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Two-step production of resonant Bose-Einstein condensates
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Producing a substantial and stable resonant Bose-Einstein condensate (BEC) has proven to be a challenging
experimental task due to heating and three-body losses that may occur even before the gas comes to thermal
equilibrium. In this paper, by considering two-body correlations, we note that a sudden quench from small to
large scattering lengths is not an efficient way to prepare a resonant BEC. As an alternative, we propose a
two-step scheme that involves an intermediate scattering length, between 0 and ∞, which serves to maximize
the transfer probability of N bosons of mass m in a harmonic trap with frequency ω to the resonant state. We
find that the intermediate scattering length should be a ≈ 3.16N−2/3

√
h̄/(mω), and that it produces an optimum

transition probability of 1.03N−1/6.

DOI: 10.1103/PhysRevA.99.033606

I. INTRODUCTION

Recent experimental efforts have sought to prepare a
Bose-Einstein condensate (BEC) of ultracold atoms in a
regime where the two-body scattering length a is infinite
[1–5]. Such a situation is termed a “resonant” (or sometimes
“unitary”) BEC. It represents a special situation, inasmuch
as the perturbative parameter na3, where n is the number
density, is no longer small and the usual field-theoretic
treatments would require evaluation to very high orders of
perturbation theory. This circumstance has led to a variety
of alternative theoretical descriptions, which are in general
agreement about the nature of the gas, yet differ in details
[6–18].

On the experimental side, producing the resonant BEC is
problematic since the rate of three-body recombination grows
rapidly with scattering length. In the resonant limit, this rate
ultimately saturates, but at a large value that ensures the heat-
ing and ultimate destruction of the gas within milliseconds.
Under these circumstances, a semblance of the approach to
equilibrium can be teased out [3,4,19], while the loss can be
understood as a few-body process incorporating local physics
of the gas [17,20–22].

To perform an experiment of this kind at all, the res-
onant BEC must therefore be produced quickly. A typical
experimental protocol starts with the gas at a small value of
scattering length, then rapidly ramps the value of a magnetic
field near a Fano-Feshbach resonance so that a → ∞ within
microseconds. This represents the essentially instantaneous
projection of the many-body state at small a onto a collection
of many-body states at a = ∞.

The sudden projection may not be the optimal way to
produce the resonant BEC. To see this, at least qualitatively, it
is useful to regard the gas within a mean-field-like description.
Consider a gas of N identical bosons, each initially in some
single-particle orbital φa(r), corresponding to the small initial
scattering length a (the function φa could be the ground-state
solution to the Hartree-Fock equations for the Bose system,
for example). The many-body wave function is then, to a good

approximation,

�(r1, r2, . . . , rN ) =
N∏

i=1

φa(ri ). (1)

Similarly, on resonance each atom can be regarded as be-
longing to some different orbital wave function ψ∞(r). This
could be obtained approximately, for example, by performing
a Hartree-Fock calculation using a renormalized scattering
length a ∝ n−1/3 [6–10,23]. Thus, at least up to a certain
approximation, the desired resonant BEC is described by

�res(r1, r2, . . . , rN ) =
N∏

i=1

ψ∞(ri ). (2)

Then the probability that all the atoms in the initial state � are
transferred to the resonant BEC states �res, assuming that the
fast ramp results in a projection, is given by the square of their
overlap

P = |〈�|�res〉|2 =
(∣∣∣∣
∫

d3rφ∗
a (r)ψ∞(r)

∣∣∣∣
2
)N

. (3)

Unless each of these overlap integrals is very close to 1, the
product of N of them will be vanishingly small for typical
experimental circumstances with N > 103. For this reason, it
appears that, while the sudden ramp to a = ∞ produces an
interesting, nonequilibrium gas of strongly interacting bosons,
it is unlikely to generate the desired resonant BEC.

In this paper we present an alternative scheme for preparing
a resonant BEC, which proceeds in two steps. In a first step,
the scattering length is jumped quickly from a low initial
value a ≈ 0 to a modest intermediate value a∗. The sudden
increase in scattering length causes the BEC to expand; when
it reaches the size of the resonant BEC, the scattering length
is suddenly jumped from a∗ to a = ∞. For a properly chosen
value of the intermediate scattering length a∗, we show that
the fraction of atoms converted into a resonant BEC can be
nonnegligible [24].
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To describe and carry out calculations of this scheme, we
focus on an isotropic, harmonically trapped BEC and employ
a coordinate-based representation of the BEC wave function.
This representation presents the BEC as a wave packet subject
to an effective potential energy surface (PES) [25], and it has
recently been shown to make a reasonable description of the
BEC on resonance [9,10]. It presents the dynamics as the
time evolution of a wave packet obeying a linear Schrödinger
equation. In these terms the two-step process is reminiscent
of vibrational wave-packet dynamics in molecular physics
[26]. It is also amenable to analytic approximations, which
will yield simple estimates for the optimum value of the
intermediate scattering length a∗, as well as the approximate
yield of atoms in the resonant BEC at the end of the two steps.

II. POTENTIAL ENERGY SURFACES, QUENCH FROM
NONINTERACTING TO RESONANT BEC’S

The theoretical machinery that we employ to construct
approximate BEC wave functions is detailed in Ref. [10].
Here we summarize the highlights of the theory to provide
context for the results that follow. For further details we refer
the reader to Ref. [10].

We consider a system of N bosonic atoms confined in
a spherically symmetric harmonic oscillator potential with
angular frequency ω. Because of the diluteness of the system
under typical experimental conditions, we model the system
as described by particles with coordinates ri governed by a
harmonic oscillator Hamiltonian

H =
N∑

i=1

(
p2

i

2m
+ 1

2
mω2r2

i

)
, (4)

with two-body interactions represented by the zero-range
two-body boundary conditions, given by the Bethe-Peierls
condition

lim
ri j→0

1

ri jψ

∂ (ri jψ )

∂ri j
= −1

a
, (5)

where a is the two-body scattering length and ri j = |ri − r j |.
After removing the center of mass, the relative coordinates
of the particles are conveniently described by mass-weighted
Jacobi coordinates defined by

ηk =
√

N − k

N − k + 1

⎛
⎝rN−k+1 − 1

N − k

N−k∑
j=1

r j

⎞
⎠. (6)

The Jacobi coordinates define Cartesian coordinates in a
3(N − 1)-dimensional configuration space.

We exploit a coordinate representation of BEC that is
expressed in terms of potential energy surfaces (PES’s) anal-
ogous to Born-Oppenheimer (B.-O.) curves in molecular
physics. To do so, we define a single, collective coordinate,
the hyperradius ρ, which represents the size of the condensate
[27] as follows:

ρ2 =
N−1∑
k=1

η2
k = 1

N

N∑
i< j

r2
i j . (7)

All remaining coordinates, collectively denoted by 	, span
a hypersphere of radius ρ in a (3N − 4)-dimensional

configuration space. They are conveniently parametrized by
a set of angles, including the directions of the unit vectors η̂k ,
along with the radial correlation angles αk defined by

sin αk = ηk(∑k
l=1 η2

k

)1/2 . (8)

In these coordinates the Hamiltonian is given by [27]

Hrel = − h̄2

2m

[
1

ρ3N−4

∂

∂ρ
ρ3N−4 ∂

∂ρ
− �2

N−1

ρ2

]
+ 1

2
mω2ρ2,

(9)

where m is the atomic mass and ω is the angular frequency
of the isotropic harmonic trap. Thus the kinetic energy has
a radial part and an angular part, the last given, in general,
by the grand angular momentum �2

N−1, a differential operator
that can be defined recursively [27]

�2
k = �2

k + �2
k−1

cos2 αk
+ l2

k

sin2 αk
, k = 2, 3, . . . , N − 1,

(10)

with

�2
k = − ∂2

∂α2
k

+ (3k − 6) − (3k − 2) cos(2αk )

sin(2αk )

∂

∂αk
, (11)

{0 � αk � π/2}, and lk is the orbital angular momentum of
the vector ηk which we choose to be zero. In particular, the hy-
perangular coordinate α = αN−1, given by sin α = r12/(

√
2ρ)

incorporates the two-body coordinate between atoms 1 and 2.
In some treatments in the literature, the authors attempted
to incorporate realistic two-body interaction potentials for
rubidium atoms in this coordinate [28–31]. Others [27,32–34]
adopted a zero-range approximation for two-body interac-
tions, replacing the interaction potential with the Bethe-
Peierls boundary conditions. We adopt the second approach
here.

Under the B.-O. approximation, the hyperradius ρ is
treated as the slow coordinate. That is, at each value of ρ,
the Schrödinger equation is solved in the hyperangular co-
ordinates 	 to yield a set of ρ-dependent eigenenergies of
the operator h̄2

2mρ
�2

N−1, along with the corresponding eigen-
functions Y{λ}(ρ; 	). Taken as a function of ρ, these energies
constitute a set of adiabatic potential energy curves V{λ}(ρ) for
the motion in ρ. Here {λ} denotes a set of quantum numbers
required to specify the wave function in all coordiantes of 	.
A coupled set of differential equations is obtained if we
expand the wave function � in adiabatic hyperangular basis

� = ρ−(3N−4)/2
∑
{λ}

F{λ}(ρ)Y{λ}(ρ; 	), (12)

for some set of radial expansion functions F{λ}. The eigenfunc-
tions Y{λ}(ρ; 	) are eigenfunctions of the 3N − 4-dimensional
partial differential operator �2

N−1. In practice, we find approx-
imate eigenfunctions by invoking the Jastrow approximation,
which factors the total wave function into a product of pair
wave functions of the form

Yν =
∏

i< j φν (ρ; αi j )√∫
d	
∏

i< j φν (ρ; αi j )2
. (13)
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Within this approximation, each two-body function φν (α) sat-
isfies an ordinary partial differential equation that is detailed
in Ref. [10], subject to the Bethe-Peierls boundary condition,
which in this coordinate system and at fixed ρ takes the form

lim
α→0

1√
2ρ(αφν )

∂ (αφν )

∂α
= −1

a
. (14)

By using this ansatz, each φν solves an ordinary differential
equation and requires only a single quantum number ν, which
replaces the set of 3N − 4 quantum numbers {λ}. We will
continue to use this notation in what follows.

Within the B.-O. approximation the hyperradial motion is
independent within each channel ν. This has been justified by
experience in the case of the relatively small scattering lengths
that are found in nonresonant BEC experiments [25,34].
Moreover, the B.-O. approximation has been shown to be
exact on resonance, at least when considering only two-body
interactions, as we do here [36,37]. We will employ this
approximation throughout, writing the wave function as

� = ρ−(3N−4)/2Fν (ρ)Yν (ρ; α) (15)

for the channel with the lowest value of ν, representing
the ground state of relative excitation. The ground state of
Vν (ρ) represents the BEC ground state, and excitations in ρ

represent breathing modes of the condensate.
Using a single adiabatic function, the Schrödinger equation

becomes a single ordinary differential equation in ρ:[
− h̄2

2m

d2

dρ2
+ V diag(ρ) + Vν (ρ)

]
Fν (ρ) = ErelFν (ρ), (16)

where

V diag(ρ) = h̄2

2m

(3N − 4)(3N − 6)

4ρ2
+ 1

2
mω2ρ2, (17)

Vν (ρ) = h̄2

2mρ2
〈ν|�2

N−1|ν〉. (18)

V diag is the diagonal potential whose ground state supports the
noninteracting condensate wave function. Vν represents the
contribution due to interactions, namely, the eigenenergy of
�2

N−1 as determined above. It is a function of both the hy-
perradius and the scattering length. Calculation of the matrix
element 〈ν|�2

N−1|ν〉, which involves integration over the en-
tire hypersphere, is not trivial. In this paper, we use the results
found in Ref. [10], where a lowest-order constraint variational
approximation has been applied to obtain a meaningful out-
come even for a = ∞. In general, Vν must be determined
numerically, but Ref. [10] derives useful approximations to
this potential in the very small and very large-a limits, which
we will employ in the following. Thus, for any scattering
length a, we find a B.-O. potential

V a(ρ) = V diag(ρ) + Vν (ρ). (19)

We will denote the associated hyperangular wave function by
�a(ρ; 	) to make explicit the scattering length for which this
function was calculated. Here the notation ν is suppressed
since it is understood we are considering the lowest value of ν.
Vibrational states in the PES V a(ρ) constitute the radial wave
functions F a

n (ρ), each vibration n describing a breathing mode
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FIG. 1. The scale of the problem. Each curve represents an effec-
tive potential energy surface for a BEC with a = 0 (bottom) and a =
∞ (top), in our hyperspherical representation. A BEC having a = 0
(Gaussian centered at ρ = 12.2 aho) has essentially no overlap with a
resonant BEC having a = ∞ (Gaussian centered at ρ = 33.8 aho).

excited above the ground-state condensate with n = 0. The
states relevant to our model are, therefore, defined by the
scattering length a and the number of breathing quanta

|a, n〉 = ρ−(3N−4)/2F a
n (ρ)�a(ρ; 	). (20)

Figure 1 shows the B.-O. PES’s for the noninteracting
(a = 0) and resonant (a = ∞) cases for a gas of N = 100
atoms. With a = 0, V 0(ρ) = V diag(ρ). This PES, the lowest
curve on the left, is exact. Its minimum value occurs at

ρ0 ≈
N
3

√
3N
2 aho, (21)

where aho = √
h̄/(mω). The topmost curve on the right is an

approximate surface for the resonant limit. In the large N
limit, this potential is given by

V ∞(ρ) = h̄2

2mρ2

(
9N2

4
+ 3c0N8/3

)
+ 1

2
mω2ρ2, (22)

where c0 ≈ 2.122 is a constant determined from c0 =
x2

0/(16π )1/3 and x0 is the smallest root of the transcen-
dental equation 1 + x0 tan x0 = 0. This result is derived in
Appendix C of Ref. [10]. For realistic values of N > 102, the
centrifugal term with 9N2/4 can be safely neglected. Then the
minimum of V ∞ is located near

ρ∞ ≈
N
3

(3c0)1/4N2/3aho. (23)

Near their minima, we approximate these potentials as
harmonic oscillators

V 0(ρ) ≈ 3N

2
h̄ω + 1

2
m(2ω)2(ρ − ρ0)2, (24)

V ∞(ρ) ≈ (3c0)1/2N4/3 + 1

2
m(2ω)2(ρ − ρ∞)2. (25)

In both cases, the excitation frequency of the radial breath-
ing modes considered is exactly twice the trap frequency,
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ωb = 2ω. For noninteracting bosons, the energies are well
known and are given by [35]

En,K = h̄ω

(
2n + K + 3N − 3

2

)
, n = 0, 1, 2, . . . , (26)

and K = 0, 1, 2, . . . , is the quantum number associated with
the hyperangular component. For the resonant gas, the 2ω

frequency was anticipated by symmetry considerations in
Refs. [36,37]. Without considering three-body or higher-
order correlations, these references also emphasize that the
B.-O. approximation is exact in the a = ∞ limit. Corrections
beyond the B.-O. approximation arise because the adiabatic
wave functions � change from one value of ρ to the next.
But this change is only effective if ρ changes significantly
on the scale of a, i.e., the corrections are of order ρ/a
and vanish in the infinite scattering length limit. Therefore,
if the atoms could be prepared in the state F∞�∞ that
we describe, this state would be stable against nonadiabatic
transitions to whatever other states there are that could lead
to heating, loss, and so on. This stability is reduced if we
were to include explicit three-body correlations in the wave
function.

From the harmonic oscillator nature of the potential curves
in Eqs. (24) and (25), the expected ground-state hyperradial
wave functions are Gaussians centered at the minima and with
root-mean-squared width of aho/

√
2:

F 0(ρ) =
(

2

a2
hoπ

)1/4

exp
[− (ρ − ρ0)2/a2

ho

]
, (27)

F∞(ρ) =
(

2

a2
hoπ

)1/4

exp
[− (ρ − ρ∞)2/a2

ho

]
, (28)

The unnormalized Gaussian functions F 0 and F∞ for N =
100 are illustrated as Gaussian-shaped humps at the bottom of
the a = 0 and a = ∞ PES’s, respectively, in Fig. 1. From this
picture, we see that the centers are far away from each other
such that quenching the gas suddenly from a = 0 to a = ∞
will yield a low transfer probability. That is, the probability of
the atoms landing in the resonant BEC state F∞, upon a direct
quench, is

|〈0,0, |∞, 0〉|2 =
∣∣∣∣
∫

dρF 0(ρ)F∞(ρ)

∣∣∣∣
2∣∣∣∣
∫

d	�0(	)�∞(	)

∣∣∣∣
2

�
∣∣∣∣
∫

dρF 0(ρ)F∞(ρ)

∣∣∣∣
2

≈ exp (−1.3N4/3),

(29)

which is negligible for large N .

III. TWO-STEP SCHEME

A. Franck-Condon Factors

The miniscule overlap between the noninteracting and
resonant wave functions F 0 and F∞ suggests that direct
projection from a = 0 to a = ∞ will not yield a resonant
BEC. As an alternative, we propose a two-step scheme, in
which we identify an intermediate scattering length a and its
Born-Oppenheimer curve V a(ρ). Such a PES is shown as the
intermediate curve in Fig. 2. A good candidate for V a(ρ) is

10 15 20 25 30 35
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FIG. 2. The two-step scheme from noninteraction to small a then
to resonance.

one that supports a set of vibrational excitations n such that
the Franck-Condon factors |〈0, 0|a, n〉|2 and |〈a, n|∞, 0〉|2
describe a maximum transfer probability to the resonant BEC.
This idea is illustrated in Fig. 2 for N = 100 atoms.

Numerically calculated Franck-Condon (FC) factors are
shown as color-map plots in Fig. 3 for N = 100; the x axis
is the scattering length, y axis the vibrational state n, and
the color indicates the transition probability. In general, for
the first step from the noninteracting state to the intermediate
state, the optimum transition occurs when a is small and for
low n states, decreasing quickly with increasing a and n as
shown in Fig. 3(a). For the second step from the intermediate
state to the final state, the transition is optimum when a and
n are larger, and diminishes slowly with decreasing a and
increasing n as in Fig. 3(b). These two steps cannot be indi-
vidually at their maxima under the same conditions. However,
the best overall yield, given by the product of the FC factors,
occurs when a is still small relative to the oscillator length
and for higher vibrational states. This is true for any large
values of N . Further, the two-step transition probabilities seem
to decrease as a function of N . See the transition probability
for N = 1000 in Fig. 4.

B. Optimum intermediate state

Since the intermediate state will have a small value of a,
we can use a perturbative approximate expression for V a. In
the limits of perturbative a � aho and large N , this is given by
(see Appendix B of Ref. [10])

V a(ρ) ≈
N
3

V 0(ρ) + h̄2

m
d0N7/2 a

ρ3
, (30)

where d0 = (3/4)
√

3/π ≈ 0.733. Because of the oscillatory
nature of the intermediate radial wave functions F a

n (ρ), the
FC factors are largest when the inner and outer turning points
of V a (denoted by ρ1n and ρ2n, respectively,) coincide with
the minima ρ0 and ρ∞ of the initial and final states, a scenario
suggested in Fig. 2. We will make this idea more precise in
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FIG. 3. Franck-Condon factors from the (a) noninteracting to intermediate states |〈0, 0|a, n〉|2, (b) intermediate to resonant states
|〈a, n|∞, 0〉|2, and (c) the two-step transition probability |〈0, 0|a, n〉〈a, n|∞, 0〉|2 as functions of scattering lengths a and vibrational states n.
Here N = 100.

what follows, but this observation enables us to approximately
determine the optimum intermediate scattering length a∗ that
maximizes the product of FC factors.

Assume the intermediate state of potential V a has energy
Ea. Then its inner classical turning point is determined by
V a(ρ1n) = En. For small ρ, V a is well approximated by the
interaction term in Eq. (30) alone, whereby this criterion
becomes

V a(ρ1n) = Ea
n ≈

N
3

h̄2

m d0N7/2 a
ρ3

1n
. (31)

Likewise, near the outer classical turning point of V a, this
potential is well approximated by the harmonic oscillator
potential, and so

V a(ρ2n) = Ea
n ≈ 1

2 mω2ρ2
2n. (32)

Setting ρ1n = ρ0 and ρ2n = ρ∞ and using Eqs. (21) and (23),
we can solve for the optimal values of scattering length and
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FIG. 4. The two-step transition probability distribution
|〈0, 0|a, n〉〈a, n|∞, 0〉|2 as a function of scattering lengths a and
vibrational states n for N = 1000.

intermediate energy

a∗ ≈
N
3

1

2d0
(ρ0)3(ρ∞)2N−7/2 1

a4
ho

, (33)

E∗ ≈ 1

2

(
ρ∞

aho

)2

h̄ω. (34)

Using these approximations for N = 100, the results are
a∗ = 0.145aho and E∗ = 571.2h̄ω, and are comparable to
the values a∗ = 0.0859aho and E∗ = 598.9h̄ω, determined by
numerically maximizing the FC factors. Expressions (33) and
(34) become better estimates for larger N . For N = 1000, they
yield a∗ = 0.0316aho and E∗ = 1.26 × 104h̄ω, whereas the
numerically optimized values are a∗ = 0.0332aho and E∗ =
1.28 × 104h̄ω.

C. Wave packet dynamics

While this static picture provides an overall motivation for
the two-step procedure, it does not describe the dynamics
involved. Roughly, upon the initial projection from a = 0 to
the intermediate value a∗, a wave packet is formed at ρ1n. In
approximately one half of the trap period, this wave packet
propagates to ρ2n, giving the condensate its maximum radial
extent and preparing it for projection onto the resonant BEC
state. With a given intermediate potential V a, we describe the
time dynamics of the BEC by expressing the initial state after
the first step as a wave packet expanded in the basis of the
vibrational states of V a

|�a(t )〉 =
∞∑

n=0

|a, n〉〈a, n|�a(t = 0)〉e−iEnt/h̄

=
∞∑

n=0

|a, n〉〈a, n|0, 0〉e−iEnt/h̄, (35)

where at time t = 0, �a is at the ground state of the nonin-
teracting potential with total energy E ≈ 3Nh̄ω/2. The prob-
ability of projecting the wave packet onto the desired resonant
BEC ground state is given by

P(t ) = |〈∞, 0|�a(t )〉|2, (36)
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FIG. 5. Transfer probability for (a) N = 100 with a∗ =
0.0859aho, and (b) N = 1000 with a∗ = 0.0332aho.

where

〈∞, 0|�a(t )〉 =
∞∑

n=0

〈∞, 0|a, n〉〈a, n|0, 0〉e−iEnt/h̄. (37)

We first extract numerically the most appropriate choice
for the intermediate scattering length a∗ by maximizing the
product of the FC factors. We then compute the transition
probability at different times with the unitary BEC model
found in Ref. [10] for N = 100 and N = 1000. Figures 5(a)
and 5(b) show that the first maximum transition occurring at
around tm ≈ π/(2ω). It takes about half a period, T/2, for
the BEC to expand to resonance starting from the left side of
the V a; the breathing mode frequency is close to 2ω, thus the
dwell time is tm ≈ T/2 = π/ωb = π/(2ω). Most importantly,
the transfer probability is significant: it is 48% for N = 100
and 37% for N = 1000. This is a far better yield in the
resonant state than the direct projection result in Eq. (29).

Figure 6 shows how the size of the BEC with N = 100
atoms, expressed in terms of the mean hyperradius 〈ρ〉, is
changing over time. It starts with ρ = ρ0, the size of the
noninteracting gas, and reaches ρ = ρ∞, the size of the

0 2 3
10

15

20

25

30

35

FIG. 6. Mean radius of the BEC in the intermediate phase versus
time before quench to unitarity for N = 100 and a = 0.0859aho.

resonant BEC, at t ≈ tm. The peaks of P(t ) and 〈ρ〉 decrease
slowly over time as the wave packet gradually dephases. It
is, therefore, worthwhile to instigate the second projection, to
resonance, at time t = T/2.

IV. LARGE N LIMIT

In calculating the P(t ) numerically, we notice that P(tm)
decreases with N . Determining how P(tm) scales with N is
extremely useful. Here we outline a method to get a good es-
timate for this scaling. The details are found in the Appendix,
and the final result turns out to be simple.

Using the results from Appendixes A and B, the overlap
integrals in Eq. (37) are approximated to be

〈a, n|0, 0〉 = 〈F a
n

∣∣F 0
〉
ρ
〈�a|�0〉	

≈ F 0(ρ1n)

√
dEn

dn

√
1

|∂V a/∂ρ|ρ1n

, (38)

〈∞, 0|a, n〉 = 〈F∞∣∣F a
n

〉
ρ
〈�∞|�a〉	

≈ (−1)nF∞(ρ2n)

√
dEn

dn

√
1

|∂V a/∂ρ|ρ2n

, (39)

where dn/dEn is the density of vibrational states in the
intermediate potential. For the hyperangular parts of the wave
function we approximate

〈�a|�0〉	 ≈ 1 − 2

π3

(
a

ρ1n

)2(π

6

)1/6
N−5/6 ≈ 1, (40)

〈�∞|�a〉	 ≈ 1 − 0.151N−5/2 ≈ 1, (41)

since N is large and a/ρ1n is small.
Next we convert the discrete sum in Eq. (37) into a

continuum integral over the energy and evaluate it at t = tm
around which the maximum transfer occurs. See Appendix C
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FIG. 7. Transfer probability of the BEC versus scattering length
a for large N . Inset shows a zoom-in profile of N = 105.

for details. The resulting transition amplitude is

〈∞, 0|�a(tm)〉 ≈ 2(2d0)1/6

(3c0)5/24
√

3
N1/36

(
a

aho

)1/6

exp

⎡
⎣−
((

2d0√
3c0

)1/3

N13/18

(
a

aho

)1/3

−
√

3N

2

)2
⎤
⎦,

(42)

where c0 and d0 are defined in Eqs. (22) and (30). Plots of
P(tm), calculated in this way, for different N are shown in
Fig. 7 as a function of the intermediate scattering length a.
We see that the estimated maximum transfer for N = 103 is
∼33%, which is close to what the exact calculation gives. The
inset in Fig. 7 shows the sensitivity of the transition proba-
bility to the intermediate a for N = 105. The intermediate a
should at least be within 0.4% from the optimum to get at
least half of the maximum transfer. By maximizing Eq. (42)
with respect to a, the optimum scattering length a∗ is found to
be

a∗ = (3/2)3/2
√

3c0/(2d0)N−2/3aho ≈ 3.16N−2/3aho, (43)

which matches the a∗ obtained in Eq. (33) using Eqs. (21) and
(23). And the maximum transfer is

max(|〈∞, 0|�a(tm)〉|2) ≈
∣∣∣∣∣
(

8

3

)1/4 1

(3c0)1/8 N−1/12

∣∣∣∣∣
2

≈ 1.028N−1/6. (44)

To put this into context, for 85Rb in a trap with frequency
ω = 2π × 10 Hz, the oscillator length is aho = 6.51 × 104 a0.
Starting with N = 105 noninteracting atoms in the trap, the
two-step process would be optimized for a scattering length
of a∗ ≈ 95.4 a0 with a theoretical transfer probability of 15%.

The yield into the final state actually goes down as the
number of atoms increases. Qualitatively, this is because the
range of hyperradius, from, ρ0 to ρ∞, increases as N grows,

thus the wave packet broadens more during propagation, and
its overlap with the target wave function is reduced.

Finally, it is worth considering the effect of starting from
a nonzero initial scattering length. Some numerical experi-
mentation finds that this would not produce a large effect. As
an example, consider N = 1000 85Rb atoms in a spherically
symmetric trap with frequency ω = 2π × 10 Hz. Within the
model where the initial scattering length a = 0, numerical
optimization of the transfer probability yields a 37% prob-
ability, passing through an intermediate state, via scattering
length 2200a0. By contrast, starting with a more realistic
scattering length for a stable, mean-field BEC, for example,
a = 142a0, raises the final transfer probability only to 39%,
while changing the intermediate scattering length to 2700a0.
For greater numbers of atoms, the intermediate scattering
length a∗ is reduced. Since the initial scattering length must
be smaller than the intermediate scattering length, regarding
the initial scattering length as small becomes increasingly
justified. Hence the yield in the resonant BEC is well approx-
imated by the a = 0 initial state considered.

V. CONCLUSIONS AND PROSPECTS

We present a protocol designed to implant a nontrivial frac-
tion of the trapped atoms into a resonant BEC. It remains to
be understood what the consequences of this preparation step
will be. It is not clear, for example, how the nonequilibrium
gas produced in the two-step method will begin to come to
equilibrium, and whether this process is different from the
case of a direct quench to resonance. It is equally unclear at
present how three-body losses would differ in the resonant
BEC thus produced than in a gas of equivalent density. A
useful initial experiment might be to prepare the resonant
BEC as proposed here, and compare its dynamics to that of
a gas of equal initial density as the resonant BEC, but jumped
suddenly to resonance.

This experiment would unfortunately be clouded by an-
other issue. Consider, for example, that starting from a non-
interacting BEC of N = 104 atoms, our protocol is expected
to transfer only one-fifth of them to the resonant BEC. What
becomes of the rest? They are presumably projected onto
other quantum mechanical states of the system, each of which
has its own dynamics and three-body loss rates. To address
this, it is necessary to formulate a reliable theory of excited
states, in our case in the hyperangular degrees of freedom.
This pursuit is currently underway.
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APPENDIX A: FRANCK-CONDON FACTORS
USING THE REFLECTION FORMULA

Here we evaluate overlap integrals

〈
F a

n

∣∣F 0
〉
ρ

=
∫ ∞

0
dρ F a

n F 0, (A1)
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〈
F∞∣∣F a

n

〉
ρ

=
∫ ∞

0
dρ F∞F a

n . (A2)

Leading contribution to the Franck-Condon factors comes
from the overlap of wave functions at the classical turning
points, where the wave functions F a

n are sharply peaked. In
between the turning points, the wave functions are highly
oscillating. Yet we can consider that the projections of F a

n to
F 0 and F a are still localized to the turning points since the last
wave functions are also localized (or close to zero where F a

n is
wildly oscillating). The idea that the Franck-Condon factors
can be estimated from properties of the potential near the
turning points is not novel [38,39]. It is widely used in theories
of optical and Raman transitions in molecules, and recently
to photoassociation of cold atoms as well [40–44]. Out of
these types of molecular spectroscopy studies, the reflection
formula was developed [44,45], which we will adapt.

We first express F a
n in terms of the energy-normalized wave

function FE through

〈
F a

n

∣∣F a
n′
〉 = ∫ ∞

0
dρ F a

n F a
n′ = δ(n − n′)

= dEn

dn
δ(En − En′ ) = dEn

dn
〈FE |FE ′ 〉, (A3)

which leads to F a
n = √

dEn/dnFE . Casting FE into phase-
amplitude form, after Milne [46],

FE (k, ρ) ≈
√

2m

π h̄2 ζ (k) sin[β(k, ρ)], (A4)

where the amplitude ζ and phase β satisfy(
d2

dρ2
+ k2(ρ, E )

)
ζ − 1

ζ 3
= 0, (A5)

dζ

dρ
− 1

β2
= 0, (A6)

with the wave vector

k(ρ) =
√

2m

h̄2 [E − V (ρ)]. (A7)

The rapid oscillations of FE in Eq. (A4) will have negligible
effect on the integrals in Eqs. (A1) and (A2), where F a

n is
expressed in terms of FE , except when ρ is near a turning point
which is also a point of stationary phase. Away from a turning
point, it is sufficient to use the WKB approximations for the
amplitude and phase:

ζ (k) = 1√
k(ρ, E )

, (A8)

β(k, ρ) =
∫ ρ

ρt

dρ ′ k(ρ ′, E ) + π

4
. (A9)

Near a turning point ρt , we expand the Milne phase to second
order

β ≈ b0 + b1(ρ − ρt ) + b2

2
(ρ − ρt )

2 + · · · , (A10)

b0 = π

4
, (A11)

b1 = ∂β

∂ρ

∣∣∣∣
ρ=ρt

= k(ρt , E ) = 0, (A12)

b2 = ∂2β

∂ρ2

∣∣∣∣
ρ=ρt

= ∂k

∂ρ

∣∣∣∣
ρt

= − m

h̄2 ζ 2[k(ρt )]
∂V

∂ρ

∣∣∣∣
ρt

. (A13)

Now, with

F a
n =

√
dEn

dn

√
2m

π h̄2 ζ (k) sin [β(k, ρ)], (A14)

the integrand F a
n F 0 is sharply localized around ρ1n, the

classical inner turning point. Thus,

〈
F a

n

∣∣F 0
〉
ρ

≈ F 0(ρ1n)
∫ ∞

0
dρ F a

n (ρ)

= F 0(ρ1n)

√
dEn

dn

√
2m

π h̄2 ζ [k(ρ1n)]
∫ ∞

0
dρ

× sin

[
b0 + b2

2
(ρ − ρ1n)2

]
. (A15)

To evaluate the last integral, we use the formula∫ ∞

0
dx cos(x2) =

∫ ∞

0
dx sin(x2) = 1

2

√
π

2
. (A16)

Finally, we arrive at

〈
F a

n

∣∣F 0
〉
ρ

≈ F 0(ρ1n)

√
dEn

dn

√
1

|∂V/∂ρ|ρ1n

. (A17)

The other overlap factor (A2) can be approximated in a similar
fashion; it is given by

〈
F∞∣∣F a

n

〉
ρ

≈ (−1)nF∞(ρ2n)

√
dEn

dn

√
1

|∂V/∂ρ|ρ2n

, (A18)

where the (−1)n accounts for the sign of the rightmost am-
plitude around the outer turning point ρ2n of the vibrational
state if we set the leftmost amplitude around ρ1n to be always
positive as expressed in Eq. (A17).

APPENDIX B: OVERLAP BETWEEN LOCV
HYPERANGULAR WAVE FUNCTIONS

To give a complete picture of the overlap between wave
functions, the angular overlaps 〈�a|�0〉	 and 〈�∞|�a〉	
should also be considered. Real calculation involves 3N − 4
dimensional integrals since this is the size of the hyperangular
space. However, here, we only consider the one hyperangle,
α, that describes the two-body interactions, and the large N
case.

We start with a symmetrized Jastrow-type basis

Yν =
∏

i< j φν (ρ; αi j )√∫
d	
∏

i< j φν (ρ; αi j )2
, (B1)

where αi j is parametrically related to the coordinate distance
between to particles, ri j through ri j = √

2ρ sin αi j ; the func-
tion φν satisfies the Bethe-Peierls boundary condition which
describes what happens when two particles are close to each
other. The other boundary condition is set by treating |φν |2
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as a pair correlation function such that if two atoms are more
than distance rd = √

2ρ sin αd apart, then they become un-
correlated or |φ(αi j � αd )|2 = 1. Therefore, within a region
bounded by αd , there is on the average only one other atom
(out of N − 1) which can be seen by a fixed atom, or

4π
∫ αd

0 d	α

∫
d	N−2

∏
i< j |φν (ρ; αi j )|2∫

d	N−1
∏

i< j |φν (ρ; αi j )|2 = 1

N − 1
, (B2)

where d	 = d	N−1 = 4πd	αd	N−2, and d	α =
sin2 α cos3N−7 α dα. If αd = π/2, then the right side of
Eq. (B2) should be one. The full form of the pair correlation
function g2 can be written as

g2(α) =
(

4π

∫ π/2

0
d	α

)∫
d	N−2

∏
i< j |φν (ρ; αi j )|2∫

d	N−1
∏

i< j |φν (ρ; αi j )|2 ,

(B3)
which is hard to evaluate. To lowest order, however, it is
approximated to be g2(α) = |φν (α)|2. This whole procedure
outlined above describes a lowest order constraint variational
(LOCV) method in hyperspherical coordinates; details can be
found in Ref. [10]. Given ρ and the scattering length a, one
can then find αd and φv . The angle αd becomes extremely
small as N increases. Hence φ(ρ; αi j ) is unity in large region
of αi j ; this is an approximation that leads to g2(α) = |φν (α)|2.

In the following derivations, we will also treat all the pair
wave functions φ(ρ, αi′ j′ ) equivalent to unity, except one pair
namely, φ(ρ, α12) = φ(ρ, α). So,

〈�a|�0〉	 ≈ N0Na

∫ π/2

0
dα α2φa(ρ1n; α)φ0(ρ1n; α), (B4)

〈�∞|�a〉	 ≈ N∞Na

∫ π/2

0
dα α2φ∞(ρ2n; α)φa(ρ2n; α),

(B5)

where the N ’s are some normalization constants so
that 〈�0|�0〉	 = 1, 〈�a|�a〉	 = 1, and 〈�∞|�∞〉	 = 1,
and [10]

φ0(ρ; α) = 1, (B6)

φa(ρ; α) ≈ A

(
1 − a√

2ρ

1

α

)
, if α < αa, (B7)

φ∞(ρ; α) = B
cos(

√
6Nν∞α)

α
if α < α∞, (B8)

v∞ = c0N2/3. (B9)

The wave functions φa and φ∞ identically approach unity for
α > αa and α > α∞, which are given by

αa ≈
(π

6

)1/6
N−5/6, (B10)

α∞ =
(

2π

27

)1/6

N−5/6. (B11)

Note that αa and α∞ are extremely small for large N so that
the integrals in Eqs. (B4) and (B5) are over large part of the α

space where φa and φ∞ are unity. The constants A and B are

determined from the continuity boundary condition at αa and
α∞:

A ≈ 1 + a√
2ρ

1

αa
, (B12)

B = α∞
c1

= 1

c1

(
2π

27

)1/6

N−5/6, (B13)

c1 = cos(
√

6Nν∞α∞) ≈ −0.942. (B14)

We then find

N0 =
√

24

π3
, (B15)

Na ≈
√

24

π3

[
1 + 2

√
2

π3

a

ρ
α2

a + 4

π3

(
a

ρ

)2

αa + · · ·
]
, (B16)

N∞ ≈
√

24

π3

[
1 − 12

π3
γ N−5/2 + · · ·

]
, (B17)

γ = c2

2c1
√

6c0

(
2π

27

)1/3

+ 1

2c2
1

− 1

3
≈ 0.1997, (B18)

c2 = sin(
√

6Nν∞α∞) ≈ 0.336. (B19)

Finally, after a series of algebraic steps and careful bookkeep-
ing of N scaling of the relevant parameters, we find

〈φ0|φa(ρ1n)〉α ≈ 1 − 2

π3

(
a

ρ1n

)2

αa, (B20)

〈φ∞|φa(ρ2n)〉α ≈ 1 − 0.151N−5/2, (B21)

which are our approximations for 〈�a|�0〉	 and 〈�∞|�a〉	,
respectively. For large N , these quantities are both essentially
equal to 1.

APPENDIX C: TRANSITION AMPLITUDE

We evaluate the transition amplitude at t = tm ≈ π/(2ω)
at large N . In terms of the Franck-Condon factors derived in
Appendix A, we write the transition amplitude as

〈∞, 0|�a(tm)〉 ≈
∞∑

n=0

(−1)nF 0(ρ1n)F∞(ρ2n)

× dEn

dn

√
1

|∂V/∂ρ|ρ1n

√
1

|∂V/∂ρ|ρ2n

eiωntm ,

(C1)

with ωn ≈ (2 + �n)nω, where �n < 1 (�n � 1 for small a).
Thus,

(−1)neiωntm ≈ ei(nπ+ωntm ) = ei2nπ = 1. (C2)

Also, using Eqs. (31) and (32),

∂V

∂ρ

∣∣∣∣
ρ1n

≈ −3

(
m

h̄2d0N7/2a

)1/3

E4/3
n , (C3)

∂V

∂ρ

∣∣∣∣
ρ2n

≈
√

2mω2En. (C4)
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Converting the discrete sum into an integral over energy,∑
n → ∫

dE , and using the form of F 0 and F∞ in Eqs. (27)
and (28), and noting that the resulting integrand is strongly

peaked at E∗ ≈ √
3c0N4/3h̄ω/2 ≈ 1.26N4/3h̄ω [see Eqs. (34)

and (23)], we get

|〈∞, 0|�a(tm)〉| ≈ 2(2d0)1/6

√
3π (

√
3c0)11/12

(
a

aho

)1/6

N−23/36 1

h̄ω

∫ ∞

0
dE exp

[
− (ρ1(E ) − ρ0)2

a2
ho

]
exp

[
− (ρ2(E ) − ρ∞)2

a2
ho

]
, (C5)

with ρ1 ≈ ( h̄2

m d0N7/2a)
1/3

E−1/3 and ρ2 ≈
√

2E/(mω2) from Eqs. (31) and (32). Now, F∞[ρ2(E )] is a peaky function of E .
We can then use the saddle point approximation to solve the integral in Eq. (C5):

∫ ∞

0
dE exp

[
− (ρ1(E ) − ρ0)2

a2
ho

]
exp

[
− (ρ2(E ) − ρ∞)2

a2
ho

]
= h̄ω

√
π

ρ∞

aho
exp

⎧⎪⎨
⎪⎩−

[(
2d0N7/2a4

ho
a

ρ∞2

)1/3 − ρ0

]2

a2
ho

⎫⎪⎬
⎪⎭. (C6)

Finally, expressing ρ0 and ρ∞ in terms of N

|〈∞, 0|�a(tm)〉| ≈ 2(2d0)1/6

(3c0)5/24
√

3
N1/36

(
a

aho

)1/6

exp

⎧⎨
⎩−
[(

2d0√
3c0

)1/3

N13/18

(
a

aho

)1/3

−
√

3N

2

]2
⎫⎬
⎭. (C7)
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