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Time crystals are quantum systems that are able to reveal condensed matter behavior in the time domain. It is
known that crystallization in time can be observed in a periodically driven many-body system when interactions
between particles force a system to evolve with a period that is an integer multiple of a driving period. This
phenomenon is dubbed discrete time crystal formation. Here, we consider ultracold atoms bouncing on an
oscillating atom mirror and show that the system can spontaneously form a discrete time crystal where the ratio
of a period of its motion and a driving period is a rational number. This kind of discrete time crystal requires
higher-order resonant driving, which is analyzed here with the help of an original approach.
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I. INTRODUCTION

It has been known for years that atoms can self-organize
and form periodic structures in space. Formation of such
space crystals is related to spontaneous breaking of con-
tinuous space translation symmetry of the Hamiltonian [1].
Interactions between particles in a solid-state system depend
on relative distances between them and if we translate all
particles by the same arbitrary vector, the Hamiltonian does
not change. Consequently, the eigenstates should follow the
symmetry requirement and no crystalline structure can be ob-
served if we calculate a single-particle probability density for
a system prepared in an eigenstate. However, the eigenstates
can be fragile to any perturbation and the continuous space
translation symmetry can be extremely easily broken and a
space crystal emerges.

In 2012 Wilczek asked the question if a similar phe-
nomenon could be observed in the time domain and the time
crystal era began [2,3]. The original Wilczek’s model was
not feasible because he assumed a time-independent quantum
many-body system in the ground state [2,4–6] (for classical
time crystals see Refs. [7–13]). However, soon after that,
it was shown that periodically driven quantum many-body
systems can reveal spontaneous crystallization of periodic
motion [14–19]. Periodically driven systems can be prepared
in a Floquet eigenstate, which evolves with a driving pe-
riod [20]. If interactions between particles of a driven sys-
tem are sufficiently strong, some of Floquet eigenstates can
become Schrödinger-cat-like states. Anything can destroy a
Schrödinger-cat state and a new state emerges, which breaks
the time translation symmetry of the Hamiltonian because it
evolves with a period, which is an integer multiple of the
driving period [14]. Such spontaneous self-reorganization of
motion of a many-body system is dubbed a discrete time crys-
tal because discrete time translation symmetry of the time-
periodic Hamiltonian is spontaneously broken [16]. Recently
it was shown that when discrete time translation symmetry is

spontaneously broken, a quantum many-body system can also
reveal a time quasicrystal behavior [21].

Research on time crystals is developing rapidly. New theo-
retical ideas and experimental results are being published and
condensed matter physics has migrated to the time domain
[22–55] (for phase space crystals see Refs. [56–59]). Ander-
son or many-body localization and Mott-insulator phase can
be also observed in time [22–24,34,43], topological time crys-
tals [44,60], time quasicrystals [21,39,45,61,62], and exotic
condensed matterlike systems in the time domain [39] can be
realized.

In the present paper we concentrate on ultracold atoms
bouncing on an oscillating atom mirror and show that the
system is able to form spontaneously a periodic structure
in time where the ratio of a period of its motion and a
driving period is a rational number. In order to describe such
phenomenon higher-order resonant dynamics has to be ana-
lyzed. The analysis is carried out with the help of an original
approach, which is compared with the standard second-order
perturbation theory [63]. The classical analysis is the basis for
the quantum many-body approach.

The paper is organized as follows. In Sec. II we introduce a
single-particle version of the system and perform an analysis
of the second-order resonances. In Sec. III we consider the
many-body problem and identify a range of parameters for
which the system reveals spontaneous formation of a discrete
time crystal. We summarize the results in Sec. IV.

II. SINGLE-PARTICLE SYSTEM

We begin with a description of an atom bouncing on an os-
cillating atom mirror in the presence of the gravitational force
[64,65] (for stationary mirror experiments see Refs. [66–73]).
We concentrate on a classical analysis, which allows us to
obtain an effective Hamiltonian of a resonantly driven atom.
The effective Hamiltonian is then used as the basis for a
quantum description.
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A. Single-particle Hamiltonian

The Hamiltonian of an atom bouncing on an oscillating
atom mirror, in the one-dimensional model and in the grav-
itational units [43], reads

H = p2

2
+ z + F

(
z + λ

ω2
cos ωt

)
, (1)

where F (z) describes the mirror, i.e., the profile of the
reflecting potential, which oscillates harmonically with the
amplitude λ/ω2 and frequency ω. Description of the system
is more convenient if we switch from the laboratory frame to
the frame that oscillates with the mirror. Then, the mirror does
not move but the gravitational acceleration oscillates in time
[43],

H = p2

2
+ z + λz cos ωt + F (z). (2)

We assume that the mirror can be modeled by a hard wall po-
tential located at z = 0 in the oscillating frame, and therefore
we may drop the F (z) in Eq. (2) keeping in mind that motion
of an atom is restricted to z � 0.

Analysis of resonant dynamics of a particle is convenient
when we perform a canonical transformation from the Carte-
sian variables (p and z) to the so-called action angle variables
(I and θ ) of the unperturbed problem [63]. In these new
canonically conjugate variables, the unperturbed Hamiltonian
depends on the action (new momentum) only [64],

H0 = p2

2
+ z = (3π I )2/3

2
, (3)

and it is straightforward to get a solution of the unperturbed
problem. Indeed, the action is a constant of motion, I =
const., and the angle (which describes position of a particle on
a periodic trajectory) evolves linearly in time, θ (t ) = �(I )t +
θ (0) where

�(I ) = dH0(I )

dI
, (4)

is the frequency of a periodic motion of a particle. The entire
Hamiltonian (2) in the action-angle variables reads

H = H0(I ) + λ cos ωt
∑

n

hn(I )einθ , (5)

where h0(I ) = ( πI√
3

)
2/3

and hn(I ) = (−1)n+1

n2 ( 3I
π2 )

2/3
if n �= 0.

B. Analysis of second-order resonances

We will focus our analysis on resonances of (2s + 1) : 2
type where s is integer. In this case, a perfectly resonant
particle moves with a period Ts = 2s+1

2 T , where T = 2π
ω

is the
period of the mirror oscillations, and bounces off the mirror
once when it is in the uppermost position and once when it
is in the lowermost position and so on. A particle close to
the resonance will return to the vicinity of its former position
in the phase space after a period Ts, but in general there
will be a small change in that position. The motion close to
the resonance can be described with the help of an effective
Hamiltonian, which we will now derive using an original
approach.

A perfectly resonant particle hits the mirror alternately in
its extreme positions. Let us assume that for t = 0 the mirror
is in its lowest position. Using simple kinematics one can
calculate the velocity vs needed for the particle to be reflected
at t = 0 and then again at t = Ts. The mirror’s movement has
to be taken into account. The resonant value of the action can
then be calculated using Eq. (3) and it reads

Is = 1

3πω3

(
(2s + 1)π

2
+ 2λ

(2s + 1)π

)3

. (6)

Let us denote the velocity of a slightly nonresonant particle
just before the jth reflection by the mirror by

v j = vs + �v j, (7)

where vs is the velocity of a perfectly resonant particle. We
also define τ j as the amount of time elapsing between t = jTs

and the jth reflection of the nonresonant particle, which in
general is not zero. Alternatively, we can say that the quantity
τ j expresses how much a particle lags behind the resonant
trajectory for time t = jTs.

Let us calculate how �v and τ change after consecutive
bounces. A change in the absolute value of v after an elastic
reflection is equal to twice the velocity of the mirror. If the first
bounce happens when the mirror is in its lowermost position,

(�v)1 = (�v)0 + 2
λ

ω
sin ωτ0, (8)

and the time �t between two bounces is

�t = Ts + 2(�v)1, (9)

which follows from simple kinematics of a particle in the
gravitational field. Thus, the time difference between the next
reflection of the strictly resonant particle and the slightly
off-resonant one is

τ1 = τ0 + 2(�v)1. (10)

In this derivation we have neglected small changes of the
mirror’s position during the short period τ1. Similarly, the next
reflection takes place when the mirror is in its highest position
and we obtain

(�v)2 = (�v)1 − 2
λ

ω
sin ωτ1, (11)

τ2 = τ1 + 2(�v)2. (12)

The difference of the action I with respect to the resonant
value can be easily expressed in terms of �v using Eq. (3)
since at the moment of reflection (z ≈ 0) the potential energy
vanishes,

�I ≡ (I − Is) ≈
(

∂I

∂ p

)
|I=Is�v ≈

(
2s + 1

2ω

)2

π�v. (13)

In the vicinity of the resonance, the change of θ by 2π

corresponds to a time period of Ts. Thus we can express θ

at time jTs as

θ j = −2π
τ j

Ts
. (14)

Using Eq. (8) and Eqs. (10)–(14) it is possible to calculate
changes in I and θ after two bounces and then approximate
the time derivatives

θ̇ = dθ

dt
≈ θ2 − θ0

2Ts
, (15)
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˙(�I ) = dI

dt
≈ (�I )2 − (�I )0

2Ts
. (16)

When we restrict ourselves to the first nonvanishing order in
λ and �I , we get

θ̇ = − 16ω4

(2s + 1)4π2
�I + 4λω

(2s + 1)2π
sin

(
2s + 1

2
θ

)
,

(17)

˙(�I ) = − 2λω

(2s + 1)π
cos

(
2s + 1

2
θ

)
�I

+ λ2(2s + 1)

2ω2
sin[(2s + 1)θ ]. (18)

Equations (17)–(18) are actually the Hamilton’s equations
generated by the following effective Hamiltonian

Heff = −1

2

[
As�I − λ

ω
sin

(
2s + 1

2
θ

)]2

+ λ2

4ω2
cos[(2s + 1)θ ], (19)

where

As = 4ω2

(2s + 1)2π
. (20)

Note that the effective mass meff of a particle described by
the effective Hamiltonian is negative, i.e., meff = −1/A2

s . The
method we have used to derive (19) indicates that the effective
Hamiltonian describes the stroboscopic phase space of the
problem that can be obtained by plotting the position and
momentum of a particle every 2Ts. In Fig. 1(a) predictions
of Eq. (19) are compared with the results of a numerical
integration of the full equations of motion of a particle in the
case of the 3 : 2 resonance (s = 1).

There are other methods of calculating an approximate
Hamiltonian that describes motion of a particle close to a
resonance orbit. The Lie method [63] is an elegant approach
and it is described in Appendix A. Using the second order
Lie method we obtain a different formula, as compared to
Eq. (19), for the desired effective Hamiltonian,

H̃eff = −1

2

[
As�I − λ

ω
Bs(θ )

]2

+ λ2

ω2
Cs cos[(2s + 1)θ ] + Ds(λ), (21)

where As is given in (20) and

Bs(θ ) = 4(2s + 1)

π

∞∑
n=1

cos(nθ )

n[4n2 − (2s + 1)2]
, (22)

Cs =
2s∑

n=1

[n − 3(2n − 2s − 1)](2s + 1)2

n(n − 2s − 1)2(2n − 2s − 1)2π2

−
∞∑

n=1

2[(2n + 2s + 1)2 + n(n + 2s + 1)](2s + 1)2

n2(2n + 2s + 1)2(n + 2s + 1)2π2
,

(23)

FIG. 1. Particle bouncing on the mirror that oscillates with the
frequency ω = 1 and with the amplitude λ/ω2 = 0.05. A fragment
of the phase space is shown that corresponds to the vicinity of
the 3 : 2 resonance between the mirror oscillations and the particle
motion. Black curves are related to the predictions of the effective
Hamiltonian (19) [(a)] and to the predictions of the Hamiltonian
(21) [(b)]. Red dots in both panels correspond to the stroboscopic
picture of the phase space resulting from numerical integration of
the exact classical equations of motion generated by the Hamiltonian
(2). The stroboscopic picture was obtained by collecting θ (t ) and I (t )
of classical trajectories every second period of a resonant particle’s
motion, i.e., every 2Ts = 3T . The gravitational units are used [43].

Ds(λ) = − λ2

ω2

∞∑
n=1

[40n2 − 6(2s + 1)2](2s + 1)2

n2(2n − 2s + 1)2(2n + 2s + 1)2π2

+ π2(2s + 1)2

4ω2
. (24)

Comparison of predictions of the Hamiltonian (21) with nu-
merical results is presented in Fig. 1(b). One can see that the
second-order Lie method leads not only to a more complicated
formula for the effective Hamiltonian but also to less accurate
results than the Hamiltonian (19) obtained in a kinematic
consideration of a particle bouncing on the oscillating mirror.

In the following we employ quantized versions of the ef-
fective Hamiltonian (19) and (21) in order to find suitable pa-
rameters for time crystal behavior and to predict quasienergy
levels corresponding to the resonantly driven particle. The
prediction allows us to identify the desired Floquet eigenstates
in the numerical diagonalization of the full single-particle
Floquet Hamiltonian.
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C. Quantum description of second-order resonances

The Hamiltonian (2) depends explicitly on time, which
means that the energy of the system is not conserved. How-
ever, since the Hamiltonian is periodic in time, H (t + T ) =
H (t ), we can look for so-called Floquet states, which evolve
in time with the period T . Floquet states are eigenstates of the
Floquet Hamiltonian,

H = H − i∂t , (25)

and by the Floquet theorem [20] they form a complete basis
in the Hilbert space of a particle at any time. Thus, they play a
role analogous to Bloch states of a particle in a space-periodic
potential. The eigenvalues of H are called quasienergies and
they form a periodic spectrum with the period ω = 2π/T .

Let us perform canonical quantization of the effective
Hamiltonian (19) [or (21)], i.e., θ → θ̂ and �I → −i ∂

∂θ
, and

calculate its eigenstates [43]. The effective mass of a particle
in (19) is negative, thus, the highest-energy eigenstates of
(19) are localized (in a semiclassical sense) in the resonant
elliptical islands visible in Fig. 1 if the islands are sufficiently
big [64]. The size of the islands depends on λ and ω. The
parameter λ cannot be too big because then the effective
Hamiltonian is not valid. However, for small λ and sufficiently
small ω (or equivalently large Is) the islands are big enough to
host a few quantum eigenstates. Semiclassical approach (see
Appendix B) allows one to estimate the number of eigenstates
trapped inside the islands

ntrapped ≈ λ
π (2s + 1)

4
√

2ω3
≈ λ

1.4Is

(2s + 1)2
. (26)

The eigenstates are represented by superpositions of localized
wave packets that evolve along the resonant orbit when we
plot them in the laboratory frame and they are actually the
Floquet states of the system.

In the case of the 3 : 2 resonance, there are three elliptical
islands (see Fig. 1) and therefore there are three Floquet
states φi(z, t ) corresponding to three eigenstates localized at
the bottom of the elliptical islands. The corresponding three
energy levels of (19) are nearly degenerate, but there is a
tiny splitting in the energies, which is related to a tunneling
process. That is, a superposition of the three eigenstates allows
one to extract a single localized wave packet that, in the
laboratory frame, evolves along the resonant orbit and slowly
tunnels to the neighboring islands. It is possible to extract
three such localized wave packets w j (z, t ) by superposing the
Floquet states φi(z, t ),⎛

⎝w1

w2

w3

⎞
⎠ = 1√

3

⎛
⎝1 1 1

1 ei 2π
3 e−i 2π

3

1 e−i 2π
3 ei 2π

3

⎞
⎠

⎛
⎝ φ1

e−i ω
3 tφ2

ei ω
3 tφ3

⎞
⎠. (27)

The functions w j (z, t ) are periodic with the period 3T ; in
Fig. 2(a) we present one of them at different moments of time.
However, when we take one of the functions w j as an initial
state of a particle and evolve it according to the Schrödinger
equation we observe that on a long time scale a particle
tunnels to the other two wave packets, which are initially
unoccupied. It is apparent when we restrict to the Hilbert
subspace spanned by the three periodic functions w j (z, t ), i.e.,
the wave function of a particle is assumed to be ψ (z, t ) =

∑3
j=1 a j (t )w j (z, t ), then the Floquet Hamiltonian in this sub-

space takes a form of the tight-binding model [22,43]. That is,
the quasienergy of a particle in the subspace reads

E ≈ −1

2

∑
i �= j

Ji j a∗
i a j, (28)

with

Ji j = − 2

3T

∫ 3T

0
dt

∫ ∞

0
dz w∗

i (z, t ) H w j (z, t ). (29)

In (29) Ji j’s (with the same modulus J = |Ji j |) are amplitudes,
which describe a tunneling of a particle. For example, when
the initial wave function of a particle is ψ (z, 0) = w2(z, 0),
the time evolution according to the tight-binding model
(28) leads to ψ (z, t ) = ∑3

j=1 a j (t )w j (z, t ) and a2(t ) = 0 at
t ∝ 1/J , which means that the particle has tunneled out to
neighboring wave packets w1 and w3.

This approach can be generalized to any (2s + 1) : 2 res-
onance. When s → ∞, the eigenvalues of the tight-binding
model form an energy band of the width of J and the
time-periodic localized wave packets w j (z, t ) play a role of
Wannier states known in condensed matter physics [74]. The
wave packets are strictly periodic with the period (2s + 1)T
but they revisit the mirror every period (2s + 1)T/2 because
they evolve along the classical (2s + 1) : 2 resonant orbit.
Due to the fact that they bounce off the mirror alternately
when the mirror is at the uppermost and lowermost positions,
the wave packets are not perfectly periodic with the period
(2s + 1)T/2, see Fig. 2. However, the imperfection disappears
when the amplitude of the mirror oscillations is small as
compared to the amplitude of a particle motion, i.e., when
λ/(2s + 1)2 → 0. For a given s, when λ → 0 we have to en-
sure that the elliptical islands visible in Fig. 1 are sufficiently
large to host quantum states. It is not a problem because when
λ goes to zero, we can decrease the frequency ω of the mirror
oscillations so that λ/ω3 = const. and the number ntrapped of
quantum states trapped in the islands remains intact, see (26).
In such a limit the wave packets w j become periodic with the
period (2s + 1)T/2.

We have analyzed eigenstates of (19) localized at the
bottom of the 3 : 2 resonant islands. Similarly one can define
a Hilbert subspace spanned by the three excited eigenstates
in the islands. The corresponding Floquet states are super-
positions of three localized wave packets, which we denote
by w̃ j (z, t ), but the wave packets possess different shape as
compared to the eigenstates localized at the bottom of the res-
onant islands. Indeed, the excitation creates nodes in the wave
functions and consequently the density profiles of the wave
packets reveal a hole; in Fig. 2(b) we present one of them at
different moments of time. The wave packets can be chosen
as basis vectors that span a Hilbert subspace and within
this subspace quasienergy of a particle is again given by the
tight-binding model like in Eq. (28) with analogous tunneling
amplitudes, i.e., Ji j → J̃i j where w j (z, t ) → w̃ j (z, t ) in (29).
When we consider a general (2s + 1) : 2 resonance and when
s → ∞, the eigenvalues of the effective Hamiltonian (19)
corresponding to this subspace form an energy band of the
width J̃ = |J̃i j |. This band, which in the context of ultracold
atoms in an optical lattice is called p band [74], and the
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FIG. 2. Evolution of Wannier-like wave packets corresponding to the 3 : 2 classical resonance. Wave packets visit the mirror (which is
located at z = 0) every 3T/2 like a classical particle on the 3 : 2 resonant trajectory, but strictly speaking they evolve with the period 3T .
The reason for this is that the mirror is alternately at different extreme positions at the moments of the reflections. However, when the ratio
of the amplitude of the mirror oscillations and the amplitude of the motion of the wave packets tends to zero (λ → 0), the wave packets
become periodic with the period 3T/2. (a) illustrates the motion of a wave packet corresponding to the eigenstates of (19) localized at the
bottom of the resonance islands (cf. Fig. 1) for ω = 0.47168 and λ = 0.0825. (b) shows the motion of a wave packet related to the first excited
eigenstates in the resonance islands for ω = 0.4299 and λ = 0.12. The apparently black regions are in fact densely packed with interference
fringes, which result from a superposition of the incoming and reflected parts of the wave packets. The gravitational units are used [43].

previous band are separated in energy by the gap, which can
be much larger than their widths J and J̃ .

In the following we will consider a many-body system of
interacting ultracold atoms, which are bouncing resonantly on
an oscillating atom mirror. If the interaction energy per parti-
cle is much smaller than the energy gap between the bands that
we have just defined, a description of the resonantly driven
many-body system can be restricted to one of the bands and
one obtains effectively the Bose-Hubbard model [22,43], i.e.,
a many-body generalization of the tight-binding model (28).

III. MANY-BODY SYSTEM AND FRACTIONAL TIME
CRYSTAL FORMATION

We consider an N-body system that consists of interacting
ultracold atoms bouncing on an oscillating atom mirror. If the
bounces are resonant with the mirror motion, one can reduce
description of the system to one of the energy bands, which we
have identified in the previous section. In the present section
we show that the lowest-energy states within a band can reveal
spontaneous breaking of the time translation symmetry of the
Hamiltonian and start moving with a period different from
the mirror oscillation period T [14]. In the limit of small

amplitude of the mirror oscillations, the symmetry-broken
states evolve with the period (2s + 1)T/2 demonstrating that
a new class of discrete time crystals can be realized in an
experiment, i.e., time crystals evolving with rational multiples
of a driving period. While our approach is valid for any
(2s + 1) : 2 resonance, here we will focus on the 3 : 2 case.

The entire Hilbert space of the N-body system is very large.
However, if we are interested in the 3 : 2 resonant bouncing
of an atomic cloud on an oscillating mirror we may restrict
ourselves to a subspace spanned by Fock states |n1, n2, n3〉
where nj’s are numbers of atoms that occupy the Wannier-like
wave packets w j (z, t ). The latter are obtained by superposing
the eigenstates localized at the bottom of the elliptical islands,
see Sec. II C. Then, the Floquet many-body Hamiltonian can
be approximated as follows [22,43]:

Ĥ = 1

3T

∫ 3T

0
dt

∫ ∞

0
dz ψ̂†

(
H + g0

2
ψ̂†ψ̂ − i∂t

)
ψ̂

≈ −1

2

∑
i �= j

Ji j â
†
i â j + g0

2

3∑
i, j=1

Ui j â
†
i â†

j â j âi. (30)
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In (30) we have truncated the bosonic field operator ψ̂ (z, t ) ≈∑3
i=1 wi(z, t )âi where âi’s are the standard bosonic annihila-

tion operators, and

Ui j = 2

3T

∫ 3T

0
dt

∫ ∞

0
dz|wi|2|w j |2, (31)

for i �= j and similar Uii but by the factor 2 smaller. The
many-body effective Hamiltonian (30) is the Bose-Hubbard
model and it is valid provided the interaction energy per
particle is much smaller than the energy gap between the
energies of the eigenstates of (19) localized at the bottom of
the elliptical islands and the energies of excited eigenstates
inside the islands, see Sec. II C. In the following we consider
examples where the interaction energy per particle, g0NUii, is
of the order of J while the energy gap is of the order of 103J .

For weak repulsive interactions, the ground state of (30),
i.e., the lowest-energy state of the system in the subspace we
consider, is a Bose-Einstein condensate �0(z1, . . . , zN , t ) =∏N

i=1 φ1(zi, t ) where all atoms occupy the same single-particle
wave function, which is a Floquet state φ1(z, t ) that evolves
with the period T of the mirror oscillations. However, when
the interactions are attractive (g0 < 0) and sufficiently strong
it becomes energetically favorable to group all atoms in a
single localized wave packet w j and form a Bose-Einstein
condensate

∏N
i=1 w j (zi, t ) because it decreases the energy

of the system. However, such a state evolves with a period
different from T and it cannot be a Floquet many-body
state because it breaks the time translation symmetry of the
Hamiltonian. In order to reconcile the energy and symmetry
requirements, the ground state is a superposition of Bose-
Einstein condensates, �0 ∝ ∑3

j=1

∏N
i=1 w j (zi, t ). Such a state

evolves with the period T despite the fact that w j (z, t )’s are
periodic with the period 3T because after every period T ,
w j (z, t )’s exchange their role. Note that the ground state �0 is
a macroscopic superposition and it is sufficient to perform a
destructive measurement of the position of a single atom and
the state collapses to one of the Bose-Einstein condensates
[14], �0 → � = ∏N−1

i=1 w j (zi, t )—which condensate is real-
ized depends on the result of the measurement. The collapse
is an example of a spontaneous symmetry-breaking process
responsible for time crystal formation, which can happen due
to an intentional measurement or an atom loss or some other
perturbation. In the limit when N → ∞ but g0N = const.,
the symmetry-broken state �(z1, . . . , zN−1, t ) evolves with a
period different from the driving period T and it does not
decay because the macroscopic tunneling of a condensate
takes an infinite time [14].

We would like to stress that the periodically evolving
Bose-Einstein condensate that demonstrates breaking of the
time translation symmetry cannot be achieved by cooling a
thermal cloud of atoms in the presence of the time-periodic
driving. The ground state of the Bose-Hubbard model (30)
does not correspond to the ground state of the original period-
ically driven system. Actually there is no ground state of the
periodically driven system because the quasienergy spectrum
is unbounded and periodic. In order to demonstrate the time
crystal behavior, first a Bose-Einstein condensate has to be
prepared in a trap and then released from the trap and loaded
into the classical resonant orbit. Such a scenario is analyzed in

details in Ref. [43]; see also the last paragraphs of the present
section.

Our analysis indicates that the many-body system, both
when the interactions are repulsive and when they are attrac-
tive and a time crystal forms, is actually a Bose-Einstein con-
densate and the mean-field approach may be applied [75]. The
easiest way to switch to the mean-field description relies on
the substitution âi → √

Nai where ai’s are complex numbers.
Then, the energy of the system per particle reads

E = −1

2

∑
i �= j

Ji ja
∗
i a j + g0N

2

3∑
i, j=1

Ui j |ai|2|a j |2. (32)

For an appropriate choice of ω and λ, the tunneling amplitudes
can be made real Ji j = |Ji j | = J . For example, for λ = 0.0825
and ω = 0.47168 we obtain J ≈ 4.9 × 10−5. Because of the
symmetry of the Wannier-like localized wave packets w j , the
on-site interaction coefficients do not depend on the index
i and for the chosen parameters Uii = 0.12. Similarly it is
the case for the long-range interaction coefficients, which
are an order of magnitude smaller than the on-site ones,
i.e., Ui j = 0.024 for i �= j. If the interactions are repulsive
(g0 > 0), the lowest value of the energy (32) corresponds to
the state with uniform superposition of the localized wave
packets w j , i.e., a1 = a2 = a3 = 1/

√
3. Such a mean-field

solution describes a Bose-Einstein condensate and evolves
with the period of the mirror oscillations T . However, when
the interactions are attractive g0 < 0, the mean-field approach
reveals spontaneous breaking of the discrete time translation
symmetry of the many-body Hamiltonian because the lowest-
energy states are degenerate and each of them evolves with a
period different from T . If g0NUii/J � −2 the lowest-energy
solutions reduce practically to single localized wave packets
w j , see Fig. 3.

In the case when the tunneling amplitudes Ji j are real
and positive, an analytical expression for the lowest-energy
level can be found for g0 < 0. This expression is lengthy
and not crucial for our considerations, so we only present its
asymptotic forms. Let us denote the quantity 2g0N (Uii−Ui j )

J by κ .
For g0N → 0−, one of the coefficients a j of the ground-state

solution, ψ = ∑3
j=1 a jw j , takes the value

√
2
3 − 1

18

√
2
3κ and

the other two take the value −
√

1
6 − 1

18

√
2
3κ . For g0N →

−∞, the dominant coefficient is equal to 1 − 1
κ2 and the other

two 1
κ

.
Strictly speaking all the symmetry-broken solutions evolve

with the period 3T . However, ultracold atoms actually revisit
the mirror with the period 3T/2 and it is only due to the fact
that the mirror is alternately in the uppermost and lowermost
positions at the moments of the bouncings that the evolution is
not perfectly periodic with the period 3T/2. This imperfection
disappears when the ratio of the amplitude of the mirror
oscillations and the amplitude of the motion of atoms tends
to zero, i.e., λ → 0. In Fig. 2(a) we show an example where
one can see that even if the resonant value of the action Is

is not very big and consequently the amplitude of the atom
motion not very large, it is already hard to identify differences
between consecutive bounces. If we chose smaller ω it would
not be possible to distinguish differences between consecutive
bounces. Thus, in our system the time translational symmetry
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FIG. 3. Spontaneous breaking of time translation symmetry in
the system of ultracold atoms bouncing resonantly on an oscillating
atom mirror—the 3 : 2 resonant condition is fulfilled. |a|max is the
absolute value of the dominant coefficient aj in the expansion of the
state, ψ = ∑3

j=1 ajw j , which minimizes the energy (32). |a|2max = 1
3

corresponds to the symmetry preserving state, while |a|2max = 1 to
a single Wannier-like wave packet, which evolves with a period
different from the driving period. In the paper we focus on the
parameters where all tunneling amplitudes are real, Ji j = |Ji j | = J .
Then, any attractive interactions between particles break the time
translation symmetry because for g0 = 0, the ground-state energy
level of (32) is degenerate.

of the Hamiltonian is spontaneously broken and a time crystal
emerges, which evolves with the period 3T/2, which is a
rational multiple of the driving period.

The same analysis can be performed when ultracold atoms
are prepared in the Hilbert subspace related to the excited
eigenstates in the resonance islands, i.e., when we look for the
lowest-energy solution of the Bose-Hubbard model (32) with
Ji j → J̃i j in the form ψ (z, t ) = ∑3

j=1 a jw̃ j (z, t ), see Sec. II C.
For the parameters used in Fig. 2(b) and for g0NUii/J �
−2 we obtain that the lowest-energy states become nearly
single localized wave packets w̃ j , i.e., |〈w j |ψ〉|2 > 0.95.
Thus, time translation symmetry is spontaneously bro-
ken and the system evolves with the period 3T/2 if the
amplitude of the mirror oscillations is small as compared
to the amplitude of the bounces. The difference with re-
spect to the previous case is that now the density profile
of the wave packets w̃ j reveals a hole at the center, see
Fig. 2.

The experiment demonstrating the discrete time crystals
evolving with rational multiples of the driving period that we
consider here can be realized if a Bose-Einstein condensate is
prepared in a trap above the mirror at the classical turning
point. Then, the release of the atom cloud from the trap
at a proper moment of time synchronized with the mirror
oscillations allows one to load atoms to a classical resonant
orbit [43]. If the shape of the cloud is adjusted to the shape
of a localized wave packet w j at the position of the classical
turning point, it means that our system is prepared in a single

Wannier-like wave function of the Bose-Hubbard model (30)
and it will evolve with the period (2s + 1)T/2 if we are in
the time crystal regime otherwise it will decay, i.e., atoms
will tunnel to neighboring wave packets on a time scale
proportional to 1/J .

In order to demonstrate time crystal behavior where atoms
occupy an excited wave packet w̃ j , one has to prepare ini-
tially a Bose-Einstein condensate in an excited state of a
trap, i.e., in a state, which for repulsive interaction corre-
sponds to a dark soliton [75]. Next, we can apply the same
procedures of loading an atom cloud to a resonant orbit
and detection of time crystal behavior as in the previous
case.

IV. SUMMARY AND CONCLUSIONS

We have considered ultracold atoms bouncing on an oscil-
lating atom mirror and analyzed a class of second-order reso-
nances between the atom motion and the mirror oscillations.
By means of an original approach we have derived an effective
single-particle Hamiltonian, which allows us to analyze the
Floquet states that describe the quantum resonant evolution
of a single atom. Then, we have switched to the many-body
case and derived an effective Bose-Hubbard model, which
describes quantum many-body resonant dynamics.

We have shown that for sufficiently strong attractive in-
teractions between atoms a spontaneous symmetry breaking
of the time translation symmetry of the Hamiltonian occurs
and the lowest-energy states within a resonant Hilbert sub-
space of the system approach single localized wave packets,
which in the limit λ → 0 evolve periodically with a fractional
multiple of the driving period. Such a system constitutes a
different class of time crystals as compared to those already
demonstrated in the laboratory and it can be realized experi-
mentally by means of a cloud of ultracold atoms bouncing on
an oscillating atomic mirror [43,65].

We have focused on fractional time crystals where the
ratio of periods of their motion and the driving period equals
2s+1

2 with integer s. However, other rational numbers can
be realized if one considers higher-order resonances in the
system.

Note added. A recent paper presents spontaneous breaking
of continuous time translation symmetry in a system ground
state, see Ref. [76].
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APPENDIX A: LIE METHOD

Our description of the Lie method is based on Ref. [63].
Here we will only describe its application up to the second
order in a perturbation parameter λ.

The goal is to transform an original Hamiltonian H (xi, pi )
to a new one H̄ (x̄i, p̄i ), which approximates the motion in a
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resonance island. The old variables are transformed into the
new ones by an operator T :

x̄i = T xi, p̄i = T pi. (A1)

H , H̄ , and T can be expanded in power series in the perturba-
tion parameter λ:

H =
∞∑

n=0

λnHn, H̄ =
∞∑

n=0

λnH̄n, T =
∞∑

n=0

λnTn. (A2)

It turns out that Tn can be expressed by operators Ln of the
form

Ln = {wn(xi, pi ), · }, (A3)

where { · , · } is the Poisson bracket and wn are some func-
tions that need to be calculated. For n = 0, 1, 2:

T0 = 1, T1 = −L1, T2 = − 1
2 L2 + 1

2 L2
1 . (A4)

Equations for wn take the forms

∂w1

∂t
+ {w1, H0} = H̄1 − H1, (A5)

∂w2

∂t
+ {w2, H0} = 2(H̄2 − H2) − {w1, H̄1 + H1}.

(A6)

H̄1, H̄2, etc. are such that the right-hand sides of the Eqs. (A5)–
(A6) averaged over a quickly varying variable are 0, i.e.,

H̄1 = 〈H1〉, (A7)

H̄2 = 〈
H2 + 1

2 {w1, H̄1 + H1}
〉
. (A8)

The final result, i.e., the effective Hamiltonian up to the
second order in λ, reads

H̄ = H0(x̄i, p̄i, t ) + λH̄1(x̄i, p̄i, t ) + λ2H̄2(x̄i, p̄i, t ), (A9)

where x̄i, p̄i can be obtained from (A1) having calculated T =
T0 + λT1 + λ2T2 from Eq. (A4).

Before we apply the described procedure to our system, we
first perform a canonical transformation

I ′ = I, (A10)

θ ′ = θ − 2

2s + 1
ωt, (A11)

H ′(I ′, θ ′, t ) = H

(
I ′, θ ′ + 2

2s + 1
ωt, t

)
− 2

2s + 1
ωI ′.

(A12)

This transformation corresponds to passing to the frame of
reference rotating with the frequency 2

2s+1ω. Here H is given
by Eq. (5). It means that H ′

1, that is the part of the Hamiltonian
proportional to λ, is given by the series present in Eq. (5)
while H ′

2 = 0. It can be easily checked that with the new
Hamiltonian (A12), θ̇ ′ and İ ′ in the vicinity of the resonant
action, i.e., for I ′ ≈ I ′

s where

I ′
s = 1

3πω3

(
(2s + 1)π

2

)3

, (A13)

are of the order of λ. It means that the only quickly varying
variable is the time t . It is easy to show that H̄ ′

1 = 〈H ′
1〉t = 0,

so the perturbation calculations have to be carried out at least
up to the second order in λ. We assume that w1 is given by the
series

w1 = sin ωt
∑

n

cn(I ′)ein(θ ′+ 2
2s+1 ωt ). (A14)

The coefficients cn(I ′) are calculated with the help of
Eq. (A5). Using the expression for w1, we obtain the final
effective Hamiltonian H̄ ′ = H ′

0 + H̄ ′
2, which reads

H̄ ′ = Ds
λ2

ω2
− 8ω4

π2(2s + 1)4
�Ī ′2 + Cs

λ2

ω2
cos[(2s + 1)θ̄ ′],

(A15)
where

Cs = −
∞∑

n=1

2[(2n + 2s + 1)2 + n(n + 2s + 1)](2s + 1)2

n2(2n + 2s + 1)2(n + 2s + 1)2π2

+
2s∑

n=1

[n − 3(2n − 2s − 1)](2s + 1)2

n(n − 2s − 1)2(2n − 2s − 1)2π2
, (A16)

Ds = − λ2

ω2

∞∑
n=1

[40n2 − 6(2s + 1)2](2s + 1)2

n2(2n − 2s + 1)2(2n + 2s + 1)2π2

× π2(2s + 1)2

4ω2
. (A17)

The Hamiltonian (A15) is written in the transformed coordi-
nates (A1), thus to compare its predictions with the results
of the numerical simulations presented in Fig. 1 we have to
return to the laboratory frame. As we are interested in the
second-order expansion, we can approximate

θ̄ ′ ≈ θ ′ = θ − 2

2s + 1
ωt, (A18)

and

�Ī ′ ≈ �I ′ − {w1,�I ′} = �I − (2s + 1)3λ

4ω3
F (θ, t ), (A19)

where

F (θ, t ) =
∞∑

n=1

(
cos (nθ + ωt )

n2(2n + 2s + 1)
+ cos (nθ − ωt )

n2(2n − 2s − 1)

)
.

(A20)
We would like to compare trajectories generated by the
Hamiltonian (A15) with the exact stroboscopic picture of
the phase space. Plugging t = j 2π

ω
t , where j is integer, into

Eq. (A20) and combining all previous equations we obtain the
effective Hamiltonian in the form of Eq. (21).

APPENDIX B: SEMICLASSICAL ANALYSIS

Before we start discussing semiclassical analysis, let us
notice that in Eq. (19) we can use a simple canonical transfor-
mation, �Ī = �I − λ

Asω
sin ( 2s+1

2 θ ) and θ̄ = θ , to obtain the
effective Hamiltonian in the form

Heff = − 8ω4

π2(2s + 1)4
�Ī2 + λ2

4ω2
cos[(2s + 1)θ̄ ] + Ks(λ).

(B1)
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In (B1) we have added a constant term Ks(λ), which cannot
be obtained in the analysis presented in Sec. II B but can be
determined by comparison of the effective Hamiltonians (19)
and (21). This term is irrelevant for classical dynamics but it
is important when we want to compare quasi-energy levels
obtained by means of the effective Hamiltonians and in the
exact diagonalization of the Floquet Hamiltonian, Eqs. (2) and
(25).

In order to calculate quasienergy levels semiclassically
one has to take into account that our system is periodically
driven. The quantum Floquet Hamiltonian corresponds to the
classical Hamiltonian of the system when the phase space is
extended by the time variable t and the conjugate momentum
Pt , which is the energy taken with the minus sign [64],

Heff (θ̄ , �Ī, t, Pt ) = Heff (θ̄ , �Ī ) + Pt . (B2)

The energy levels can be found by using the WKB method
simultaneously for the two pairs of variables, (θ̄ , �Ī ) and
(t, Pt ) [64]. From the discussion in Sec. II B it is evident that
a particle returns to the vicinity of the initial position in the
phase space every 2Ts. Because Heff does not depend on t , the
momentum Pt is constant. Hence the quantization condition is∫ 2Ts

0
Pt dt = (2s + 1)

2π

ω
Pt = 2π j, (B3)

where j is an integer number. Applying this results in Eq. (B2)
we see that the semiclassical quasienergy spectrum is periodic

with the period ω
2s+1 . The other quantization condition reads∮

�Īdθ = 2π

(
k + 1

2

)
, (B4)

where k is integer and the integration is along a closed
trajectory in the phase space [64]. This equality allows one to
find quasienergies of the Floquet states located at the bottom
of the classical islands and the excited states in the islands.
Alternatively, one can perform canonical quantization of the
effective Hamiltonian, θ̄ → θ̂ and �Ī → �̂I = −i ∂

∂θ
, and

diagonalize Heff .
Predictions of the quantized versions of the effective

Hamiltonians (19) and (21) can be compared with the results
of the exact diagonalization of the full Floquet Hamiltonian of
the system. For example, for s = 1, λ = 0.12, and ω = 0.43,
the Hamiltonian (21) provides a value of the energy gap
between the eigenstates located at the bottom of the ellip-
tical islands and the first excited eigenstates with a relative
accuracy of 10%, while for the Hamiltonian (19) the relative
accuracy is 2%.

Equation (B4) can be used to estimate the number of states
trapped in a resonance island. This number is approximately
equal to the area of the resonance island in the phase space
divided by 2π

ntrapped ≈ λ
π (2s + 1)

4
√

2ω3
≈ λ

1.4Is

(2s + 1)2
. (B5)
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