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Quantum dynamics of disordered spin chains with power-law interactions
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We use extensive numerical simulations based on matrix product state methods to study the quantum
dynamics of spin chains with strong on-site disorder and power-law decaying (1/rα) interactions. We focus
on two spin-1/2 Hamiltonians featuring power-law interactions, Heisenberg and XY , and characterize their
corresponding long-time dynamics using three distinct diagnostics: decay of a staggered magnetization pattern
I (t ), growth of entanglement entropy S(t ), and growth of quantum Fisher information FQ(t ). For sufficiently
rapidly decaying interactions α > αc we find a many-body localized phase, in which I (t ) saturates to a nonzero
value, entanglement entropy grows as S(t ) ∝ t1/α , and Fisher information grows logarithmically. Importantly,
entanglement entropy and Fisher information do not scale the same way (unlike short-range interacting models).
The critical power αc is smaller for the XY model than for the Heisenberg model.
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I. INTRODUCTION

The quantum dynamics of disordered spin chains, deter-
mined by the competition between the many-body interactions
and the quench disorder, has received a great deal of attention
in recent years, with the advent of many-body localization
(MBL) (see Ref. [1] and references contained therein). In the
absence of integrability, the unitary evolution of these isolated
quantum many-body systems may result in thermalization, or
MBL. In the former, energy transport allows the different parts
of the system to exchange energy and relax to a thermal state,
while in the latter such exchange of energy is not possible
and the system does not thermalize. While most works to date
have focused on systems with interactions that are short range
in real space, long-range interacting systems are relatively
poorly understood. Understanding long-range interacting sys-
tems is important, however, both conceptually and for experi-
mental reasons. For example, experimental systems in atomic,
molecular, and optical (AMO) physics, such as lattice gases
of polar molecules [2] or magnetic atoms [3], and arrays of
trapped ions crystals [4] or Rydberg atoms [5], provide natural
realizations of systems with dipolar and tunable long-range
interactions, respectively.

It is generally believed that a localized phase can be
obtained in spin chains (at least up to rare regions [6]) as
long as the interaction falls off faster than a certain critical
power law [7–9] (and sometimes even for interactions more
long range than this critical power law [10,11]). However, the
characterization of the MBL phase in long-range interacting
systems remains incomplete. Moreover, existing numerical
explorations of such problems have mainly employed exact
diagonalization (ED), which is limited by finite size effects
that can be fairly severe for long-range interacting systems.

*Present address: The Johns Hopkins University Applied Physics
Laboratory, Laurel, Maryland 20723, USA.

In this paper we explore the dynamics of strongly disor-
dered quantum spin chains with long-range interactions using
numerical algorithms based on matrix product states (MPSs),
which allow us to probe significantly larger system sizes
than ED. We have used the protocol described in Ref. [12]
to simulate the time evolution with power-law interactions
efficiently. We consider two distinct models–the Heisenberg
and XY spin chains—with interactions that decay as power
laws with tunable power α. Our simulations are limited to ex-
perimentally relevant time scales, and system sizes of L � 40,
so they cannot address rare region issues such as those raised
in Ref. [6]. However, they can yield insight into the dynamics
of systems of relevance for AMO experiments, and also into
the broader problem of characterizing the dynamics of spin
chains with long- range interactions. We focus in particular
on characterization in terms of three distinct quantities: the
decay of a staggered magnetization pattern I (t ), the growth
of entanglement entropy S(t ), and the growth of the quantum
Fisher information FQ(t ). We note in passing that these same
diagnostics were explored for nearest-neighbor interacting
models in Ref. [13].

II. LOCALIZATION WITH POWER-LAW INTERACTIONS

We consider a general one-dimensional (d = 1) chain of
L spin-1/2 particles interacting via two-body interactions and
described by the Hamiltonian

Ĥ =
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where σ
η

i , η = {x, y, z} are the Pauli matrices. In this system
the total axial magnetization Ŝz = ∑L

i=1 σ̂ z
i is a conserved
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FIG. 1. Dynamics of (a) imbalance I (t ), (b) von Neumann entropy S(t ), and (c) the QFI FQ(t ) for α = β, Jz = J⊥, L = 30, and h/J⊥ = 30
as a function of α. The decay of I (t ) for α < 2, summarized in the right-hand side panel of (a) via the quantity cα defined in text, clearly
indicates a transition from the MBL phase to a thermal phase. This is mirrored in the fast growth of S(t ) shown in (b).

quantity. Here rij is the separation between the spins at sites i

and j and εi are random numbers from a uniform distribution
of [−h, h] characterizing the on-site disorder. Finally J⊥ and
Jz characterize the exchange and direct interactions, respec-
tively. We focus in this work on two models: the Heisenberg
model Jz = J⊥ and α = β, and the XY model Jz = 0. In this
work we set h̄ = 1.

These models have previously been explored by means
of scaling arguments [7–9], and it has been proposed that
in d = 1 (1) the Heisenberg model supports an MBL phase
for α > αc = 2 and (2) the XY model supports an MBL
phase for α > αc = 3/2. The former hypothesis appears to be
consistent with ED studies [7] (although these are limited to
system sizes L � 14) while the latter has yet to face stringent
numerical tests.

Here we explore the spin dynamics via extensive numerical
simulations using MPS-based methods for system sizes L =
20, 30, 40. We choose a Néel-state initial condition, |�(0)〉 =
| ↑↓↑↓ · · · 〉, which has been realized with excellent fidelity in
a variety of AMO platforms, such as fermionic atoms [14] and
trapped ions [15]. We characterize the dynamics using three
observables: the magnetization imbalance I (t ), the quantum
Fisher information (QFI) FQ(t ), and the half-system von
Neumann entropy S(t ). The imbalance is defined as I (t ) =∑

i (−1)i+1〈σ̂ z
i (t )〉 and for our initial state I (0)/L = 1. The

utility of I (t ) as an observable for the MBL transition is easy
to understand. In the thermal phase, regardless of the initial
state |ψ0〉, the system will eventually relax to a thermal state,
which is completely specified by a number of global con-
served quantities, such as energy or magnetization. As such, in
this phase the system has no memory of its initial conditions.
In contrast, in the MBL phase, the absence of transport means
that the system will retain the features of the state it starts in.
The thermal and MBL phases can also be distinguished by
how quantum correlations develop in each phase. In order to
probe this one can use the von Neumann entropy, S(t ), and
the QFI, FQ(t ). In the case of nearest-neighbor spin chains,
the detailed study presented in Ref. [15] demonstrated that
in the MBL phase both FQ(t ) and S(t ) grow logarithmically,
while in the thermal phase, in the absence of rare regions, one
expects the ballistic growth of S(t ) [16]. A similar behavior
for the QFI is expected; however, this observable has not been
studied to the same extent. We quantify the entanglement
using the von Neumann entropy, which is defined as S(t ) =
−Tr(ρ̂ ln ρ̂), where ρ̂ is the reduced density matrix obtained
by tracing out half the system. The QFI needs to be associated
to a specific operator Ô, and for pure states it can be computed

as FQ ≡ 4(〈Ô(t )2〉 − 〈Ô(t )〉2
) = 4�Ô(t ). Given our partic-

ular choice of initial conditions, we set Ô to be the imbalance
operator Ô = Î = 1/L

∑
i (−1)i+1σ̂ z

i , which relates the QFI
to the variance of the Hamming distance, which is a quantifier
of localization [15]. Furthermore, we note that the QFI is a
witness of multipartite entanglement if FQ/L > 1 [17,18].

III. RESULTS

Consider the Heisenberg model with power-law interac-
tions, characterized by α = β. In Fig. 1 we show the observ-
able dynamics at h/J = 30 for a range of α from 0.75 to 4,
averaged over 100 disorder realizations.

This places us in the strong disorder limit, and for a system
supporting localization, it corresponds to a point deep in the
localized phase. This particular parameter choice allows us
to simulate systems of up to L = 40, up to times tJ = 30,
and with long-range interactions (α < d) [19]. This is im-
portant, since MBL and thermal phases can be distinguished
only at long times, and for large enough systems. For in-
stance, the behavior of I (t ) at short times is similar in both
thermal and MBL phases and contains oscillations which
we associate with the near-resonant oscillation in the chain.
Furthermore, since the simulations are run with hard-wall
boundaries the system should be large enough to avoid the
boundary effects, while allowing for long-time dynamics to
manifest.

The long-time dynamics of I (t ) displays an absence of
transport for α � 2, as evidenced by the saturation of I (t ) to
a finite value. This indicates (for the system sizes and time
scales considered) that the system has entered the localized
phase. We can quantify this saturation by fitting the tail of
the data between tJ⊥ ∼ 1 to tJ⊥ ∼ 20 to the form I (t ) =
cα log(t ) + d0, where d0 is an arbitrary constant. An example
of the fit is shown in the left-hand panel of Fig. 1(a) using
a thick dashed line. The slope cα is nonzero in the thermal
phase and is consistent with zero in the localized phase,
as summarized in the right-hand panel of Fig. 1(a). As the
interaction range is increased beyond a critical value αc, the
system enters the thermal phase, indicated (Fig. 1) using
dark and light blue lines. Here we observe faster growth of
half-chain entanglement entropy, S(t ), as well as persistent
decay of I (t ) over four decades of time. A further increase in
interaction range brings us deep into the thermal phase (light
and dark red lines), where the rapid growth of S(t ) and a decay
of I (t ) and nonzero cα are clearly observed. These results are
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FIG. 2. Observable dynamics in the MBL phase for Heisenberg and XY models. (a) For the Heisenberg model (Jz = J⊥, and α = β)
we set L = 40 and h/J⊥ = 12. (b) For the XY model (Jz = 0) we have used L = 30 and h/J⊥ = 8. The dashed lines in the middle panel
correspond to the fits to the functional form S(t ) ∝ tbd/α . The inset in the right-most panels is a zoom on the α = 2 displaying logarithmic
growth. The dashed line is a fit to the data.

consistent with α = 2 being the critical interaction range for
Heisenberg spin chains [7].

While the large disorder facilitated our numerical simula-
tions of long-range interactions over longer times and system
sizes larger than those accessible via exact diagonalization,
the slow growth of entanglement in this regime makes it hard
to clearly identify the functional form of S(t ). In Fig. 2(a) we
study the dynamics of I (t ), S(t ), and FQ(t ) in the localized
regime but at a lower disorder strength h/J = 12. The results,
particularly the behavior of the imbalance, confirm that the
system is indeed in the localized phase where I (t ) saturates
to a finite value, with no significant finite-size effects. These
results were obtained for system size L = 40 and 100 disorder
realizations. We find no significant finite-size effects in the
imbalance. This is illustrated in Fig. 3(a) where we compare
the imbalance for two different systems sizes.

The next two panels of Fig. 2(a) show the dynamics of
the entanglement entropy and the quantum Fisher information
for L = 40. Previous studies of models with nearest-neighbor
interactions have identified FQ(t ) as an experimentally ac-
cessible observable for identifying the MBL transition [15].
In the presence of short-range interactions both observables
grow as ∝ log(t ). However, we find that the functional form
of these two observables deviates sharply in the presence of
power-law interactions. In the localized phase FQ(t ) ∝ log(t )
(see inset) while the entanglement entropy S(t ) ∝ tbd/α , as
shown using the dashed lines, with b ≈ 0.8. We note that
theoretical studies [20] predict S(t ) to grow with the same
functional form but with b = 1. The deviation of our results
from the theoretical predictions may be attributed to the
insufficient size of the system as compared to the strength of
the disorder, enhancing the finite-size effects in our results.
This is evidenced by Fig. 3(b), which compares the dynamical
behavior of S(t ) for L = 30 and L = 40. While the power-law

growth is observed for both system sizes, the entropy grows at
a faster rate for the larger system size.

Thus far we have shown that three very different observ-
ables, namely, I (t ), FQ(t ), and S(t ), can be used to identify
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FIG. 3. Finite-size effects in imbalance, I (t ), and entanglement
entropy, S(t ), at h/J⊥ = 12 and α = 2.5 for the Heisenberg model.
While I (t ) does not display finite-size effects, the rate of growth of
S(t ) increases with system size.
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FIG. 4. Dynamics of (a) imbalance I (t ), (b) von Neumann entropy S(t ), and (c) QFI FQ(t ), for L = 30, h/J⊥ = 30, and Jz = 0, as a
function of α. The decay of I (t ) for α < 1, summarized in the right-hand panel of (a) via the quantity cα defined in text, clearly indicates a
transition from the MBL phase to a thermal phase. This is mirrored in the fast growth of S(t ) shown in (b).

the localized phase. However, these three observables have
different dynamical behaviors and their utility varies. Funda-
mentally these observables differ by their support: I (t ) is a
single-body observable, while for a pure state FQ(t ) is given
by the variance of a particular operator and thus contains only
two point correlations, while S(t ) has contribution from up to
L/2 point correlations. As a result the transition is signaled
differently in each observable: since S(t ) contains higher-
order correlations spanning the full system, its behavior is
modified by the power-law form of interactions, while the
behavior of FQ(t ) and I (t ) is virtually unchanged compared
to what is observed for nearest-neighbor interactions. Despite
this shortcoming, the utility of FQ(t ) and I (t ) stems from their
accessibility in experimental systems.

So far we have considered systems described by Hamil-
tonian (1) and α = β. However, Ref. [8] argued that the
robustness of the MBL phase to power-law interactions differs
considerably for the XY model. Specifically, it predicted that
the system will support an MBL phase only for α � αc =
3d/2. We show the dynamics of I (t ) and S(t ) for L = 30 and
h/J = 30, in Figs. 4(a) and 4(b), respectively.

In contrast to the Heisenberg model with similar parame-
ters (see Fig. 1), the localized phase persists at α < 2. In fact,
our simulations show that αc ≈ 1, below which the imbalance
shows significant decay, accompanied by a rapid growth of the
entanglement entropy S(t ).

We note that there is some tension between our numerical
results, which observe αc ≈ 1 for the XY model, and the the-
oretical prediction of αc,th = 3d/2 with d = 1. This may be
due to finite-size effects and/or limited simulation times. We
note that the constraint αc,th = 3d/2 is only strictly applicable
in the thermodynamic limit where L → ∞. For a finite-size
system one can derive additional requirements tabulated in
Ref. [8]. In particular, the arguments advanced therein require

a minimum system size of Lc = (h/J )
2d (d+αc )
α(3d−2αc ) , equivalent to

L ∼ 106–1013 for α = 1–1.25, which is unaccessible both
numerically and experimentally (at least in AMO systems).

Finally we repeat the analysis done for the Heisenberg
model in Fig. 2(a), now for the XY Hamiltonian. Since the
MBL phase in the XY Hamiltonian is more robust we are able
to simulate the dynamics at lower disorder strengths easily. In
Fig. 2(b) we plot the three observables S(t ), I (t ), and FQ(t )
at h/J = 8 for L = 30 for α = 2, 2.5, and 3. As expected
for the MBL phase, the imbalance shows no decay. Similar
to the Heisenberg case, we find that the entanglement entropy
grows as a power law with time, S(t ) ∝ tbd/α , with b = 0.8

providing the best fit to all three curves, while the Fisher
information shows slow logarithmic growth, indistinguishable
from the MBL phase manifesting in systems with nearest-
neighbor interactions.

IV. CONCLUSIONS

While disordered systems with nearest-neighbor interac-
tions are known to feature a many-body localized phase,
robust numerical evidence for such a phase in the presence
of long-range interactions is scarce. In this paper we have
used large-scale numerical simulations using MPS meth-
ods to study the effect of disorder on localization in two
paradigmatic models, namely, the Heisenberg and XY spin
chains with power-law interactions ∝ 1/rα . Our simulations
allow us to study the interplay of disorder and power-law
interactions in system sizes far beyond what is accessible
using exact diagonalization. We have demonstrated that for
numerically accessible system sizes, and for times accessible
experimentally, both models at large enough disorder strength
display a transition from a thermal phase to a localized phase
at α = αc. We find that for the Heisenberg model αc ∼ 2,
while in the XY model we find αc ∼ 1. While our results
for the Heisenberg model are in accordance with analytical
expectations [7], as is our result that MBL is more stable in
the XY model than in the Heisenberg, our observed value of
αc ≈ 1 for the XY model is in tension with the analytically
predicted [8] value αc ≈ 1.5. It should be noted, however,
that the analytical arguments in Ref. [8] are expected to be
accurate only for system sizes larger than we can access
numerically (or that can be accessed experimentally in AMO
setups), and thus our observed value of α ≈ 1 may in fact be
the experimentally relevant critical value, at least for AMO
experiments.

Our numerics also yield insight into the characterization of
MBL with long-range interactions. While the magnetization
imbalance saturates to a nonzero constant in the MBL phase
(much as it does for short-range interacting models), and
while the quantum Fisher information grows logarithmically
in the MBL phase (again, much as in short-range interact-
ing models), the half-chain entanglement entropy grows as
a power-law function of time. This is in sharp contrast to
short-range interacting models, where entanglement entropy
also grows as a logarithmic function of time, and suggests that
quantum Fisher information underestimates entanglement for
long-range interactions.
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We note also that our simulations are performed on “typ-
ical” samples and are silent as to potential rare region ob-
structions to localization [6]. We are also limited to one
spatial dimension and to relatively short time scales. An
investigation of the effects of rare regions and/or spatial
dimensionality, perhaps using the semiclassical methods out-
lined in Ref. [13], would be an interesting topic for future
work. Even our present results, however, can serve as valu-
able guides for experimental systems using polar molecules,
magnetic atoms, Rydberg atoms, or trapped ions, enabling a
thorough study of the effects of long-range interactions on
localization.
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[16] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. X 5, 041047
(2015).

[17] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer,
W. Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Phys.
Rev. A 85, 022321 (2012).

[18] G. Tóth, Phys. Rev. A 85, 022322 (2012).
[19] Typically, each disorder realization takes between ∼24 and 150

CPU hours to run on two cores of the terra cluster at JILA. The
run time is determined by the generated entanglement and, thus,
mainly by the strength of the disorder h and the range of the
interactions α.

[20] M. Pino, Phys. Rev. B 90, 174204 (2014).

033610-5

https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1126/science.aam6299
https://doi.org/10.1126/science.aam6299
https://doi.org/10.1126/science.aam6299
https://doi.org/10.1126/science.aam6299
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/nphys2252
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.91.094202
https://doi.org/10.1103/PhysRevB.91.094202
https://doi.org/10.1103/PhysRevB.91.094202
https://doi.org/10.1103/PhysRevB.91.094202
https://doi.org/10.1103/PhysRevB.92.104428
https://doi.org/10.1103/PhysRevB.92.104428
https://doi.org/10.1103/PhysRevB.92.104428
https://doi.org/10.1103/PhysRevB.92.104428
https://doi.org/10.1103/PhysRevLett.113.243002
https://doi.org/10.1103/PhysRevLett.113.243002
https://doi.org/10.1103/PhysRevLett.113.243002
https://doi.org/10.1103/PhysRevLett.113.243002
https://doi.org/10.1103/PhysRevX.7.041021
https://doi.org/10.1103/PhysRevX.7.041021
https://doi.org/10.1103/PhysRevX.7.041021
https://doi.org/10.1103/PhysRevX.7.041021
https://doi.org/10.1103/PhysRevB.98.134301
https://doi.org/10.1103/PhysRevB.98.134301
https://doi.org/10.1103/PhysRevB.98.134301
https://doi.org/10.1103/PhysRevB.98.134301
https://doi.org/10.1103/PhysRevB.91.165112
https://doi.org/10.1103/PhysRevB.91.165112
https://doi.org/10.1103/PhysRevB.91.165112
https://doi.org/10.1103/PhysRevB.91.165112
https://doi.org/10.1103/PhysRevA.96.033604
https://doi.org/10.1103/PhysRevA.96.033604
https://doi.org/10.1103/PhysRevA.96.033604
https://doi.org/10.1103/PhysRevA.96.033604
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1038/nphys3783
https://doi.org/10.1038/nphys3783
https://doi.org/10.1038/nphys3783
https://doi.org/10.1038/nphys3783
https://doi.org/10.1103/PhysRevX.5.041047
https://doi.org/10.1103/PhysRevX.5.041047
https://doi.org/10.1103/PhysRevX.5.041047
https://doi.org/10.1103/PhysRevX.5.041047
https://doi.org/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevB.90.174204
https://doi.org/10.1103/PhysRevB.90.174204
https://doi.org/10.1103/PhysRevB.90.174204
https://doi.org/10.1103/PhysRevB.90.174204

