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A main objective of topological photonics is the design of disorder-resilient optical devices. Many prospective
applications would benefit from nonlinear effects, which not only are naturally present in real systems but also are
needed for switching in computational processes, while the underlying particle interactions are a key ingredient
for the manifestation of genuine quantum effects. A particularly attractive switching mechanism of dynamical
systems are infinite-period bifurcations into limit cycles, as these set on with a finite amplitude. Here we describe
how to realize this switching mechanism by combining attractive and repulsive particle interactions in a driven-
dissipative Su-Schrieffer-Heeger model, such as realized in excitonic lasers and condensates so that the system
displays a non-Hermitian combination of parity and charge-conjugation (PC) symmetry. We show that this
symmetry survives in the nonlinear case and induces infinite-period and limit-cycle bifurcations (distinct from
a Hopf bifurcation) where the system switches from a symmetry-breaking stationary state into a symmetry-
protected power-oscillating state of finite amplitude. These protected dynamical solutions display a number of
characteristic features, among which are their finite amplitude at onset, their arbitrary long oscillation period
close to threshold, and the symmetry of their frequency spectrum which provides a tuneable frequency comb.
Phases with different transition scenarios are separated by exceptional points in the stability spectrum, involving
nonhermitian degeneracies of symmetry-protected excitations.
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I. INTRODUCTION

Several recent experimental and theoretical proposals fo-
cus on the implementation of topologically nontrivial pho-
tonic systems, promising to make optical devices more ef-
ficient and resilient against disorder [1,2]. Much of this
work focusses on the celebrated Su-Schrieffer-Heeger (SSH)
model, originating in the description of electronic transport
in conjugated polymers [3], which can be implemented, e.g.,
using photonic superlattices [4], atom-optical lattices [5],
microwave resonator arrays [6], microlaser arrays [7–10],
waveguide arrays [11], plasmonic wave guides [12], as well as
using the p band of Bragg cavity-polariton pillars where the
px and the py modes provide the alternated coupling between
pillars in a zigzag configuration [13].

As in the original electronic setting [3], where topological
defects are bound to solitonic lattice deformations, many of
these platforms display nonlinear features. These may, e.g.,
be manifest in the lasing behavior associated with a nonlin-
ear saturable pump [7,14–18], arise from nonlinear hopping
terms that induce transitions between different topological
phases [19–21], induce the formation of self-localizing states
[22,23], or take the form of strong blue-shifts of the photonic
resonance due to exciton-exciton scattering [13,24]. These
interactions can lead to dynamical edge instabilities in Bose
condensates [25], induce edge bound states for two particles
[26], enable the tunability of edge states [27], enable opti-
cal isolation [28], and determine the stability of soliton-like
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solutions [29–35] in open-dissipative scenarios with either
resonant [36] or nonresonant pump configurations.

In this work, we utilize a driven-dissipative extension of the
SSH chain to demonstrate the dynamical switching between
robust stationary and nonstationary operation modes. The
key ingredient is the inclusion of repulsive and attractive
interactions distributed along the system. On each lattice
site we account for interactions that either are repulsive and
lead to an energy blue-shift, or are attractive and lead to an
energy red-shift, as well as a nonlinear saturable pump. The
interactions can conspire to break or preserve a dynamical
symmetry in the system, where the latter case corresponds
to balanced repulsive and attractive interactions that alternate
along the chain. The system then combines a parity sym-
metry P with a pseudospinful charge-conjugation symmetry
C, hence displays a nonhermitian PC symmetry squaring to
(PC)2 = −1, whose consequences differ from the previously
and extensively studied case of nonhermitian PT symmetry
[37–39], and in particular also extends dynamically to the
nonlinear setting.

We show that this dynamical PC symmetry modifies the
stability of the edge states to the extent that they can be-
come unstable and undergo unconventional transitions from
steady states to power-oscillating solutions that set in with a
finite oscillation amplitude. We identify two distinct switch-
ing mechanisms by which the edge states become unsta-
ble, where the steady-state solutions can either coexist with
power-oscillating solutions, or display a transition into power-
oscillating solutions that initially have an infinite period.
These power-oscillating states can be protected by the dy-
namical symmetry even in the situation when the finite lin-
ear system strictly does not admit topologically protected
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FIG. 1. Linear SSH model. Top panel: sketch of a finite SSH
chain with N = 10 dimers (i.e., 20 sites). Bottom panel: energy
levels for the linear closed system with couplings τ = 0.7 < τ ′ =
1.0 (black) and τ = 1.0 > τ ′ = 0.7 (red), ordered by magnitude. In
the first case two weakly hybridized edge states appear at the center
of the energy band gap. In this work we consider a driven-dissipative
extension of this model which includes nonlinear interactions and
saturable gain, as can be encountered in a polaritonic laser.

stationary states. The origin of the associated dynamical phase
transitions can be traced back to exceptional points in the
stability excitation spectrum.

This paper is structured as follows. In Sec. II we introduce
the model, discuss its properties in the linear and closed set-
ting, and describe how we extend it to the open-dissipative and
nonlinear case. In Sec. III we study the two cases of vanishing
and uniform interactions as reference points to contrast with
the switching mechanisms present for the configuration with
balanced alternating interactions that supports the dynamical
PC symmetry, which is described in Sec. IV. In Sec. V we
present our conclusions and describe possible applications
and extensions of this work. The Appendices review the
definition of a Bogoliubov excitation spectrum and place the
PC symmetry encountered here into a wider context.

II. MODEL AND DYNAMICAL PC SYMMETRY

The SSH model is a tight-binding model for a one-
dimensional dimer chain characterized by alternating strong
and weak couplings between sites (see top of Fig. 1). These
alternating couplings define two distinct sublattices (A and
B), representing the two sites on the dimer unit cell. The set
of coupled mode equations are given by

i
dAn

dt
= Vn,A(|An|2)An + τBn + τ ′Bn−1,

(1)

i
dBn

dt
= Vn,B(|Bn|2)Bn + τAn + τ ′An+1,

where An and Bn are the amplitudes on the two sites on
the nth dimer, Vn,s (s = A, B) are effective onsite energies

on each lattice site, and τ and τ ′ are the intradimer and
interdimer couplings. The original linear setting of this model,
Vn,s = 0, is a periodic system with a symmetric band structure,
where the two bands are separated by an energy gap of
� = 2|τ − τ ′|. One then can identify two topological phases
depending whether τ > τ ′ or τ < τ ′, whose difference be-
comes apparent when one considers a semi-infinite chain.
In a semi-infinite chain, when the chain is terminated by
a weak coupling (τ < τ ′), one finds a symmetry-protected
exponentially localized edge state with zero energy that only
populates the A sublattice, while this state is absent when
τ > τ ′. In a finite system with an even number of sites and
τ < τ ′, the chain is terminated at both ends with a weak
coupling, so that each end gives rise to one edge state, which
is localized on the A sublattice near the left end on the B
sublattice near the right end. Due to the finite size of the
system these two edge states hybridize and form in-phase and
out-of-phase combinations with symmetric energies close to
zero. This situation is illustrated in Fig. 1 for a chain with
N = 10 dimers.

Importantly, the energies of these hybridized states are
not strictly protected by symmetry—they have a small, but
nonvanishing energy, and do not constitute exact zero modes.
As we will see, symmetry-protected periodically oscillating
solution can however appear when nonlinear effects and in
particular interactions are taken into account. In our nonlinear
driven-dissipative extension of the SSH model, we therefore
include a nonlinear complex effective potential,

Vn,s(|sn|2) = gn,s|sn|2 + i�n,s/(1 + |sn|2) − iγn,s, (2)

where gn,s describes the onsite particle interactions (repulsive
for gn,s > 0 and attractive for gn,s < 0), �n,s describes a
nonlinear saturable pump, and γn,s describes linear decay.

In absence of the interactions, this model describes the
mode competition in a topological laser [14,15], as realized
in the recent experiments [7–10]. The interactions them-
selves can break the symmetry protection of the system and
shift the edge states away from their zero-mode position, as
was exploited to characterize the exciton-polariton lasers of
Ref. [13]. Here, we focus on the interplay of the nonlinear in-
teraction and saturation effects, where for simplicity the decay
rate γn,s = γ is homogeneous, and contrast the cases where
the interactions preserve, or break, the symmetry protection
of the edge states of the linear system.

The case of symmetry-preserving interactions will be
achieved by considering a balanced interaction scenario where
one sublattice displays repulsive interactions with gn,A = g >

0 while the other displays attractive interactions with gn,B =
−g < 0 (see Fig. 2). In this case, we find that the coupled
mode Eqs. (1) remain invariant under the substitution

An(t ) → B∗
N−n+1(t ), Bn(t ) → −A∗

N−n+1(t ). (3)

This dynamical symmetry combines a nonhermitian charge-
conjugation operation C [40] with a parity operation P , so that
the instantaneous Hamiltonian obeys PCHPC = −H where
(PC)2 = −1 (Appendix B uses these features to place the PC-
symmetry into a wider context.)

For our version of the SSH model the PC symmetry Eq. (3)
holds generally whenever the values of γn,s, �n,s are equal in
symmetric positions of the chain with respect to its center,
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FIG. 2. PC-symmetric nonlinear driven-dissipative SSH model.
Sketch of a chain with N = 10 dimers (i.e., 20 sites), where each
site is described by three parameters: a pump rate �, a decay rate γ ,
and a particle interaction strength g. The figure shows the case with
alternating sign of the particle interaction terms, which respects the
dynamical PC-symmetry described by Eq. (3).

while gn,s has opposite sign on these sites. We compare this
balanced case with the case where all interactions are repul-
sive, corresponding to blue-shifts with gn,s = g > 0. For both
scenarios we consider a pumping protocol on the terminating
sites which preferably pumps the edge states (�n,s = � �= 0
only for n = 1, s = A and n = N, s = B).

When the dynamical PC symmetry Eq. (3) is respected,
each stable solution with amplitudes (An(t ), Bn(t )) on the
nth dimer is paired with another solution where this dimer
has amplitudes (B∗

N−n+1(t ),−A∗
N−n+1(t )). Since this symme-

try includes a complex-conjugation, the two paired solutions
have opposite energy. Moreover, this symmetry allows the
existence of self-symmetric solutions, which have a sym-
metric energy spectrum. The dynamical symmetry Eq. (3)
therefore constitutes a natural reference point to separately
explore the role of nonlinearities and symmetry-protection in
an interacting driven-dissipative setting. In the linear limit this
dynamical symmetry reverses back to the conventional notion
of PC symmetry, both in terms of the spectral implications as
well as for the features of the wavefunctions.

To study the physically stable solutions of the system in the
presence of the nonlinear terms we numerically evaluate the
time evolution of the coupled mode Eqs. (1) until a stationary
state or an oscillating periodic solution are reached. Since
several stable solutions may exist depending on the system pa-
rameters, this time evolution is performed for several different
initial conditions. We characterize the solutions by two types
of spectra: the frequency spectra IA,B(ω) obtained by Fourier
transformation of the time-dependent amplitudes on the two
sublattices, and the complex Bogoliubov stability spectra ωn

obtained by linearization around the working point of the
system (Appendix A reviews the definition of this spectrum).
These spectra capture the main effects of the coexisting unsta-
ble solutions for the long-time dynamics of the system.

III. REFERENCE POINTS

In this section we describe two reference points, with
saturable gain but vanishing or uniformly repulsive interac-
tions, to which we can then contrast our findings for the PC-
symmetric case of balanced interactions in the next section.

A. Noninteracting system with saturable gain

As a first reference point we take a system with vanishing
interactions gn,s = 0, where all nonlinearities occur due to the
saturable pump. Figure 3 shows the phase space for this case

FIG. 3. Nonlinear pumped system with vanishing interactions
gn,s = 0. Top: sketch of the chain with indication of the pumped
sites. (a) Phase diagram in the space of pump strength � and decay
rate γ , with couplings fixed to τ ′ = 0.7 and τ = 1.0. In the red
region the system is below threshold, so that its stationary state
has vanishing intensity. In the gray region the system supports two
stationary states of finite intensity. The dark region I and the light
region II differ by the configuration of the Bogoliubov excitation
spectrum, which determines the stability of these stationary states.
Two sample excitation spectra with � = 0.5 and γ = 0.015, 0.050
are shown in the right panels (b) and (c), where the horizontal black
line indicates the real axis (Im ω = 0). At the transition between
region I and II two excitations collide in an exceptional point on
the imaginary axis. Panel (d) shows a typical intensity distribution
(i.e., number of particles per site: Is,n = |sn|2, s = A, B) for the case
with � = 0.5 and γ = 0.015. Note that, due to the symmetry 3, the
two in-phase and out-of-phase steady state solutions have the exact
identical density distribution.

as a function of the intensity � of the saturable pump and
the linear decay rate γ . For small values of � the intensity
decays to zero as the loss rate is larger than the pump rate.
Above this threshold, the system stabilizes in one of two
possible stationary states with a finite total intensity (i.e., total
number of particles: Itot = ∑

s,n |sn|2 �= 0, s = A, B), whose
choice depends on the initial conditions. This scenario is valid
for each point in the phase space in Fig. 3 but drastically
changes for other pumping configurations where several sites
are pumped or for higher values of γ or �. These two
stable states originate from the symmetric and antisymmetric
hybridizations of the edge states in the linear regime, and
are conjugate partners under the dynamical PC symmetry
Eq. (3). They therefore have conjugate frequency spectra,
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peaked at opposite positions close to zero frequency, and
identical density distribution and Bogoliubov spectra.

Further inspecting the Bogoliubov spectra as we vary γ and
�, we find that the phase space can be divided into two regions
corresponding to two possible configurations, indicated as I
and II. The first configuration occurs for small values of γ ,
where two of the four Bogoliubov eigenvalues closest to zero
lie on the imaginary axis, while the other two lie symmetric
with respect to it. For larger values of γ this configuration
changes in an exceptional point, after which all these four
eigenvalues lie on the imaginary axis.

B. Uniform interactions

As a second reference point we consider a system with
uniform interactions, which we assume to be repulsive so that
gn,s = g > 0. These interactions break the chiral symmetry of
the linear system in any nonuniform stationary state, and also
break the dynamical PC symmetry given in Eq. (3). As shown
in Fig. 4, the interactions destabilize the stationary states when
we increase g while fixing � and γ . For small values of g
there are two stable solutions, which again originate from the
bonding and antibonding states at g = 0. Compared to this
limit, however, the two frequency spectra are shifted up in en-
ergy, and no longer related to each other as the stationary and
dynamical symmetries are broken. Further increasing the in-
teractions, the solution with higher energy becomes unstable,
where the threshold depends on the pump and decay rates �

and γ . In the situation illustrated in Fig. 4, the threshold value
g = 0.0028 is very small, as indicated by the cross symbol in
Figs. 4(a) and 4(b). The stationary state with the lower energy,
however, remains stable for much larger interactions, up to
gth = 0.103. Above this second threshold the system switches
over into a power-oscillating mode, which sets on with a
fixed period but initially small power-oscillation amplitude,
which increases gradually from zero proportionally to (g −
gth)1/2. These features are indicative of a supercritical Hopf
bifurcation [41]. As shown in Figs. 4(c) and 4(d) for the point
marked C, the corresponding frequency spectrum is slightly
asymmetric but regularly structured and includes a prominent
central peak placed between two satellites that are situated
close to the energies of the former stationary solutions.

When we further increase the interaction strength we enter
the gray region in Fig. 4(a), where the oscillations become er-
ratic, signifying the onset of chaos, as illustrated in Figs. 4(e)
and 4(f) for the solution marked D. Here the time-trace of
the intensity IA,B in Fig. 4(e) clearly shows the appearance of
several superimposed frequencies even if the corresponding
peaks are barely visible in Fig. 4(f). We observe this scenario
of consecutive instability across the whole parameter space
(i.e., regardless whether we reside in region I or II in Fig. 3).

These findings for the case of uniform interactions agree
with the qualitative behavior of a wide range of nonlinear
optical systems. In particular, the frequency spectra of the
periodically oscillating solutions are very similar to the tra-
ditional optical parametric oscillator solutions in nonlinear
crystals [42] or in polariton cavities [43–45], and their cre-
ation mechanism is generally associated to an Hopf bifurca-
tion. As we now will show, much more versatile switching
mechanisms can be realized for the PC-symmetric case of
balanced interactions.

FIG. 4. Nonlinear pumped system with uniform interactions
gn,s = g > 0. The interactions destabilize the system when they are
sufficiently large, leading to power-oscillating states of period T .
Panel (a) shows the oscillation period T and panel (b) the sublattice-
resolved intensities IA, IB as a function of g. The small cross at
g = 0.0028 indicates the threshold at which one of the spatially
symmetric (bonding) stationary solutions destabilizes. The jump in
period occurs when the second (antibonding) solution destabilizes
and is replaced by the power-oscillating state. The gray shaded region
in panel (b) indicates the intensity oscillation amplitude, which is
identical for IA and IB even though both intensities oscillate out
of phase. Panels (c) and (d) show the time trace of the sublattice-
resolved intensities IA (gray) and IB (blue) and the frequency spec-
trum at point C (g = 0.140), while panels (e) and (f) show the
analogous data for point D (g = 0.175). For all panels parameters
are fixed to τ ′ = 0.7, τ = 1.0, γ = 0.05, and �1,A = �10,B = 0.5.

IV. BALANCED INTERACTIONS

In the reference cases discussed in the previous section,
the interactions helped to induce transitions from station-
ary to power-oscillating operation regimes but broke the
relation between the two stationary solutions, while the
power-oscillating states only set in with a vanishing amplitude
and quickly became erratic as this amplitude increased.
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FIG. 5. Nonlinear pumped system with balanced interactions gn,A = −gn,B in region I. Balanced interactions can drive the system into
a power-oscillating state that is now protected by PC-symmetry. Panels (a) and (b) show the oscillation period T and sublattice-resolved
intensities IA, IB of stationary and oscillating states as a function of g. The system displays a bistable interval with hysteretic behavior between
the stationary and power-oscillating solutions where the black branch with point C is followed when the interactions increase while the red
branch with point D is followed when the interactions decrease, with both points positioned at g = 0.0007. Panels (c)–(e) and (f)–(h) show
the spatial intensity distribution, time trace of the sublattice-resolved intensities (IA in gray, IB in blue), and frequency spectrum of the two
stationary states at point C. Panels (i)–(k) show the corresponding quantities at point D, where the black and red curves in the intensity profile
indicate the maximal and minimal intensity over an oscillation cycle. For all panels τ ′ = 0.7, τ = 1.0, γ = 0.015, and � = 0.5, corresponding
to the point marked in region I of Fig. 3.

Balanced nonlinear particle interactions are repulsive
(gn,A = g > 0) on one sublattice and attractive (gn,B = −g <

0) on the other sublattice, and preserve the dynamical PC
symmetry defined in Eq. (3). This balanced scenario could,
for example, be achieved in Bragg-cavity polariton systems
by using pillars with different exciton-photon detuning [46],
either using electric contacts on different sublattices, or dif-
ferent pillar sizes. This combines the key features of the two
reference cases. As we will show, we then encounter very
different switching mechanisms, which lead to the emergence
of a robust, symmetry-protected dynamical solution that sets
in with a finite power-oscillation amplitude. We encounter
two different scenarios for the transition, corresponding to the
two regions I and II in Fig. 3. Region I displays hysteresis
and multistability between stationary and power-oscillating
solutions, where the latter sets in with a finite oscillation
period. Region II displays a clear division between stationary
and power-oscillating solutions, where the latter now sets in
with a initially diverging period. Because of these different
dynamical and hysteretic signatures, regions I and II can be
interpreted as two different phases of the system. We therefore
contrast our findings in the two regions, where we again
study the solutions of the system as a function of increasing
interaction strength g for fixed values of the pump strength �

and decay rate γ .

1. Region I

As shown in Fig. 5 for representative values γ = 0.015,
� = 0.5 in region I, the two symmetry-related stationary
solutions remain stable for finite balanced interaction
strengths g < gstat = 0.00074, where they are still related by
the dynamical PC symmetry Eq. (3). The interactions visibly

distort the intensity distributions so that the two solutions
are biased toward one of the two edges [see Figs. 5(c) and
5(f)], and along with this have predominant population on one
of the two sublattices [Figs. 5(d) and 5(g)]. As conjugated
solutions, these spatial distributions remain related by spatial
reflection about the center of the system, while their frequency
spectra remain related by reflection in the frequency domain
[Figs. 5(e) and 5(h)].

Both stationary solutions become simultaneously unstable
above a critical interactions strength gstat . Already before this
threshold is reached, however, the system also can sustain a
time-dependent oscillating solution, which is stabilized above
a threshold gosc = 0.00065 < gstat , and hence coexists with
the stationary solutions for interaction strengths gosc < g <

gstat . Remarkably, this oscillating solution is globally invariant
under the transformation Eq. (3), which translates it by half
a period, and therefore is protected by PC-symmetry. The
nonlinear interactions therefore induce a transition into a self-
symmetric dynamical state, even though the noninteracting
system does not allow this to happen.

As illustrated in Figs. 5(i)–5(k), the power oscillations are
pronounced (up to 30%–40% of the total intensity) and are
very robust, in that they survive for a wide range of values of
g. Both the period and the oscillation amplitude are maximal
at threshold and decrease for increasing values of g. This
behavior can be observed by tracking an oscillating solution
and gradually decreasing the strength of the nonlinearities.
Moreover, the oscillations are characterized by a comb of
frequencies where the dominant peaks decrease in number and
increase in spacing when g is increased. Resolved by position,
the frequency spectrum of the A sublattice is symmetric to the
spectrum of the B sublattice.
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Physically these power-oscillations solutions originate
from the competition of the positive energy shift on the
sublattice with repulsive interaction and the negative energy
shift on the sublattice with attractive interactions, which has
to be taken into account when forming a state that makes
optimal use of the gain on both sublattices. Stronger interac-
tions increase the energy gap between the two sublattices and
consequently induce faster oscillations. Due to the specific
structure of the nonlinear terms this effect can be achieved not
only by increasing g, but also by increasing the pump intensity
�, which is favorable for experiments.

A detailed investigation of the Bogoliubov spectra of the
stationary solutions at threshold shows that the instability
is caused by an excitation that moves along the imaginary
axis from negative to positive imaginary values. This feature,
together with the presence of a bistable region where two
stable fixed points coexist with a limit cycle that sets in with
a finite oscillation amplitude is characteristic of a saddle-node
bifurcation of cycles [41].

In Fig. 6 the time evolution of the system is plotted in
the plane of the total intensities IA(t ) and IB(t ) on the two
sublattices, where different lines correspond to different initial
conditions. Figure 6(a) shows the case of four different initial
conditions leading to one of the two fixed points (the two blue
crosses), while Fig. 6(b) shows initial conditions leading to
the limit cycle. These solutions correspond to the points C or
D in Fig. 5, respectively.

For g = 0 the two fixed points would correspond to the
symmetric and antisymmetric states and have identical inten-
sities. Therefore, for g = 0 the two blue crosses would lie on
the line IA = IB. As the value of g is increased the two fixed
points move apart until they became unstable.

2. Region II

As already observed in Fig. 3, in region II the stability
excitation spectrum has undergone a transition so that the
excitation that destabilized the stationary states in region I are
shielded by two additional modes on the imaginary axis. The
consequences for the dynamics of the system are illustrated
in Fig. 7, where we again selected representative parameters
for � and γ . In contrast to the behavior in region I, the
system no longer exhibits a bistable interval where station-
ary states coexist with power-oscillating states. Instead, the
emergence of the power-oscillating solution coincides with
the instability threshold of the stationary states, which for
the given parameters occurs at gth ≈ 0.0009554. Remarkably,
at threshold the oscillation period now tends to infinity [see
Fig. 7(a)]. On the other hand, the two stationary solutions
show the same general characteristics as in region I, so that
one solution predominantly populates sublattice A while the
other populates sublattice B while the frequency spectra are
symmetric to each other [Figs. 7(c)–7(e) shows one of these
cases]. Moreover, as before, the power-oscillations solutions
are characterized by a frequency comb where the dominant
peaks decrease in number with increasing g [see Figs. 7(h) and
7(k)]. Finally, increasing g induces stronger nonlinear energy
shifts between the two sublattices, which translates into faster
oscillations [Figs. 7(g) and 7(j)] and wider spacing in the
peaks of the frequency spectrum [Figs.7(h) and 7(k)].

FIG. 6. Fixed points and limit cycles. The time evolution of
the system is plotted in the plane of the intensities IA(t ) and IB(t )
on the two sublattices for different initial conditions (IA(0), IB(0)).
Panels (a) and (b) concern region I of Fig. 3 and correspond to
points C and D in the bistable interval of Fig. 5. In panel (a) the
four different initial conditions (2.5,1.0) (black diamonds), (2.0,25.5)
(green triangles), (38.0,2,5) (red crosses), (55.0,50.0) (gray squares)
lead to one of two fixed points (blue crosses), which correspond to
the stationary solutions, while in panel (b) the four different initial
conditions (5.5,1.0) (black diamonds), (2.0,22.0) (green triangles),
(42.0,3.0) (red crosses), (40.0,40.0) (gray squares), lead to a limit
cycle (in blue), which corresponds to the power-oscillating solution.
Panels (c) and (d) concern region II and correspond to the two
points C and D on either side of the power-oscillation threshold
in Fig. 7. In panel (c) the four different initial conditions (2.0,1.0)
(black diamonds), (0.5,4.0) (green triangles), (11.5,2,5) (red crosses),
(13.0,14.0) (gray squares) lead to either one of the two fixed points
(blue crosses), while in panel (d) all four different initial conditions
(3.0,1.0) (black diamonds), (1.3,7.3) (green triangles), (6.7,1.15) (red
crosses), (10.0,13,0) (gray squares) lead to the limit cycle.

As before it is interesting to study the behavior of the
system at the threshold between the stationary and power
oscillating solutions. The Bogoliubov spectrum of the two
steady states confirms that the instability is still driven by an
excitation with zero real part moving up along the imaginary
axis, but as already indicated above this excitation originates
from the exceptional point that separates regions I and II. On
the other side of the transition we observe that the oscillating
period diverges to infinity as (g − gth )−1/2. These two features,
together with the finite oscillation amplitude at threshold,
allow us to identify this transition as an infinite-period bifur-
cation [41].

As for the case in region I we tracked the time evolution
of the system in the plane of the intensity on sublattice A and
on sublattice B. In Fig. 6(c), g < gth and all orbits converge
to one of the two steady-state fixed points, while in Fig. 6(d)
g > gth and all orbits converge to the oscillating limit cycle.
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FIG. 7. Nonlinear pumped system with balanced interactions gn,A = −gn,B in region II. Same as Fig. 5, but for parameters γ = 0.015, and
� = 0.5 in region II. No bistable behavior is observed and the period of the power oscillations diverges at threshold. Panels (c)–(e) show one of
the two stationary solutions at point C [g = 0.0009, the other solution is obtained from the dynamical symmetry Eq. (3)], while panels (f)–(h)
and (i)–(k) show the behavior of the power-oscillating solution at point D close to threshold (g = 0.0011) and point E far above threshold
(g = 0.0020), respectively.

These solutions correspond to the points C or D in Fig. 7,
respectively.

Finally, we note that the transition between regions I and
II is smooth. For the two cases considered above it is pos-
sible to move from one to the other by, e.g., increasing the
homogeneous decay rate γ . In doing so the bistable region
reduces in width and the period of the power oscillations at
threshold increases. At the boundary between the two regions
the width of the bistable region goes to zero and the oscillation
period to infinity. During this process the threshold value gth at
which the power oscillations set in increases, since increasing
the decay rate decreases the intensity in the system. The only
effect of further increasing γ after the region boundary is to
further reduce the intensity and increase the threshold value
gth. Note that, alternatively, this transition can be performed
by increasing �, thereby moving left-right in the phase space
of Fig. 3, which may constitute a more suitable protocol in
experimental realizations of the proposed system.

V. CONCLUSIONS

In conclusion, we have investigated an SSH model in the
presence of two types of nonlinearities: a laser-type non-
linearity describing a saturable pumping mechanism in the
system, and a nonlinearity describing interactions that can be
either attractive or repulsive. We identified a case of balanced
interactions in which the system displays a combined parity
and charge-conjugation (PC) symmetry, and showed that this
symmetry extends dynamically to the nonlinear situation.

To explore the consequences of this symmetry we fo-
cused on the behavior of the edge states and studied the
stability of stationary solutions as well as the emergence of
power-oscillating solutions. We contrasted a scenario where
uniform repulsive interactions on all lattice sites break the PC-
symmetry with a scenario where the two sublattices displayed

balanced attractive and repulsive interactions so that the PC-
symmetry is preserved.

The symmetry-broken case exhibits power-oscillating so-
lutions that emerge in conventional Hopf bifurcations, hence
set in with a finite period but vanishing oscillation amplitude,
and furthermore develop chaotic behavior when the interac-
tions are increased.

In contrast, the PC-symmetric system supports power-
oscillating solutions that are globally invariant under the PC-
symmetry and hence turn out to be robust for large variations
of the system parameters. These symmetry-protected power-
oscillations emerge via two distinct mechanisms, where in
both cases the initial oscillation amplitude is finite, while the
initial period can either be finite or divergent.

The latter feature suggests their implementation as a medi-
ating state for an adiabatic switch between the two station-
ary edge-state solutions, which can be achieved by slowly
increasing and decreasing the intensity of the pump, thus
opening up new ways to design optical devices [47,48]. The
symmetry-protected power-oscillating states furthermore dis-
play a well-structured symmetric frequency-comb spectrum,
with a frequency step that can be tuned by varying the pump
or interaction strength. They thereby also naturally provide
highly desirable features that let envision the possible imple-
mentation of coherent sources of terahertz radiation [45].
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APPENDIX A: BOGOLIUBOV EXCITATION SPECTRA

In this Appendix we briefly review the definition and
interpretation of the Bogoliubov excitation spectrum for a
stationary state. For a compact presentation, we write the
coupled-mode Eqs. (1) as

i
d�

dt
= [H0 + V (|�|2)]�, � =

⎛
⎜⎜⎜⎜⎝

A1

B1

A2
...

BN

⎞
⎟⎟⎟⎟⎠, (A1)

where � is the vector grouping the wave amplitudes on the
different sites. The Hamiltonian H is an N × N matrix that
includes the coupling terms τ and τ ′, while V (|�|2) is a
diagonal N × N matrix that includes the nonlinear interaction
and saturation terms and the linear decay, as specified in
Eq. (2). For a stationary solution �(t ) = exp(−i�t )ψ fulfill-
ing �ψ = [H0 + V (|ψ |2)]ψ , the Bogoliubov analysis allows
determining its stability against particle-like and hole-like
perturbations u and v [15,49],

�(t ) = [ψ + uexp(−iωt ) + v∗exp(iωt )]exp(−i�t ).

Inserting this expanded solution in the system of Eqs. (A1)
and linearising in u and v leads to the Bogoliubov equation

ωϕ = (H[ψ] − �z�)ϕ,

(
u
v

)
, (A2)

where �z is a Pauli matrix in the space of u and v, and H[ψ]
is the 2N × 2N-dimensional Bogoliubov Hamiltonian

H[ψ] =
[

H0 + V + V ′|ψ |2 V ′ψ2

−[V ′ψ2]∗ −[H0 + V + V ′|ψ |2]∗

]
,

where V ≡ V (|ψ |2) and V ′ ≡ ∂V (|ψ |2)/∂|ψ |2 are evaluated
with the stationary solution.

To assess the stability of a steady state solution it is
sufficient to evaluate the complex eigenvalues ωn = ω′

n + iω′′
n

of the Bogoliubov Hamiltonian and study their imaginary part.
We note that the Bogoliubov Hamiltonian always possesses
one eigenvalue ω0 = 0, associated with u0 = −v0 = ψ . This
describes the freedom to choose the global phase of the
stationary state, and therefore constitutes a U (1) Goldstone
mode. All perturbations with negative imaginary parts ω′′

n <

0 correspond to exponentially decaying perturbations, while
positive imaginary parts corresponds to destabilizing pertur-
bations that drive the system out of its steady state. For a stable
stationary state, all perturbations besides the U (1) Goldstone
mode decay, and therefore the complete Bogoliubov spectrum

lies in the lower half of the complex plane. A stationary state
becomes unstable when eigenvalues cross the real axis. This
constitutes a Hopf bifurcation if the instability occurs for
eigenvalues with a finite real part ω′

n, leading to an onset of
oscillations with period T = 1/ω′

n.

APPENDIX B: COMPARISON OF SYMMETRIES

In the linear limit, the PC-symmetry encountered in this
work falls naturally into the Bernard-LeClair classification of
nonhermitian systems [50,51]. In this language, the system
is characterized by transformation properties of the instanta-
neous Hamiltonian H generating the time evolution (explicitly
denoted as H = H0 + V in Appendix A), which here fulfills
the condition PCHPC = −H whilst the symmetry operator
PC is antilinear and obeys (PC)2 = −1.

In general, this symmetry can be realized in systems with
two subparts A and B (e.g., constituting two sublattices),
which are coupled by an instantaneous Hamiltonian of the
form

H =
(

V T ∗
T −V ∗

)
. (B1)

We can naturally interpret parity P = σx as the operation
interchanging both subsystems (written as a Pauli matrix), and
the charge conjugation C = Kσz as a combination of complex
conjugation K (for time reversal) and the standard chiral
symmetry σz of systems with two subparts. In combination,
this imposes the property σyHσy = −H∗.

As a consequence of this property the spectrum of the
Hamiltonian consists of eigenvalues on the imaginary axis and
pairs of eigenvalues that lie symmetrically to it. As we have
seen, the complex couplings T and V may nonlinearly depend
on the intensities along the system, upon which the spectral
symmetry becomes the dynamical symmetry Eq. (3).

These features are similar, but distinct, to various antilinear
symmetries encountered in previous studies of nonhermitian
photonic systems. First and foremost amongst these is the
widely studied PT symmetry PT HPT = H [37,38], where
the parity operation is again typically realized by P = σx such
that (PT )2 = 1. Sending H → iH one can pass to anti-PT -
symmetric systems for which PT HPT = −H [52]. Finally,
by utilizing C = Kσz with a matrix of possibly finite signature
tr σz �= 0 one can realize a nonhermitian charge-conjugation
symmetry CHC = −H [40], which admits topologically pro-
tected zero modes [6,53] and also extends to the nonlinear
setting [15].
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