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We derive an expression for the phase shift of an atom interferometer in a gravitational field taking into account
both the finite duration of the light pulses and the effect of a small perturbing potential added to a stronger
uniform gravitational field, extending the well-known results for rectangular pulses and at most quadratic
potentials. These refinements are necessary for a correct analysis of present-day high-resolution interferometers.
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I. INTRODUCTION

Atom interferometry rests upon the coherent manipulation
of matter waves [1]. The increasing ability to control individ-
ual quantum systems and their evolution makes it feasible to
observe quantum interference over trajectories with very large
separation in momentum [2,3] and space [4]. The resulting
high sensitivity and the exquisite control of systematic effects
are at the basis of the growing number of applications in
atom interferometry, ranging from tests of general relativity
[5,6], the measurement of fundamental constants [7,8], and
the search for new physics [9,10] to more applied contexts
like inertial navigation [11].

The improving experimental performances of atom inter-
ferometry require a refinement of the modeling for the phase
shift calculation. Two main formulations have been developed
to obtain the interferometric phase shift in the case of two-path
configurations, with three or more light pulses: a path integral
approach [12-16] and a density matrix equation in the Wigner
representation [17]. Several effects have been investigated
especially in the first formulation, such as the finite speed
of light [18] or the wave-front aberration of the light beams
[19]. The calculation has been also extended to the general
relativistic case [20,21].

We adopt here a formalism based on the Heisenberg rep-
resentation to describe the dynamics of a two-level atom in
an external potential coherently manipulated with a pulsed
laser beam [22]; this formulation provides the interferometric
phase by adopting a series of unitary transformations to write
the evolution operator in simple terms. First, we calculate
the dependence of the interferometric phase on the finite
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pulse duration, previously treated in Refs. [23-25]: the result
in Eq. (21) agrees with the existing literature and is valid
for pulses of arbitrary shape. Our approach can be extended
to calculate the cumulated high-order corrections imposed
by multipulse sequences adopted to increase the momentum
separation of the interfering trajectories [2,3] or to enhance
the instrument sensitivity at a specific frequency [26]. Sec-
ond, we analyze the effect of more than quadratic external
potentials in atom interferometers, a problem for which only
a numerical solution has been proposed to date [27]. Small
terms beyond uniform gravity are treated with perturbation
theory, and the well-known case of the quadratic potential
is used to validate our formulation. We demonstrate that the
so-called “sensitivity function” in atom interferometry [28]
gives the correct phase shift when the average over the initial
velocity distribution is considered, even if it neglects a term of
the Hamiltonian. We can also reinterpret the main phase shift
terms in the commonly adopted path integral description of
atom interferometry [13]. Evaluating the phase contribution
of more than quadratic terms of the gravitational potential is
relevant to several experiments where atoms are coherently
manipulated close to the source masses [7,10,29-31].

The article is organized as follows. We describe our method
based on the Heisenberg picture in Sec. II, where we consider
the frequency chirp required to maintain the manipulation
laser on resonance with the atoms and implement the unitary
transformation that transfers the two interferometer trajecto-
ries on the classical mean path. Section III analyzes the well-
known case of atom interferometry in a quadratic potential
and adopts another unitary transformation to separate the
effects on the interferometric output due to the free evolution
and to the pulses; the findings are compared with those
reported in the literature. In Sec. IV we consider the effect
of a more than quadratic external potential with a perturbative
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theory and generalize to arbitrary perturbative potentials the
method proposed in Ref. [32] to mitigate the contrast loss due
to the gravity gradient.

II. UNITARY TRANSFORMATION: MEAN PATH

In order to focus on the essential features of the calculation,
we adopt a simplified two-level model in one dimension.
Raman transitions between two stable levels |1) and |2) are
characterized by a time-dependent Rabi frequency €2(), after
adiabatic elimination of the excited level. The atoms are
initially prepared in the internal state |1) and their initial
wave function is assumed to be a Gaussian wave packet in
momentum. The atoms have been prepared with an initial ve-
locity selection pulse of length t;, which fixes the momentum
distribution width as ~m/(kt).

The Hamiltonian describing the effective two-level atom
interacting with the Raman laser beams is [22]

ﬁa)zl

2
H = [ZP_m +V(2)]I — hQ(t)cos ¢ (2, t)o) + o3, (1)

where fiw;; is the energy difference between the two states,
o; are the Pauli matrices (i = 1,2, 3), and [ is the identity
matrix. We consider two cases for the external potential:
V(2) = mgt —my2?/2, i.e., V(2) at its most quadratic in 2,
and V(2) = mgZ + V(2), where V(2) is sufficiently weak to be
treated as a small perturbation. We assume that the laser fields
are classical, so the noncommuting operators are only Z and
p. To alleviate the notation, henceforth we drop the hat from 2
and p and their functions.

We consider a Kasevich-Chu-type interferometer [12],
where a sequence of three pulses 7w /2-7-7/2 of temporal
lengths 7, 27, and t, respectively, are separated by two free
evolution intervals of length T — 27 so that the total duration
of the interferometric sequence is 27. We remark that dif-
ferent sequences of pulses can also be considered [16,17]. In
present-day interferometers the orders of magnitude of t and
T are 107> and 1 s, respectively. We also assume 7, ~ 107 s.

In order to keep the optical field in resonance with the
atoms during their free fall, a phase-continuous, linear fre-
quency chirp on the laser fields partially compensates the
Doppler effect. Thus, the phase ¢;, can be written as a function
of position and time as

2

¢L(z,1) = wot + % — kz. ()

Here wy is the frequency difference between the two Ra-
man beams, k is the sum of the Raman beams wave numbers
and « is the chirp rate. We make the simplifying assumption
that k is constant in time (which is the case if both Raman
beams are frequency chirped in opposite directions), and we
neglect any effect due to the finite speed of light. A recent
discussion on this last point is found in Ref. [33].

Since in the following we frequently use unitary transfor-
mations, we recall that, under a generic unitary transformation
|v') = U(t)|y), the Hamiltonian transforms as

H'(t) =U@HU (t) + ih(3,U)U " (1). (3)

The time-evolution operator over the generic time interval
[#1, ] obeys the differential equation

ihd,U(ty, 1) = H (@)U (12, 1), “)

with the boundary condition U(#;,?;) =, whose general
solution is the well-known time-ordered exponential [34]

Ultr, 1) = T exp (—%/ZH(t/)dt’) 3)

Hereafter we distinguish the unitary time evolutions U (#;, t1)
from the generic time-dependent unitary transformations de-
noted with U, (1) (n = 1,2, ...). While U(, ;) is usually cal-
culated through the Dyson series [34], we use the alternative
Magnus expansion [35,36], for which U(z,, t;) is written as
the exponential of a series:

+00
Um¢0=ew<§:MAmh0- (6)

n=1

Differently from the Dyson series, the Magnus expansion
preserves the unitarity of U(f,,t;) at any order, but, as a
drawback, it requires an operator exponentiation. A summary
on the Magnus expansion is found in Appendix A.

Under the generic time-dependent unitary transformation
described above, the evolution operator is also transformed:

U'(ty, 1) = Ut U2, 1)U (11). (7)

Following Ref. [22], the time-dependent phase ¢, (z,t) is
eliminated by means of the unitary transformation generated
by Us(t) = expliosz¢r(z, t)/2] (the index 3 indicates that the
exponent is proportional to o3). After adopting the rotating-
wave approximation [37] to cancel the terms oscillating
as exp[i2¢y (z, t)], the Hamiltonian transformed under Us ()
reads

H'(@) = UsHU] (1) - P&,

2
MO e+ (24 TE v
=— o1 — =8(t)o P ,
2 T2 o T e T
®)
where 6(¢) is defined as the Doppler-shifted detuning,
pk
5@) =AM+ —, ©))
m

with A(?) = w(t) — w21 and w(t) = wy + at. Note that the
transformed momentum is Us(7)pl U3T (t) = pl — hkos/2, so
the transformation adds 7ik/2 to, and subtracts fik/2 from,
the momentum of states |1) and |2), respectively: this is
equivalent to a translation of the classical upper and lower
trajectories on the mean path, i.e., the trajectory with average
momentum after the first beam-splitter pulse, as shown in
Fig. 1.

An additional unitary transformation will eliminate the
term proportional to I in H'(¢), which is equivalent to moving
to a reference frame in free fall. This operation is straightfor-
ward if V (z) is at its most quadratic in z; otherwise we must
apply perturbation theory and assume that the potential is the
sum of a large linear part and a small term. We consider the
two cases separately.
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FIG. 1. Classical trajectories in a Kasevich-Chu [12] interfer-
ometer. The dashed and dotted lines represent the upper and lower
interfering paths while the continuous line is the mean path, i.e., the
trajectory of a particle with initial average momentum. At¢ = T the
7 pulse exchanges the internal states and the momentum with respect
to the mean path. For a linear potential V (z) the three trajectories
converge to the same point att = 27'; this condition is in general not
valid for a nonlinear potential.

III. QUADRATIC POTENTIAL

We discuss the well-studied case of a quadratic potential to
illustrate our method and derive with it well-known results.

For the earth’s gravitational field we use the second-order
potential V(z) = mgz — myz*/2, define H, = (p*/2m +
mgz —myz?/2)I, and apply the unitary transformation
Uo(t) = exp(iH,t/h) to H I, Such transformation changes the
reference system to the freely falling one, which is commonly
adopted to describe the experiments in weightlessness [38,39].
The result is

h
H(t) = =5 [Q00 + 83, (10)

where the momentum p in §(f) is now replaced by p(¢),
i.e., the momentum time-evolved according to the Heisenberg
representation with Hamiltonian H,,:

sinh /Yt
p(t) = pcosh /yt + mz,/y sinh \/yt — u
VY
(11)

As expected, this expression coincides at t = 0 with the time-
independent p operator. Similarly, for the following we define
the time-evolved operator z(?):

sinh ,/yt n g(1 —cosh . /yt)

. (12
— (12)

z(t) = zcosh \/yt + p

In the case of the earth’s gradient (y ~ 3 x 107%s72) and
present-day interferometers (7 > 1 s), we have 27 ,/y < 1;
Egs. (11) and (12) can then be expanded in series up to the
second order in ,/yt and, keeping only terms at the most
linear in y, one obtains a simpler approximate expression for

8(t):
(i) (%)
)= A0+ — 1+ — )—(gk —a) +kyt|z—=—).
m 2 6

13)

The expression above shows that, when o = gk, the dominant
time-dependent term in §(¢) is canceled and §(¢) ~ §(0),
which is equivalent to the atoms seeing a constant laser phase
in their free fall. We remark that now [8(¢), 8(t')] = ics5(t, ")
is a c-number with ¢; 5(¢, ¢') given by

css(t, ') = kv, /y sinh Sy (t —t') >~ kv,y(t —1'), (14)

where we have defined the recoil velocity v, = hik/m.

We seek to separate the effect of the free evolution from
that of the interferometer pulses. In this respect, the Hamilto-
nian of Eq. (10) is still unsatisfactory: while the term propor-
tional to €2(¢) vanishes during the free evolution, its temporal
integral, i.e., the corresponding accumulated phase, cannot be
neglected since the pulses have an area of ~m. Therefore, we
define a third unitary transformation:

Ui(t) = exp[—i¢1(r)o1/2], 5)

o1(t) = / Q@)dt', (16)

0

which leads to the Hamiltonian
H"(t) = gﬁ(t)[sind)l (t)or —cos i (t)osl.  (17)

We see in the following that the Hamiltonian in Eq. (17)
has the required form, i.e., the sum of a dominant term,
HM(z), proportional to sin ¢; (7)o, plus a small term, Hi' (1),
proportional to cos ¢;(f)o3, which vanishes during the free
evolution for pulses with ideal area. Later we refer to them
as “ideal pulses.”

A. Approximate solution

We aim to evaluate the transition probability for an atom in
the initial internal state |1) to exit the interferometer in |2).

As a preliminary step, we neglect H{(t): as shown in
Fig. 2, for ideal pulses cos ¢;(#) = 0 during the free evo-
lution, thus H{"(¢) is a perturbation acting only during the
interferometric pulses. We evaluate the corrections to this
approximation in Sec. III B.

To evaluate the probability amplitude we need the off-
diagonal matrix element of the evolution operator from t = 0
to t = 2T, for which we revert to the Magnus expansion ear-
lier introduced. As shown in Appendix A, since in the present
approximation [H (¢), H(¢')] is a c-number, the Magnus series
terminates at M,. Defining

$2(1) = /O (") sin g (t")dt,

Un(t) = é/ dt// css(t',1")sin gy (') sin ¢y (+")dt”,
0 0
(18)
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FIG. 2. Plot of the functions sin¢;(t) (continuous line) and
cos ¢ (t) (dotted line) for ideal rectangular pulses in a Mach-Zehnder
interferometer. The two functions are formed either by sinusoidal
functions or horizontal lines. In this figure n = v /T is 0.25 for
clarity; typical experimental values for n are in the 10~* ~ 107>
range.

we have M| = —i¢,0,/2 and M, = —iy,1 (later, to simplify
the notation, we omit the temporal arguments when ¢ = 27)
and

UM(2T, 0) = exp(—iyr) exp < - i%@), (19)

where the subscript L means that we consider only H}"(z).

The evolution operator in the mean-path frame then
reads U (2T,0) = U QTUM(2T,0). Since U/(2T) =
expligo1/2], the transition probability P»; from |1) to |2) at
the output of the interferometric sequence can be evaluated
directly:

Py = | (2] exp(i101/2) exp(—iv2) exp(—ighr02/2)|1) |
= 1(1 — cos ¢; cos ¢), (20)

where the internal states |n), with n = 1 or 2, are evaluated in
the reference frame I, i.e., |n(t)) = Uy(t)Us(t)|n).

Ideally, the total pulse area ¢; in Eq. (20) is equal to 27
and the contrast cos ¢, is equal to 1. In the case of slightly
imperfect pulses ¢, = 27w + §¢;, the effect of §¢; is just a
contrast reduction of the interference fringes.

Assuming ideal, rectangular pulses, it is simple to obtain
a closed-form expression for ¢, from Egs. (9), (11), and
(12). Here we report only an approximate expression using
Eq. (13), keeping only terms up to the first order in the small
parameter n = t/T. This expression depends only on the
area, not on the actual shape, of the pulses:

27 — 4
¢2=T2<gk—a—kyzo><1— - n)

3 2 —4 7 4m —8
—kyT? v, 1 — n|—el\ —=-— nll,
T 12 3

2n

where we have used po/m = vy + v, /2 = v, for the motion
on the mean path. We notice that some numerical coefficients
in this formula do not agree with those in Eq. (40) of Ref. [25].

The explicit inclusion of z shows that for a gradiometer
where two clouds with the same initial velocity are separated
by a distance d the differential phase shift is simply

2 2 — 4
Apy = —kydT“|1— n ). (22)
b4

The formula for P>; can be easily understood by noting that
HM(z) is diagonalized by the time-independent eigenvectors

1) £i[2) I+) + 1) I+ —1-)
=L ="y =
|£) 7 = [1) 7 12) NG

(23)
with the time-dependent eigenvalues
Ei(t)zih(S(t)sinqbl(t). 24)

2

One must have, due to the interference between |+) and |—),

1 i [
Py = —‘l — exp (—/ Et(@t) — E‘(t)dt)
4 hJo

2
. (25

which is equivalent to Eq. (20) for ideal pulses. This is
analogous to observing the Rabi oscillations in the dressed
atom picture [40].

B. Effect of the full Hamiltonian

To take into account Hi'(r) we apply another unitary
transformation:

Us = expliya(1)] explig(1)02/2]. (26)

Since U,” = U}"(t, 0), this unitary transformation is just the
interaction representation with respect to H'(z).

The new Hamiltonian H'V () in the interaction representa-
tion is the transform of H{(z),

W B ¥
H" (@)= 2U23(1)[COS¢1(1)03]U,

which can be evaluated using Eq. (A5), by letting B = § and
A= ¢,/2,as
h .
HY (1)= Z[{S(t), sin ¢ (t)}o1 —{8(t), cos ¢ (1)}o3] cos gy (1),
27)

where {, } denotes the anticommutator.
Using the general identity to transform the evolution oper-
ators, we obtain

U™ 2T, 0) = U, @TU™ 2T, 0) = [UM T, 0)]'U™ 2T, 0)
(28)

or, equivalently,
u™er, 0y =uter, U™ (2T, 0). (29)

Therefore, U™ (2T, 0) is the multiplicative correction sought
to take into account H{'(¢).

Under certain conditions, U™V (2T, 0) is easily evaluated:
if the pulses are ideal, during the free evolution we have
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HY(t) = 0and 4"V = I, and thus,
uver, 0 =u™Ner, 2t - ouNT + 7, T — o)UY (z, 0).
(30)

If the pulses are short, (¢) can be considered constant during
the pulses and we find

U™ 2T, 0) = exp{—i0 QT)i[¢»(2T)] - 5}
x exp{2i0(T)i[¢»(T)] - 7}
x exp{—if(0)i[$»(0)] - ¢}, (31

where we have defined 6(t) = 18(¢)/2 and 7[¢(¢)] =
[sin ¢y (2), 0, —cos ¢p,(t)]. To alleviate the notation, we
have written the half-anticommutators as products, e.g.,
0(@)nilea ()] for {6(2), Ai[¢2(1)1}/2.

Clearly if |8(¢)| <« 1 then U™V (2T, 0) ~ I. The effect of
the correction U'V(2T,0) is to reduce the contrast in the
interference fringes and to introduce an additional phase shift
8¢, with respect to Eq. (20). Such a phase shift can be
evaluated explicitly by applying repeatedly the product rule
for the exponential of Pauli vectors (see Appendix A) only if
we assume y = 0 so all the commutators involving 6(¢) and
¢»(t) are zero. Here we report only the approximate result
when |0(¢)| < 1 by expanding P»; to leading-order terms in
0(t) and ¢, (), which is of the same order as (7). After some
algebra we obtain

8¢ = —40%(T)sin 2¢»(T) + 0(6>). (32)

This is one of the main results of our analysis, show-
ing that the interferometric phase shift carries an additional
contribution due to the evolution during the laser pulses,
actually dominated by the central 7 pulse at time t =T.
However, this contribution is easily washed out by averaging
over the velocity distribution of the sample: under typical
experimental conditions the width of the velocity distribu-
tion is inversely proportional to the duration 7, of the se-
lection pulse, and 7, 7, and T obey to T < 1, < T'; thus,
we have simultaneously 0@))* ~ 1%/ Tsz <« 1 and ¢o(T) ~
T/t > 1, with ¢o(T') varying rapidly with the initial detun-
ing §(0). As a consequence, ¢, averages to zero over the
atomic sample and the phase shift evaluated in Eq. (21) still
holds.

The effect of nonideal pulses has been considered in
Ref. [41], for rectangular pulses, using the sensitivity function
formalism, equivalent to our treatment in Sec. III A. There the
terms proportional to §(0) are retained and not assumed to
cancel after the average over the initial velocity distribution.

C. Loss of contrast

In general, in a nonlinear potential, the end points of the
upper and lower paths do not coincide. The loss of contrast
induced by this effect and the strategies to mitigate it are
discussed in Refs. [27,32] and experimentally implemented in
Refs. [42,43]. Here we derive in our formalism the conditions
to achieve high contrast in the case of a constant gradient,
in order to extend them later to an arbitrary weak perturbing
potential.

We start by evaluating the operators z(¢) and p(t) after the
unitary transformation generated by H", using Eq. (A2) in

Appendix A, at time ¢t = 27T obtaining

2(2T) = zm(2T)I + %[¢2(2T), zn(2T)]

o, [
= z,Q2T)I + sin ¢, (t) cosh \/y QT —t)dt
0
oL, T3
~ QT + 22 2’/ : (33)
and, similarly,
crzmv,yT2
pQ2T) =~ p,,2T)HI + - (34)

The eigenvectors of both operators are again |+). The separa-
tion in position and momentum is given by the difference be-
tween the eigenvalues, i.e., Az(2T) = v,y T> and Ap(2T) =
mu,yT?.

In Ref. [27] it is shown that the conditions Az(2T) =10
and Ap(2T) = 0 at the end of an interferometric sequence
ensure high contrast independently from the detection time.
More generally, high contrast is obtained when Az(2T) —
Aty Ap(2T)/m = 0, where At; is the time interval between
the last pulse and detection. By slightly changing the duration
of the second free-evolution period it is possible to fulfill only
the latter condition.

A better strategy, suggested in Ref. [32] and demonstrated
in Refs. [42,43], is to change the momentum of the Raman
beams by an amount 8k at the mw pulse. In this way v, is
changed by an amount v, = hdk/m during the second free
evolution: by choosing §v,/v, = —yT?/2, Az(2T) vanishes
while the effect of Ap(2T) is negligible. Now, however, in
Eq. (2) we have k = k(t) and, due to the time derivative
in Eq. (3), an extra term appears in the Hamiltonian, pro-
viding a momentum kick at the w pulse that exactly com-
pensates Ap(2T). The key to the possibility of compensat-
ing simultaneously Az(27) and Ap(2T) lies in the relation
mAz(2T)/ApQ2T)=T.

We show in Sec. IV C that this condition does not hold in
general if V (z) is more than quadratic.

D. Comparison with previous results

Here we show that Eq. (21) is consistent with previous
literature.

Except for a sign, sin ¢;(¢) coincides with the sensitivity
function introduced in Ref. [28] for rectangular pulses and it
is immediately applicable to more general cases, i.e., Gaussian
or imperfect pulses. Note that, even if the sensitivity function
neglects H'(¢) in Eq. (19), the phase shift averaged over
the initial atomic velocity distribution is correct as shown in
Eq. (32).

If we use the expression for §(¢) given in Eq. (9) and,
moving to the expectation values, apply the Ehrenfest’s the-
orem replacing p/m with z, we can integrate by parts the first
expression in Eq. (18) in the case of ideal rectangular pulses
of negligible duration:

033

27
- f [pr(t) + k2 (1)12(2) cos ¢y (¢) dt
0

~ —D2[¢L] — sz[Zm]’ (35)
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where ¢y (¢) is the primitive of A(¢) and, to simplify the no-
tation, we have defined D,[f] = f(2T) — 2f(T) + f(0). The
boundary term of the integration by parts vanishes, for ideal
pulses, as sin ¢ (27) = sin ¢;(0) = 0. Note that in D,[¢, ] the
terms constant and linear in ¢ disappear so —Ds[¢;] = aT?,
while, since z(#) and p(t) are linear in z and p in Egs. (11, 12),
then 2z, (1) = z,(t) + z(¢), so

wQT) +2QT)

DZ[Zm] = )

[2u(T) + 2(T)] + 2 (0),
(36)

which is the result given in Ref. [44].

Next, we compare Eq. (35) with the path integral prescrip-
tion, as described, for example, in Ref. [15], where the phase
shift is evaluated as the sum of three terms, 8¢, + 5, + 5¢;.
The “laser” term 8¢y, is given by

8¢ = ¢L(0) + kzm(0) — 2¢.(T) — k[zu(T) + z(T)]
+¢L(2T) + kz (2T), (37

where ¢ (1) = ¢1(0,¢) and ¢1(z, t) is given by Eq. (2).
The “propagation” term 8¢, is given by

3¢, = %(/ Ldt —LEdt) = %f Ldt, (38)
u cp

where the two integrals are along the upper and lower classical
paths and £ is the Lagrangian. To simplify the notation the
difference of the two integrals is denoted as a circulation
integral along the classical path “cp”, even if this can be open.

In the case of a quadratic potential it is easy to see that the
kinetic and the potential energies give equal contributions to
the integral so 8¢, = 0.

Finally the “separation” term is defined as

_ Hz21) —227)]

S¢ps 5 , (39)

where we have taken into account that the average momentum
of the two states in an output channel must be measured on
the mean path. Clearly the path integral prescription gives the
same result as Eq. (39).

Another possibility to evaluate ¢, involves integrating by
parts the term kp(¢)/m in §(¢) in the other order, replacing p
with —9d,V and obtaining, in the same hypothesis as above, the
contribution to ¢, due to V, ¢V, as

2T
oY ~ %/0 S()a.V (t)dt, (40)

where S(¢) is the primitive of sin¢;(¢) (see Fig. 3). Not-
ing that for a quadratic potential V(z + Az) —V(z — Az) =
2Azd,V(z) we can write

¢y = %f V(t)dt, (41)

where the closed path c is delimited by z,,(t) + v,S(¢)/2. We
can also express @5 as the difference of two integrals on
the upper and lower classical paths by taking z,(t) — z;(¢) =

| | |
0 T T-t T+r

time (s)

|
2T-t 2T

FIG. 3. Plot of the function S(z) = fot sin ¢ (¢t")dt’ for n = 0.25
(continuous line) and n = 0 (dotted line) for square pulses.

S(t)v, + 6z(¢) as a definition of §z(¢) to obtain

1 1 2T
by =~ 7{ V(t)dt — — / 8z(1)d.Vdt
hJep iy

_ 17{ Vs 4 PEDIECT) —z@T)]
if h
1 2T
1 / p()Su(E)dE, 42)
i Jo

where §v = §z. Note that v = 0 during the free evolution.
Here the phase shift can be interpreted as a propagation term
depending only on the potential, a separation term, and finally
a term that contains the correction for the finite duration of the
pulses.

IV. PERTURBATIVE POTENTIAL

If the potential V (z) = mgz 4+ V(2) is more than quadratic,
a solution for the Heisenberg equations for z and p is in
general not known, so it is not possible to transform to the
free fall reference frame. Except for some special choice of
V(2), in general §(¢) will not be linear in both z and p so
[H(t), H(t')] will not be a c-number, preventing an exact
calculation of /! as in Eq. (19).

Here we adopt a perturbative approach that works when
V(z) is small, in a sense that is defined precisely later. In this
way, we get an approximate result even for a purely quadratic
potential, with the advantage of a much simpler algebra.

We use Up(t) generated by

2 h2k2
H, = p——l—mgz—i—— 1, 43)
2m 8m
obtaining
h
H"(t) = —5 Q101 + 8131 + V)L, (44)

where in H'(t) now p(t) and z(¢) are given by Eqs. (11)
and (12) when letting y — 0. This corresponds to a reference
frame falling with constant acceleration g.

In the same way §(¢) is given by Eq. (13) with y =0, so
Cg,g(l‘, t,) =0.
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The evaluation of HM(¢) is straightforward since
(U1, V(2)I] = 0:

HM () = gé(r)[sin d1(1)on — cos i (H)o3] + V().  (45)

Finally we apply the last unitary transformation U, as
outlined in Sec. III B. Note that, since now y = 0 all the
commutators not involving z(t) are zero, we can write

HY (1) = Hy' (t) + Hy (0), (46)
where H}Y () is given, as in the harmonic potential case, by
Eq. (27), and

HYY (1) = V(z, 0.8/ + V™ (z, v,5/2)02,  (47)
where we have defined
V(z+ Az) £ V(z — Az)
2 9
and H\ (1) has been evaluated using Egs. (A2) and (A8).

Vi, A7) =

(48)

A. Approximate solution

Here we evaluate again the time-evolution operator
UY™ (2T, 0) neglecting the HSIV (t)in H(SIV (t). Later we take into
account the full Hamiltonian.

We define V(z) as “small” when we can take
V@), VE(')] =0 (see Appendix B) and truncate the
Magnus series for H)I,V(t) to the first order: in this case the
evolution operator is U™ (2T, 0) = exp[—ieol — i€y0,], with

1 2T
€ = —/ Vt(z, v,.5/2)dt’,
i Jo
T
= V@usar (49)
0

To evaluate the transition probability Pjp, we need to
transform back to the previous reference frame, obtaining for
the evolution operator

UM(2T, 0) = exp(—ieo) exp <—i@@>, (50)
where we have used the fact that, for ideal pulses, ¢, com-
mutes with any analytic function of z since [z(?), $»(2T)] =
iv,S(2T) = 0, and that, since V is small, we can let [€q, €3] =
0 and write /™27, 0) = Y"(2T, 0).

The term containing € is an irrelevant phase factor, while
2e, is the additive phase shift to ¢, due to the perturbing
potential V. We can write €, using the Taylor series for V(z,,),
i.e., on the mean path,

2 — vt = 2n+1 2n+1
2¢y = — -—r ST V(gde. (51
o hg(4n+2)”/o OV (Edr. (1)

Note that the first term of the series above extends to ) the
results obtained for a quadratic potential while higher-order
terms are present only when BSV # 0.

B. Comparison with previous results

The problem of nonquadratic potentials has been discussed
in Ref. [27] locally solving for a quadratic potential but

assuming time-varying values for g and y along the atomic
trajectories.

The density matrix approach in the Wigner representation
has been adopted in various papers: by Dubetsky on the mean
path [17,45] and by others considering the evolution along the
upper and lower paths [27,46]. The equivalence with the path
integral approach has already been considered in Ref. [47]
so we postpone a brief discussion on this subject until
Appendix C.

C. Loss of contrast

To evaluate z(2T) after the unitary transformation
U™ 2T, 0), we note that H (SIV does not contribute att = 2T for
ideal pulses and the part proportional to / in H{,V has no effect
on Az(2T); we need then to evaluate only the commutator
[€2, z(¢)] with €, from Eq. (49).

From [z(t), z(¢')] = ih(t' —t)/m, Eq. (A8) leads to

v, (2T
Az(2T) = Zr QT — t)S(t)8Z2th, (52)
0

which generalizes the expression for Az(27') obtained in the
quadratic case.

For p(t), with the
[z(2), p(t')] = ik, we obtain

help of [p(t), p(t')] =0 and

2T
Ap2T) = v, f S(t)d2Vdt. (53)
0

In general it is not possible to have mAz(2T)/Ap(2T) =~
T if 813V # 0, so the scheme suggested in Ref. [32] is not
extensible to arbitrary potentials but compensates only the av-
erage gradient over the classical trajectory. A straightforward
modification, however, would be to use the change of k in the
7 pulse to cancel Az(27') and partially erase Ap(27') and then
change again k at the last 7 /2 pulse to complete the Ap(2T)
compensation.

D. Effect of the full Hamiltonian

We can evaluate the effect of H," () by applying a unitary
transformation that removes Hll,v(t) from Eq. (46) and, as
in the quadratic case, obtain a resulting Hamiltonian H"
which is nonzero only during the pulses. The evaluation
of HY is straightforward if we make the approximation
[VE(@), 8(t)] = 0, justified in Appendix B. Analogously to
the quadratic case, we obtain the new Hamiltonian

h -
HY (1) = 50(t) cos g1 (1)Alda(t) + 2€2()] - 0, (54)

which is the same as the one in Eq. (27) after the substitution
G2(t) = ¢a(t) + 2€,(t). Again we have assumed that all the
operators are commuting so also Egs. (31) and (32) and the
relative considerations about sample averaging apply.

V. CONCLUSIONS

In a simple one-dimensional model we have addressed the
effects of the finite duration of the interferometric pulses and
of the presence of more than quadratic perturbative potentials
in the calculation of the phase shift for atomic interferometers.
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In the case of quadratic potentials, we have recovered the
already known interferometric phase shift, Eq. (21), for short
pulses, i.e., to first order in /T .

We have also shown that the finite duration of the pulses
is accurately described by the sensitivity function method
[28]: the additional phase shift generated by the part of the
Hamiltonian it neglects, described by Eq. (32), vanishes when
averaged over a typical initial velocity distribution of the
atomic sample. Further, to take into account the finite pulse
duration in the path integral formalism, we have derived
Eq. (42).

We have also shown how our formalism naturally describes
the final separation of the interferometer paths caused by the
potential curvature and causing a contrast reduction in the
interferometric fringes.

Finally, to lift the restriction of quadratic potentials we
have evaluated perturbatively the phase shift due to an ar-
bitrary weak potential, given by Eq. (51), that generalizes a
similar result derived for quadratic potentials [13].
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APPENDIX A: USEFUL FORMULAS

Here we report for sake of completeness some useful
formulas used in the article.
We start with the first three terms of the Magnus expansion:

-
Mi(,0) = —i/ Hidn,

My(,0) = — dtlf [H, Hy]dt,, (AD)

/ i / it / [(Hy. [Hy, Hll

+[ , [Hy, Hi1ld1t3,

where H, is a shortened notation for H(f,). A recursion
formula for generating successive terms is known [36].
Another identity that we often used is

2h2

M;(,0) =

+o0 5

exp(A)B exp(—aA) = Z ¢ -ad}B
n=| O

(A2)

where o is a complex number, A and B are operators and ad} B
is a nested commutator defined by recursion as

ad}B = [A, ad’ ' B],
ad\B = B.

n>0,
(A3)

When A and B are Pauli matrices o; and o;, respectively,
with i # j and o = if, it is easy to show that Eq. (A2)
becomes

exp(ifo;)o; exp(—ifo;) = 0; cos 20 — €0, sin260. (A4)

If A and B are scalar operators for which [A, [A, B]] =0,
Eq. (A4) can be generalized to

exp(iAo;)Bo exp(—iAo;)

{B, cos2A} {B, sin2A}
= 2 gj — 2 €ijkOk- (A5)
We also remind that
exp(in-o) =1Icosn+ic -fiisinn, (A6)

where 7 is a vector, n its modulus, and 7 = n/n the related
unit vector. Note that, if 72 is a vector of operators, Eq. (A6)
holds only if [n;, n;] = 0.
The product of two of these matrices is
exp(in - o) exp(im - 0) = I[cosncosm — i - i sin n sin m)
+ i[7i sin n cos m + i cos n sin m
(AT)

— 7 x msinnsinm] - 7,

so it is of the same form as the two factors.
Another useful expression, if [A, B] = cap, where cap is a
c-number, and f and g are analytic functions, is [48]

(= CAB)

[f(A), &B)] = — Z

n=1

94/ (A)0p8(B). (A8)

APPENDIX B: PERTURBING POTENTIAL
APPROXIMATIONS

Here we discuss when the approximations involving
the perturbing potential, namely, [V*(t), V*(')] ~ 0 and
[VE(@), 8(t')] ~ 0, assumed in Sec. IV, are justified. We need
to show that the commutators above are negligible when
compared with their anticommutators.

We start evaluating the following
when y = 0:

commutators

h
[2(1), z(t)] = Z(I —1),

[z(t), ()] = iv,. (BI)

Note that the first commutator above defines a length scale
20 ~ ~/hT /m which, for heavy atoms, like Rb or Cs, and T ~
1 s is in the 25 um range.

Both V' and V™~ can be approximated with expressions
evaluated on the mean path, V(z,,) and Sv,9,V(z,,)/2, respec-
tively. We can then apply Eqgs. (A8) and (B1). Since zy is much
smaller than the scale over which V is expected to vary signif-
icantly, we can keep only the first nonzero term in the sum in
Eq. (A8), and note that, for example, [Vt (¢), V' (¢')] is of the
order of §VT(t)§V*(¢') with 8V being the increment of V
over a distance of the order of zy. Almost everywhere on the
mean path then VT (1)VT(¢') > §V(¢)8V(¢') holds. A similar
argument can be applied to the other three combinations of
signs in [VE(1), VE(@)].

For [V*(t), 8(t')], choosing A =z(t) and B = §(¢') in
Eq. (A8), we need to show that |[VE(z), 8(t")] > 3. VE(t)v,|.
Here we note that, in case of a sample of atoms that have
been prepared with a velocity selection pulse of length 7y, as
discussed in Sec. III B, on the average |5(¢)| ~ |§(0)] ~ 1/z;,
so we need again to compare V*(¢) with §V*(¢) where the
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increment is on a distance of the order v, t,. For our typical
numbers such an increment is of the order of 1 um and, as
above, the considerations on the smoothness of V* over a
short distance can be applied.

APPENDIX C: EQUIVALENCE WITH THE WIGNER
FUNCTION FORMALISM

A review on the Wigner functions and quantum mechanics
in phase space can be found in Ref. [49], and its specific
application in atom interferometry can be found in Ref. [46].
Here we briefly summarize and compare previous results to
ours. To avoid confusion, we restore hats to distinguish the
operators from the variables of the Wigner function.

We point out that a convenient starting point for evaluating
the Wigner function is not the initial Hamiltonian in Eq. (1)
but rather Eq. (17), with the time-dependent operators Z =
2(t) and P = p(t) — mA(r)/k, with 2(¢) and p(r) defined in
Eqgs. (12) and (11), respectively. The two operators obey the
canonical commutation relation [Z , ﬁ] = {5, so we can use the
Weyl transforms of Z and P as coordinates z and p in phase
space. Moreover, since the transformation Z — 7 and p— P
is linear, it is not only mapping the Heisenberg equation onto
the Moyal equation but also acts as a coordinate change in
phase space [50].

Here we show that neglecting I-?;H in Eq. (17) leads readily
to Egs. (25) and (49) also in phase space.

To simplify the notation we introduce the spinorial Wigner
functions associated with a generic initial density matrix,
p(0):

1 —ipu h
Wik(z, p;0) = e \ET

where the indices j and k refer to the spinorial component in
the basis |£) defined in Eq. (23).

In our case, at r = 0 the spatial wave function is v (z) and
the spinorial state is [1) = (|4+) 4+ |—))/ /2, thus the density
matrix p(0) = [¢;1)(¥; 1] corresponds to a 2 x 2 Wigner

pjk(0)

AW
—u)du,
“Ta

(ChH

function
Wik(z, p;0) = 3 f(z. p), (C2)
with
1 . h h
fp)= —/e "’”w*<z— —u>w<z+ u)du (C3)
21 2

Note that f(z, p) is real.
The temporal evolution of W obeys the Moyal equation
[49]

hjj*ij _ij*hkk

oWy = p (Cc4)

where the x-product is defined as

<~ =

a*b:aexp[%(azap—%_p_a)z)]b, (C5)
with the arrows indicating if the derivative operators act on a
or b, and h(t) = p(t)v, sin ¢ (t)o3/2 is the Weyl transform of
the Hamiltonian H = Pv, sin ¢1(t)o3/2 in the |*) basis.
When £ is at its most quadratic in z and p—actually just
proportional to p in our case—Eq. (C4) involving the diagonal
elements of W simplifies to the Liouville equation. The solu-
tions for W;; are then Wj;(z, p,t) = f(z — 2}, p — p°), where
Z5(1) and p°(¢) indicate the classical trajectories, namely,

. S(t)
X = i"T,

. . A0
P = p0) =" k( ), (C6)

For the off-diagonal elements we have
Wik(z, p;1) = expliox(t) — ice;j(O)f(z, p),  (CT)
with
1 t
ast) = ¢ [ Ewar. (8)
nJo

and E* from Eq. (24).
With W (z, p; 2T ) we can calculate the transition probabil-

ity
Py = Tr[p(2T)[2)(2]]

U ) Y P
e

1
=5 [ = Rew iz

_ 11— cosonc(ZT)’ (C9)

with Ao = a4 — «_, which is the same as Eq. (25).

When the weak potential ) is added to A(¢) in Eq. (45), the
correction AM(t) in Eq. (C8) is obtained by applying per-
turbation theory at the first order as outlined in Refs. [49,51]:

AVa(t) = % / V@IW., (z, p,t) =W _(z, p,t)ldzdp

V&)
Y
with V™ (z, Az) defined as in Eq. (48), where we assumed that
W;; is localized around z and acts as §(z — zC) in the integral.
The result is a correctlon term to P»; which is the same as 2¢,
in Eq. (49).
The corrections to the classical trajectories z () due to V
can instead be neglected at the first order in VV according to the
general rules of variational calculus, as discussed in Ref. [52].
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