k ·�r)

��k

2
. (11)

As a first approximation, the wave vector is determined by the
bisector of the two beams, as could be intuited:

�ks(�r) = �k1 + ��k/2 (for α = 1, β = 0). (12)

It is independent of the location in the medium. With this
expression, some algebraic manipulations give the following
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expressions for the modulus and angle of the local wave
vector:

|ks| − |k1|
|k1| � −1

2
sin2 θ

2
, (13)

θs = θ/2, (14)

which correspond to the values found in Fig. 3 with θ = −2◦.
In the case of perfect symmetry between the two beams, we
thus have a homogeneous wavefront throughout the medium.
It is tilted with respect to the horizontal axis by half the angle
between the two beams. We thus expect all harmonics to be
emitted along this direction. These conclusions are drawn
from the analysis of the local wave vector in transverse planes.
It does not consider the longitudinal dispersions induced by
the ionizing medium and the HHG process itself, which,
when considering an extension of the medium along z, are
responsible for usual phase-matching effects. However, the
variation of the magnitude of the wave vector identified here
should also alter the phase-matching conditions in a cascade
effect. This last effect had not been considered thus far.

In the case of two beams nonperfectly symmetric, which
could be the result of imperfect matching of the energies,
spatial or temporal overlaps, the last term in Eq. (11) should be
taken into account. Now the wave vector is nonhomogeneous
spatially. We thus predict a dispersion of the amplitude and
emission direction of the harmonics along several diffraction
orders. Also, we note that formula (11) is asymmetric with
respect to the bisector. We thus anticipate that positive and
negative orders will not be equally strong. This could explain
the results observed, for instance, in Ref. [32] (Supplemental
Material).

4. Weak perturbation case

The second interesting case, which was investigated in
[30,31], is the perturbative case, α � 1. Here

�ks(�r) = �k1 + α ��k cos( ��k ·�r) (for α � 1) (15)

with the corresponding modulus and angle of the wave vector

|ks| − |k1|
|k1| � −2α sin2 θ

2
cos( ��k ·�r), (16)

θs � α sin θ cos( ��k ·�r). (17)

The wave vector is modulated in both direction and modulus
sinusoidally, justifying the “local form” in Eq. (2). HHG being
highly nonlinear, the intensity modulation will transfer to a
phase spatial modulation affecting phase matching, just as the
modulation in amplitude and direction of the wave vector will.
Importantly, the modulation is here perfectly symmetrical
along the transverse direction. Identical generating volumes
thus have wave vectors pointing upward and downward, mak-
ing no difference between the SFG and DFG amplitudes.
We can thus anticipate equally strong positive and negative
diffraction orders in the far field.

5. General case and discussion

Such analytical formulas, which are valid everywhere
in the medium, cannot be derived easily for intermediate

perturbation levels. However, we can still get insights into
the consequences of the modifications of the wave vector
by considering its stationary values in the generating vol-
ume. Getting back to the microscopic “atomic” level, HHG
appears as a three-step process. Close to an extremum of
the driving field, a valence electron is tunnel ionized (first
step), generating an electronic wave packet (EWP). The EWP,
launched in the continuum, is driven away from its ionic
core before being pulled back when the field changes sign,
about a quarter of a period later (second step: excursion
in the continuum). Finally, under specific initial conditions,
the EWP may recollide with the ionic core and recombine,
emitting its excess of energy as an XUV photon (third step: re-
combination). The first step is a highly nonlinear effect. Only
places where the field is strong will significantly contribute
to the far-field amplitude. Moreover, simple computations
show that the maximum energy of an emitted photon reads
Ecutoff = Ip + 3.2Up where Ip is the ionizing potential of the
atom and Up the ponderomotive potential of the field, which
scales as Up ∝ Ẽ2λ2

1. The highest XUV photons can thus only
be generated at locations in the medium where the field is
strong enough to be authorized by the cutoff law. On the
contrary, lower energy photons, lying in the so-called plateau
of the spectrum, can be generated by these strong fields, but
also weaker fields.

These considerations motivated the plot of the two-
dimensional (2D) histograms of Fig. 3. They display the joint
probability of given (|�ks|, Ẽs) and (θs, Ẽs). On these maps, the
stronger the color, the more probable the couple of values.
In this case, we observe that the highest harmonics, which
can only be generated for the highest field amplitudes Ẽs,
will be generated with a stationary value of the amplitude
and inclination angle of the driving wave vector. On the
contrary, for the plateau harmonics, which can be generated
for many values of Ẽs, there will be a spreading of the angles
of emission, which is all the wider as the photon energy is low.
To be more specific, it appears in Figs. 3(a) and 3(b) that the
wave vector is stationary at x = 0. The wave vector there reads

�ks(�r = 0) = �k1 + α

1 + α
��k. (18)

It corresponds to a magnitude and angle

|�ks(�r = 0)| = |�k1|
√

1 − 4α

(1 + α)2
sin2

(
θ

2

)
, (19)

θs = arctan
α sin θ

1 + α cos θ
. (20)

The angle θs is not simply the average of the two wave vectors
as could be intuitively guessed. However, it goes smoothly
from a linear behavior to its final value θ/2 as α increases. As
for the magnitude, considering small angles between the two
beams we get the expression

|ks(�r = 0)| − |k1|
|k1| � − 2α

(1 + α)2
sin2

(
θ

2

)
. (21)

It should be noted that this additional phase mismatch
modulation due to the “active grating” is comparable in
amplitude to usual phase-matching factors. To give a few
orders of magnitude, for an angle of 2◦ and 10% perturba-
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FIG. 4. (a) Electric field at focus resulting from the superposition
of two beams making an angle of 2◦ with relative amplitude of
1:0.4. The two waists are 100 μm, durations of 30 fs, λ = 800 nm.
(b) Amplitude and (c) phase of the associated analytical signal.
(d) Relative amplitude [|ks(�r)| − k1 in 104 m−1] and (e) inclination
angle (in degrees) of the local wave vector. For maps (c)–(e) all data
corresponding to magnitudes of the analytical signal below 10% of
its maximum have been discarded.

tion in amplitude, the wave-vector magnitude is modified by
� ± q × 0.5 rad/mm, where q is the harmonic number. It
would correspond to a coherence length of 1/q mm if alone.
As a comparison, the new term found in Ref. [31] has a
magnitude of about 0.2 rad/mm, and in standard conditions
coherence lengths are found on the millimeter or fraction of
millimeter scale, with the different terms precisely of the order
of a fraction of radian per millimeter (see, e.g., [51,52]). The
term we identified here is thus far from negligible, and could
even become dominant.

To summarize this first analysis, we identified that the local
wave vector of the driving field is strongly modified in both
direction and amplitude by the presence of a second beam,
which should dramatically affect the global HHG yield and
the spatial features of the emission.

B. Gaussian spatial and temporal profiles

To get a more realistic situation, we now include the spatial
and temporal profiles of the beams in the simulations. The
conclusions drawn above still hold “locally,” for a given ratio
of the fields. However, even in a generating medium of only
a few tens of microns long, with waists of the beams of
about 100 μm, significant variations of the relative amplitude
of the beam occur in the medium. This is made apparent
in Fig. 4. As expected, the electric field, magnitude, and
phase of the associated analytical signal show patterns very
similar to those of Fig. 2, but for overall spatial (along x)
and temporal (along z) envelopes. The most striking feature
appears in Figs. 4(d) and 4(e). As in Fig. 3, the main trend
is a transverse modulation of the magnitude and angle of
the local wave vector. However, there is a left-right and up-
down asymmetry appearing. It is naturally due to the varying
relative amplitudes of the beams at different locations in the
medium. To quantify this asymmetry, we plotted in Figs. 5(a)
and 5(b) three lineouts of these maps, along with their 2D

FIG. 5. (a),(b) Cuts through the maps displayed in Figs. 4(d) and
4(e) at z = 0 (orange, solid), z = 5 λ (blue dotted), and z = −5 λ

(green, dash-dotted) along the transverse direction. For θs, negative
inclination angle means propagation toward the bottom right of
the figure, i.e., SFG processes with our convention. (c),(d) Two-
dimensional histograms corresponding to Figs. 4(d) and 4(e), like
in Fig. 3.

histograms vs the amplitude of the field. While the central
cut is top-bottom symmetric (orange), the two others are
mirror images. For instance, for the cut at −5 λ (green), the
beam should interfere more at positive x (the tilted beam
comes from the top). Accordingly, the wave vector is slightly
modulated and mainly points toward the horizontal at negative
x. It should be noted that the effect is large, reaching 1.5% of
excursion for |�k| and more than 2◦ for θs. The 2D histograms
show that the distribution of |�k| remains limited to a few
permil, depending on the value of Ẽs considered. The angle
shows an “Eiffel-tower”-like distribution which points toward
the stationary angle θ · α/(1 + α), given by Eq. (20). It is
interesting to note that the introduction of the envelopes of
the field changed the general histograms drastically: whereas
a bijection is observed between Ẽs, |�ks(�r)|, and θs for plane
waves, here an almost constant value is obtained for |�ks(�r)|
and θs. The only varying parameter is the distribution about
this mean value that decreases as Ẽs increases. Also, the
histograms were peaking at high field values in Fig. 3, due
to the stationary behavior of the angle and magnitude of
the wave vector at the high-field locations in the medium.
In the more realistic case considered now, the temporal and
spatial envelopes of the fields make low-field magnitudes
more probable. As a consequence, histograms are peaking at
low-field values.

In Fig. 6, we plotted the same histograms for a series of
α’s. We note that the distribution of |�ks| increases dramatically
with α. We will thus have good phase matching in an ever
decreasing volume as α increases. At the same time, the
“Eiffel tower” shape converges to a perfectly symmetric shape
about the half angle between the beams, which is expected,
but with an ever increasing base. We can thus infer, as a first
approximation, that a regular blazed active phase grating is
created in the medium, with a phase varying like

ϕgrating � α

1 + α
θ × k1x. (22)

033806-5



C. CHAPPUIS et al. PHYSICAL REVIEW A 99, 033806 (2019)

FIG. 6. Same histograms as in Fig. 5 for different ratios (α =
0, 0.2, 0.4, 0.6, 0.8, 1.0 from left to right). The light-blue dashed line
is at θ · α/(1 + α).

This rough approximation of a blazed phase grating will
become less and less exact as α increases for harmonics of
the plateau while remaining valid for cutoff harmonics.

III. HHG BY A FIELD SHOWING A BLAZED
PERIODICAL STRUCTURE

Having identified that two interfering beams create a
blazed phase grating and a symmetric amplitude grating in the
focus area, we now investigate its consequence on the HHG
process. We will pay specific attention to the symmetries of
the SFG and DFG processes. As a very rough model of HHG,
we may simply consider the sum of the contributions over a
volume

Eq(�rout) =
∫∫∫

V
eq(�r)ei��kXUV(�r)·�rd3�r, (23)

where Eq is the macroscopic electric field of harmonic q at
location �rout at the exit of the generating medium, eq(�r) is the
microscopic response at location �r inside the medium, and
��kXUV(�r) = q�ks(�r) −�kq(�r) is the “local” phase mismatch.
The integration is carried out over the generating gas volume
V , which, for the sake of simplicity, we consider to be in-
finitely small along the z direction, thus neglecting longitudi-
nal phase-matching effects. eq(�r) is highly nonlinear with the
local amplitude of the field. The modulation of the amplitude
of the driving field will thus create a series of generating
slits, forming a transverse amplitude grating. Importantly, this
grating is perfectly symmetric against the transverse axis x at
z = 0. Through the intensity-dependent response of the atoms
to strong fields (φat ∝ I), it is also a phase grating, which
is also x-wise symmetric at z = 0. Naturally, off focus, an
asymmetry appears versus the x axis, which will be opposite
at symmetrical locations upstream of and downstream from
the focal spot. Considering a gas jet located at z = 0, these
two effects thus have an overall symmetry against x.

Of more interest here is the exponential term. According to
the previous section [Eq. (22)] the phase is approximately lin-
ear with x. We thus have a “blazed” phase grating, asymmetric
with respect to x, which gets superimposed on the pattern
discussed above. This is true everywhere in the medium, at
focus, upstream and downstream: the dominant blaze angle

always has the same sign. To get a toy model based on
these considerations, we consider a transverse grating made
of a series of Gaussian gates, labeled from −n0 to n0, with
a Gaussian envelope, and the linear phase ϕ(x) = qϕ0

x



for
harmonic q. In agreement with Eq. (22) we set

ϕ0 = α

1 + α
× 2π. (24)

The harmonic field at the exit of the generating medium can
thus be written

Eq(�rout) =
[
G

( x

δx

)
eiqϕ0(x/
)

]

∗
[

n0∑
n=−n0

δ
( x



− n

)
G

( x

�x

)]
, (25)

where G is the Gaussian function G(x) = e−x2
, 
 the pe-

riodicity of the grating (
 = 2π/|k1 − k2| = λ/ sin θ is the
periodicity of the intensity of the sum of the fields), δx the
width of each slit, and �x the width of the envelope. In
the Fraunhoffer diffraction regime, at distance z f f from the
medium, the amplitude reads

Eq(�r f f ) ∝
{

G
[
πδx

(
u − q

ϕ0

2π


)] n0∑
n=−n0

e−i2πn
u

}

∗G(π�xu) (26)

∝
{

G
[
πδx

(
u − q

ϕ0

2π


)]
e−iπ
u sin(2πn0
u)

sin(π
u)

}
∗G(π�xu), (27)

where u = x′/λqz f f with x′ labeling the vertical coordinate
at the observation plane and λq = λ/q the wavelength of
harmonic q. The first Gaussian has an envelope of width

wq = λqz f f

πδx
, (28)

offset by

x′
c = λ




ϕ0

2π
z f f . (29)

It is multiplied by a function that converges to a series of Dirac
peaks as n0 increases. The location of the pth Dirac peak is

x′(q, p) = p
λ

q

z f f = p

|�k2 −�k1|
2πq

z f f . (30)

The intensity profile in the far field thus appears as a series of
peaks, equally spaced by x′(q, 1), centered around x′

c, with an
amplitude decreasing along a large Gaussian of width wq. The
peaks correspond to the diffraction orders. The last convolu-
tion only transforms the series of Dirac peaks into physical
Gaussian finite functions of small width. The last expression
in Eq. (30) was interpreted as a conservation law of momen-
tum during a non-linear process [30–32]: the wave vector of
the outgoing photon points in the directions corresponding to
that of the driving field plus an integer number of the differ-
ence of the wave vectors of the two interfering fields. In other
words, for a given harmonic q, a photon picture may be asso-
ciated to each diffraction order labeled p, which corresponds
to the absorption (or stimulated emission) of q-p photons of
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FIG. 7. Intensities at z = 0 (a)–(d) and in the far field (e)–(h)
for α = 0 (blue), α = 0.2 (orange), α = 0.6 (green), and α = 1.0
(red). We consider H15. For the sake of visibility the curves are
all normalized to 1 and shifted respectively by 0, 0.4, 0.8, and 1.2.
(a) and (b) correspond to cuts analogous to the orange curve in
Fig. 5(b). (c) is the amplitude of the ionization rate computed with the
ADK model. (d) is a toy model corresponding to a series of Gaussian
amplitude with periodicity 
 = 1/�k, of width 
/5 with a Gaussian
global envelope of width 60 μm. The phase is here set according to
Eq. (22). (e)–(h) Amplitudes of the Fourier transforms of (a)–(d). In
(e), the phase of the signal is set to zero; in (f) and (g) the phases
computed in Fig. 5 are plugged; in (h) we took the analytical formula
of Eq. (24). The results are offset by the same quantities and the color
code is the same on all plots. The distance is z = 0.3 m. In (g) the
black dotted line corresponds to the same as the red, but setting the
phase to 0.

the first beam and p photons from the second beam. However,
it should be noted that this “multiphoton” picture has nothing
to do with being in a perturbative regime and is much more
general. It here appears as a consequence of the quasiperiod-
icity of the sum of the two fields in the transverse direction.

The main point here is that the dominant diffraction order
is ruled by the grating depth ϕ0 and is independent of the
harmonic order q. q only enters into the spacing of the comb
of diffraction orders. This is confirmed in the plots displayed
in Fig. 7. Taking a cut at z = 0, whatever α 	= 0, if the phase is
not taken into account we get a series of peaks centered about
zero [Figs. 7(a) and 7(e)]. If the phase is considered, the peaks
are all the more offset as α increases [Figs. 7(b) and 7(f)].
HHG being a highly nonlinear process, especially through the

field-driven tunnel ionization constituting the first step of the
process, the slits should be fewer and thinner than the oscil-
lations of the electric field. As a very rough approximation
of this effect, the HHG signal can be estimated proportional
to the tunnel ionization rate at any time. We estimated it
using the Amonosov-Delone-Krainov (ADK) formula [53]
[Figs. 7(c) and 7(g)], keeping in mind that it is rigorously valid
only for continuous fields. We get only a few half periods
(�5) contributing, with widths of a fraction of the field’s
half period. The consequence in the far field is a smoother
profile of the harmonic orders, which still shows a shift toward
SFG. This behavior is very well reproduced by the toy model
exposed above [Fig. 7(d): Eq. (25); Fig. 7(h): its Fourier
transform], enlightening the role of the modulation depth of
the phase in the relative intensities of the diffraction orders.

IV. FULL QUANTUM MODEL OF HHG
IN AN ACTIVE GRATING

To be more quantitative, we performed full numerical
simulations based on the solution of the nonadiabatic, three-
dimensional (3D) paraxial wave equation (PWE), in Carte-
sian geometry. The source term in the PWE is given by
the solution of the Schrödinger equation, in the strong-field
approximation (SFA) [54]. The PWE is solved for each spec-
tral component, using a finite-difference method [19], on a
512 × 512 × 200 μm3 spatial grid and a 100-fs time interval,
for 513 × 513 × 41 points in space and 4096 in time. This
leads to a spatial step of 1 μm along the transverse dimensions
[(x, y) coordinates] and 5 μm in the propagation direction
(along the z axis). The time step is 2.4 × 10−2 fs, which
is about 1/100th of the optical period of the driving fields.
We consider two Gaussian beams of 100 μm waist at focus,
i.e., 39 mm Rayleigh range. The temporal intensity profiles
have sin4 shapes of 50 fs full width at half maximum. Both
beams are focused in the middle of a 100-μm thin slab of
argon gas, where they spatiotemporally overlap, following the
setup depicted in Fig. 1. The two beams cross each other
with a 20 mrad angle. The total peak intensity at focus is
1.5 × 1014 W/cm2, whatever α, and the density of atoms is
3.0 × 1017 atoms/cm3. Transverse cuts of the harmonic fields
amplitudes and phases are displayed in Figs. 8(a) and 8(b)
for H15, which is in the plateau and H27, which falls in the
cutoff for this intensity. As expected, both H15 and H27 show
a series of peaks spaced by the period of the active grating
(the shape of the driving field is displayed in a dashed line).
They are located on the highest intensity spots of the driving
interference field. It is purely symmetric about x = 0. In addi-
tion, H15 is strongly modulated. This is due to interferences
between the long and short trajectories for harmonics lying in
the plateau. As a support of our analytical model described
above, the phase of the harmonics shows a sawtooth pattern.
A linear fit of the phase about the locii of highest intensities
gives the corresponding blaze angle, ∂ϕ/∂x. It is displayed
against the perturbation ratio α for H15 in Fig. 8(c) and
against the harmonic order for α = 0.25 in Fig. 8(d). The
determination of ∂ϕ/∂x depends on the “groove” considered
in the active grating. We displayed the values obtained for
four peaks, showing significant dispersion, along with their
mean value. Although we did not investigate it further, this
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FIG. 8. Top line: Amplitude (orange) and phase (purple) of
harmonic 15 (a) and harmonic 27 (b) at the exit of the generating
medium calculated with the model described in Sec. IV versus the
transverse direction x. The left (respectively, right) scale is used for
amplitude (respectively, phase) for both panels. In panel (b), the
amplitude of the driving field is displayed as a dashed line. It is
offset by 2 × 108 V/cm and divided by 104. Bottom line: Values of
the derivative of the phase against x. In both plots various colors
are results taken for successive maxima of the XUV field (blue:
x � −40 μm; orange: x � 0; green: x � 40 μm; red: x � 80 μm).
The mean value is displayed in purple. (c) Variation of the blaze
angle against the field ratio for harmonic q = 15. The dashed line
is the analytical formula given by Eq. (24). (d) Variation of the blaze
angle against the harmonic number for α = 0.25.

dispersion is probably reminiscent of the variations of the α

ratios within the focus, as identified in Fig. 5. However, the
trend in Fig. 8(c) follows reasonably the prediction of our
toy model [Eq. (24) displayed as a dashed line]. It should
be noted that here, there is no adjustable parameter on the
model. The fact that the result is slightly offset upward is a
consequence of the distribution of wave-vector angles above
the limit value in Fig. 5(d), especially for harmonics of the
plateau that can be generated with field amplitudes below the
peak amplitude. The same conclusions hold for the expected
linearity of the harmonic-dependent blaze angle [Fig. 8(d)],
further supporting our interpretation of the origin of the offset
dominant diffraction orders. These full calculations validate
our analytical approach exposed in Sec. III.

To go further, we propagated the harmonic fields toward
the far field using the Fresnel propagator. Four intensity
maps are displayed in Fig. 9, corresponding to the two same
harmonics 15 (left column) and 27 (right column), and a weak
(top line) and strong perturbation (second line) (α = 0.18
and α = 0.5). As anticipated with the analytical model, the
harmonics show a series of diffraction orders, more sparse

FIG. 9. Color maps of the intensities in the far field of
harmonics 15 [(a),(c)] and 27 [(b),(d)] for perturbations α =
0.18 [(a),(b)] and α = 0.5 [(c),(d)]. All maps are individu-
ally normalized and the color maps are set equal. Cuts of
the harmonic intensities 15 (e) and 27 (f) at θy = 0 for
α = 0.18 (blue, no offset), α = 0.25 (orange, offset = 0.2),
α = 0.31 (green, offset = 0.4), α = 0.35 (red, offset = 0.6), α =
0.43 (purple, offset = 0.8), and α = 0.5 (brown, offset = 1.0). The
successive cuts are offset by 0.2 for the sake of visibility. The
intensities of H15 are divided by 2 to share the y axis with H27.

for H15 than H27, below a global envelope. They are all the
more shifted toward the SFG side as α is set stronger. This
is even more evident in Figs. 9(e) and 9(f) where six values
of α are used. The similarity of this figure with Fig. 7(h) is
striking. The locations of the dominant peaks even fit fairly
well. It should be noted that a slight left-right asymmetry
appears, especially for low perturbation values on H27. This
is probably a consequence of the extension of the medium
along z, which yields such a slight asymmetry of the field.
Whereas opposite areas located upstream of and downstream
from the focus are just mirror images about the x axis for
the driving field when no gas is inserted, this is no longer
the case when reshaping of the fundamental is authorized,
nor when harmonics are propagated in differently ionized
absorbing media. More careful examination of these “volume”
effects are left for further studies, the agreement being already
extremely promising.

V. EXPERIMENTAL TEST OF THE THEORY

We tested the conclusions of these analyses performing
experiments on LUCA laser in Saclay. It is a Ti:sapphire
femtosecond laser based on chirped pulse amplification. It
delivers pulses of �40 mJ energy, 60 fs FWHM duration,
at a repetition rate of 20 Hz. It was split into two equal
parts which were passed through adjustable attenuators before
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FIG. 10. Left column: Experimental images on the detector for
five levels of perturbation [α � 0.15, α = 0.25, α = 0.38, α = 0.50,
and α = 0.66 from (a) to (e)]. Here θ = 1◦. All images are nor-
malized to 1, and share the same color map. The vertical axis is
the direction of the dispersion of the detector grating, while the
horizontal axis is the direction of dispersion of the “active” grating.
Right column: Lineouts corresponding to the sums between the
dashed lines displayed in panel (a), for H9 (red, offset = 0.9), H11
(green, offset = 0.6), H13 (orange, offset = 0.3), and H15 (blue, no
offset). All curves are normalized and offset by 0.3 for the sake of
visibility.

being focused in an argon gas jet by two identical lenses of
1 m focal length. The main beam carried 2.3 mJ, while the
second was adjusted during the experiment to scan α. The two
beams were linearly polarized vertically and crossed with an
adjustable angle in the HHG medium. We focused both beams
as close as possible to the gas jet along z. The harmonics
generated were collected on a low dispersion grating [55],
before being detected on microchannel plates (MCPs) coupled
to a phosphor screen imaged on a CCD camera. The images
displayed in Fig. 10 were averaged over 500 shots. Harmonic
numbers were calibrated using the theoretical dispersion of
the grating [56]. A given harmonic shows at a given y,
while the divergence of the harmonics is imaged along the
x dimension [57]. The left side of the image is cut due to the
size of our MCP set.

We clearly observed the spreading of the harmonics into
several orders. While both negative and positive orders coexist
for low perturbation values, the profiles are quickly deported
toward the left of the figure, corresponding to the SFG region.
This is all the more the case as α increases (from top to

FIG. 11. Lineouts of experimental images similar to those of
Fig. 10, but for an angle θ = 1.2◦. Each panel corresponds to a given
harmonic and all curves are normalized to 1 and progressively offset
by 0.3. Different colors correspond to perturbation levels of α � 0.15
(blue, no offset), α = 0.25 (orange,offset = 0.3), α = 0.38 (green,
offset = 0.6), α = 0.50 (red, offset = 0.9), and α = 0.66 (mauve,
offset = 1.2). The dashed vertical line is set at the location of the
direct harmonics.

bottom). Interestingly, there are not many more orders appear-
ing as α increases. This is a result predicted by our toy model,
where the number of diffraction orders visible is set by the
width of the large Gaussian given in Eq. (28), and confirmed
by the full computations. As expected, the progressive shift is
compatible with Eq. (29). In particular, the lineouts displayed
on the right show, for a given panel, the diffraction orders
of all harmonics peaking at about the same x location [e.g.,
about −10 mm for Fig. 11(h)]. This location is progressively
shifting from Fig. 11(f) to Fig. 11(j) as the slope of the phase
grating is increased by increasing the perturbation intensity
[increase of α in Eq. (24)]. We also retrieve a prediction of
Eq. (30): diffraction orders are getting denser as q increases,
which is evident in Fig. 11. Finally, we note that a slight
left-right asymmetry (e.g., green curve, H13, Fig. 11). This is
compatible with the full computations but not the toy model.
We believe that it is the result of volume effects.

Finally, we tested the formula of the toy model, Eq. (29),
which predicts the position of the dominant order. We define

θNorm = x′
c

z f f

1

sin θ

1 + α

α
, (31)

which is the direction of propagation of the harmonics ( x′
c

z f f
)

normalized by the perturbation and angle-dependent factor
of Eq. (29). Once corrected from the magnification of our
spectrometer, it should be equal to 1 whatever the harmonic,
angle, and perturbation value. We plotted in Fig. 12 the
corresponding measurements and theoretical predictions of
the SFA model extracted from Figs. 9–11. The error bars here
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FIG. 12. Normalized position of the dominant diffraction order
as a function of the perturbation energy normalized to the energy
in the main beam [α2 = (E2/E1)2]. Experimental values for angles
θ = 13 mrad (a) and θ = 17 mrad (b), and theoretical values for θ =
20 mrad (c). Each color/symbol corresponds to one harmonic [for
(a),(b) H9: blue circles, H11: orange squares, H13: green diamonds,
H15: red crosses; for (c) H15: brown squares, H27: light-green
circles]. The dashed line is the analytical prediction according to
Eq. (31), taking into account all magnification coefficients of our
grating.

correspond to half the periodicity of the diffraction orders.
The agreement is very good considering the simplicity of
the toy model and the fact that no adjustable parameter is
available. Except for the first point which suffers from high
uncertainty, the normalized angle of propagation is rather
constant whatever the harmonic and the perturbation level.
It is close to the predicted value. It should be noted that, as
a source of uncertainty, we could not perfectly control the
overlap in time and space of the two beams for each point.

VI. CONCLUDING CONSIDERATIONS

With the ever increasing control of high-power femtosec-
ond lasers over the years, the availability of multiple beams
to perform extreme nonlinear optics has been developing at
an extremely rapid pace. Many schemes have been employed,
either using a single wavelength or several wavelengths, a sin-
gle polarization or different polarizations, a Gaussian beam or
beams carrying orbital angular momenta, in collinear or non-
collinear geometries, with even counterpropagating waves. In
the vast majority of these studies, a photonic picture was put
forward to interpret the results. As a consequence, “selection
rules” were derived. They surely reveal which channels may
exist. However, they do not say anything about possible yields
of the concurrent nonlinear processes allowed. Getting back
to the very nature of high-order harmonic generation process,
which is a strong field effect and not a multiphoton process,
we here exposed an analysis of the process at the “meso-
scopic” spatial scale, corresponding to several wavelengths.
In the specific and simple case of two linearly polarized
pulses with identical wavelengths crossing at an angle in the
HHG medium, we solved an emerging controversy about the
yield of the sum vs different frequency generation processes:
SFG processes are dominant over DFG as soon as the ratio
between the fields exceeds 10%–20%. We retrieve the “pho-
tonic picture” as a consequence of the quasiperiodicity of
the interference pattern in the transverse direction. The excel-
lent agreement of our toy model, full quantum computation,
and experiment confidently form the basis for future work

targeting some of the cases listed above, where the polar-
izations, wavelengths, angles of crossing, and orbital angular
momenta may be varied.

Finally, we point out that the analysis drawn above may
have extremely rich applications in the two usual approaches
used to probe attosecond dynamics. First, it provides a frame-
work to analyze the amplitudes of high harmonics in high-
order harmonic spectroscopies. It offers an improved under-
standing of the relative yields covering the perturbative to
the nonperturbative regimes. Second, it offers the tools to
design the driving field at focus in order to efficiently generate
specific harmonics with given properties to be used ex situ. In
particular, we may envision tailoring the shape of the grating
grooves, in phase and amplitude, to generate efficiently a
given harmonic, or a set of them. As a more general outlook,
a connection to the very thorough and general framework
proposed by Bahabad et al. should be built (e.g., [46,58]),
together with the incorporation of temporal “grooves” as
proposed in the attosecond lighthouse schemes [59–61] and
the noncollinear optical gating scheme [62,63]. This series of
outlooks suggest that this work may open new avenues for the
investigation of highly nonlinear processes and the synthesis
of smart XUV femtosecond and attosecond pulses.
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APPENDIX: DERIVATION OF THE MAIN FORMULA

1. Derivation of Eq. (9)

The local wave vector is defined as the gradient of the
phase:

�ks(�r) = �∇[�k1�r + ϕ(α, ��k ·�r)] (A1)

with ϕ(α, ��k ·�r) given by Eq. (7). We thus have

�ks(�r) −�k1

= 1

1 + α2 sin2(�k·�r)

[1+α cos(�k·�r)]2

×
[

α ��k cos(�k ·�r)

1 + α cos(�k ·�r)
+ α2 ��k sin2(�k ·�r)

[1 + α cos(�k ·�r)]2

]
(A2)

= α ��k

[1 + α cos(�k ·�r)]2 + α2 sin2(�k ·�r)

×{[1 + α cos(�k ·�r)] cos(�k ·�r) + α sin2(�k ·�r)}
(A3)

= α[α + cos(�k ·�r)]

1 + α2 + 2α cos(�k ·�r)
��k. (A4)
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2. Derivation of Eq. (11)

Using β = 1 − α with β � 1 in Eq. (9), we get, up to first
order in β,

�ks(�r) = �k1 + α[α + cos( ��k ·�r)]

1 + α2 + 2α cos( ��k ·�r)
��k (A5)

= �k1 + (1 − β )[(1 − β ) + cos( ��k ·�r)]

1 + (1 − β )2 + 2(1 − β ) cos( ��k ·�r)
��k (A6)

� �k1 + (1 − β )[1 + cos( ��k ·�r)] − β

1 − β + (1 − β ) cos( ��k ·�r)

��k

2
(A7)

� �k1 +
��k

2
− β

(1 − β )[1 + cos( ��k ·�r)]

��k

2
(A8)

� �k1 +
��k

2
− β

1 + cos( ��k ·�r)

��k

2
. (A9)

3. Derivation of Eq. (13)

The magnitude of the wave vector corresponding to the
sum of the two driving field reads, in the case of strong
perturbation:

|�ks| =
∣∣∣∣∣�k1 +

��k

2

∣∣∣∣∣ (A10)

=
√

k2
1 +�k1 · ��k + �k2

4
(A11)

with
�k1 · ��k = (�k2 −�k1) ·�k1 (A12)

= −k1
2(1 − cos θ ) (A13)

= −2k1
2 sin2 θ

2
(A14)

and, taking into account |�k1| = |�k2|,
��k

2 = (�k2 −�k1)2 (A15)

= 2k1
2 − 2k1

2 cos θ (A16)

= 4k1
2 sin2 θ

2
. (A17)

We thus get, for small θ ,

|�ks| = k1

√
1 − 2 sin2 θ

2
+ sin2 θ

2
(A18)

= k1

√
1 − sin2 θ

2
(A19)

� k1 − k1

2
sin2 θ

2
. (A20)

Finally,

|�ks| − k1

k1
� −1

2
sin2 θ

2
. (A21)

4. Derivation of Eq. (16)

Derivations similar to those of Sec. III yield

|�ks| = |�k1 + α ��k cos(�k ·�r)| (A22)

=
√

k2
1 + 2α�k1 · ��k cos(�k ·�r) + α2�k2 cos2(�k ·�r)

(A23)

� k1

(
1 − 2α sin2 θ

2
cos(�k ·�r)

)
(A24)

Which yield

|�ks| − k1

k1
� −2α sin2 θ

2
cos(�k ·�r) (A25)

� −α

2
θ2 cos(�k ·�r). (A26)

5. Derivation of Eq. (17)

From Eq. (15), the angle of the wave vector associated to
the sum of the two fields is

θs = arctan
αk2 sin θ

k1 − α(k1 − k2 cos θ ) cos( ��k ·�r)
. (A27)

Taking into account that k2 = k1 and α � 1, we get

θs = arctan
α sin θ cos( ��k ·�r)

1 − α(1 − cos θ ) cos( ��k ·�r)
(A28)

� α sin θ cos( ��k ·�r). (A29)

6. Derivation of Eq. (19)

The magnitude of the wave vector corresponding to the
sum of the two driving field reads, in the case of weak
perturbation:

|�ks| =
∣∣∣∣�k1 + α

1 + α
��k

∣∣∣∣ (A30)

=
√

k2
1 + 2

α

1 + α
�k1 · ��k + α2

(1 + α)2 �k2. (A31)

Using the expression derived in Sec. III for �k1 · ��k and �k2

we get

|�ks| = k1

√
1 − 4

α

1 + α
sin2

(
θ

2

)
+ α2

(1 + α)2 4 sin2

(
θ

2

)

(A32)

= k1

√
1 − 4 α

(1 + α)2 sin2

(
θ

2

)
. (A33)

7. Derivation of Eq. (20)

The angle of the wave vector associated to the sum of the
two fields is

θs = arctan
α

1+α
k2 sin θ

k1 − α
1+α

(k1 − k2 cos θ )
. (A34)

Taking into account |�k1| = |�k2|,

θs = arctan

(
α

1 + α

sin θ

1 − α
1+α

(1 − cos θ )

)
(A35)

= arctan

(
sin θ

1+α
α

− (1 − cos θ )

)
(A36)

= arctan

(
α sin θ

1 + α cos θ

)
. (A37)
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