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We investigate the possibility of realizing supersolid quantum phases in bosonic Rydberg-excited quantum
lattice gases in the presence of nonunitary processes, by simulating the dynamical evolution starting from
initial preparation in nondissipative equilibrium states. Within Gutzwiller theory, we first analyze the many-body
ground state of a bosonic Rydberg-excited quantum gas in a two-dimensional optical lattice for variable atomic
hopping rates and Rabi detunings. Furthermore, we perform time evolution of different supersolid phases using
the Lindblad-master equation. With the inclusion of two different nonunitary processes, namely, spontaneous
decay from a Rydberg state to the ground state and dephasing of the addressed Rydberg state, we study the effect
of nonunitary processes on those quantum phases and observe long-lived states in the presence of decay and
dephasing. We find that long-lived supersolid quantum phases are observable within a range of realistic decay
and dephasing rates, while high rates cause any initial configuration to homogenize quickly, preventing possible
supersolid formation.
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I. INTRODUCTION

In recent years, numerous theoretical works have predicted
exotic phases in Rydberg-excited bosonic quantum gases
arising from the interplay between condensation and long-
range spatial order. Alongside insulating density waves with
crystalline order [1,2] and superfluids [3,4], quantum phases
referred to as supersolids have been predicted [5–9]. Those
phases are characterized by a spatially modulated condensate
combining the spontaneous long-range spatial order of solids
and the superfluid flow of interacting condensates. While
recent experiments strive towards the observation of such
quantum phases, their realization still proves to be a challenge
[10,11].

Several non-negligible, nonunitary processes turn out to be
major obstacles in experiments, such as the spontaneous decay
of a Rydberg-excited particle back to the ground state caused
by the finite lifetime of Rydberg excitations [12–16] which
effectively lowers the Rydberg fraction ne in the system,
the dephasing of the Rydberg state, caused by blackbody-
radiation induced decay to unadressed Rydberg levels [17,18],
and the finite line width of the laser [19,20], and the collective
loss of particles [21,22].

A theoretical tool for the inclusion of nonunitary processes
in the dynamics is the Markovian master equation in Lindblad
form, used for the description of nonunitary density matrix
evolution. In combination with the Gutzwiller approximation,
assuming the decoupling of the many-body wave function
into products of single-site wave functions, we will be able
to simulate the time evolution, observe the effects of the
decay and dephasing, and investigate whether or not stable
supersolid quantum phases are attainable.

*barbier@th.physik.uni-frankfurt.de

II. MODEL AND THEORY

For the description of a bosonic quantum gas with two
atomic levels, i.e., a hyperfine ground state and a Rydberg-
excited state, a multicomponent extension of the single-band
Bose-Hubbard model is required. This Hamiltonian consists
of three distinct parts: two intraspecies terms and one inter-
species term. Considering the ground state |g〉 and a Rydberg-
excited state |e〉 of an atom, the Hamiltonian reads

Ĥ = Ĥg + Ĥe + Ĥg,e. (1)

Within second quantization, the Hamiltonian is written in
Fock space in terms of creation and annihilation operators
(b̂ν

i )† and b̂ν
i for state ν ∈ {g, e} acting on site i. The Hamil-

tonian of the ground-state atoms reads

Ĥg = −μ
∑
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with the occupation number operator n̂ν
i = (b̂ν

i )†b̂ν
i and 〈i j〉

denoting pairs of next-neighbor sites. This Hamiltonian is
identical to the Bose-Hubbard model, in which we introduce
the chemical potential μ, the ground-state hopping rate tg, and
the ground-state on-site interaction Ug. It describes the physics
of ground-state atoms accurately [23]. The Hamiltonian of the
Rydberg excitations resembles its ground-state counterpart
but contains additional terms:
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|xi − xj|6 . (3)

The second to last term describes the effect of the detuning
of the excitation laser and arises within the rotating wave
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approximation (RWA) [24]. Note that we consider identical
trapping for ground-state and Rydberg-excited atoms. This
is a nontrivial case, since Rydberg excitations are in general
antitrapped by the optical lattice, but recently there have been
several proposals about the engineering of optical lattices
trapping ground-state and Rydberg-excited particles [25,26].

The last term corresponds to the van der Waals interaction
of the Rydberg excitations. Highly excited atoms possess a
high polarizability, inducing an interaction between pairs of
atoms on different lattice sites. Finally, we have the inter-
species Hamiltonian

Ĥg,e = Uge

∑
i

n̂g
i n̂e

i + �

2

∑
i

[(
b̂g

i

)†
b̂e

i + (
b̂e

i

)†
b̂g

i

]
(4)

with an on-site interaction Uge and the Rabi driving with
frequency � mixing the ground and excited states. This Rabi
term arises alongside the detuning term within the RWA,
and its frequency corresponds to an effective Rabi frequency
within a two-photon excitation scheme [27]. We do not in-
clude the long-range interaction between a Rydberg excitation
and a ground-state particle, since the interaction strength is
negligible due to the low polarizability of the ground-state
particle [28]. While most parameters of the Hamiltonian are
rates, which can be experimentally well adjusted with high
tunability and are thus chosen to fit the experimental setups,
some have to be chosen in order to model observed physi-
cal phenomena. First, we impose a hardcore-like constraint
Ug,e � Ug motivated by the energy scale of the interaction
between a Rydberg excitation and another atom on short dis-
tances. Additionally, setting Ue → ∞ models an on-site Ry-
dberg blockade: The suppression of excitation to the Rydberg
state due to the frequency shift of the addressed Rydberg level
of an already excited atom [29,30]. Furthermore, we consider
a negligible hopping rate of the Rydberg excitations, hence
te = 0. This assumption is motivated by the overwhelming
strength of the van der Waals interaction, which dominates
all other energy scales. Due to the strong coupling of the
Rydberg-excited state to the hyperfine ground state, which
has finite hopping, the excitations may nevertheless become
delocalized.

With the full Hamiltonian at hand, several methods for its
analysis exist. One of them is the Gutzwiller approximation
(GA), in which we approximate the many-body state by a
variational ansatz [31–34], which factorizes the wave function
of the complete system into partial wave functions

|�GA〉 = �i|�〉i (5)

and fulfills the Schrödinger equation ĤGA|�GA〉 = E0|�GA〉.
Note that the Hamiltonian ĤGA is not equal to the original
Hamiltonian Ĥ , as we will discuss in detail below. Each |�〉i

describes the wave function on a site i of the optical lattice.
Motivated by the factorization of the wave function, we de-
couple the Hamiltonian ĤGA into single-site Hamiltonians Ĥi,
with the respective Schrödinger equations

Ĥi|�〉i = E0
i |�〉i (6)

with ĤGA = ∑
i Ĥi and E0 = ∑

i E0
i . This reduces the cal-

culation of the ground state via exact diagonalization. The
original Hamiltonian Ĥ includes terms entangling different

sites, namely, the hopping mechanism and the van der Waals
interaction. We decouple these terms with the approximations
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neglecting higher-order fluctuations (δÂ)n ≈ 0 with δÂ =
Â − 〈Â〉 and Â ∈ {b̂, n̂} for n � 2. Both are static mean-field
approximations, the latter being the Hartree approximation.
We allow a spatially inhomogeneous system due to the long-
range ordering induced by the van der Waals interaction
between Rydberg excitations.

Applying the above approximations to the original Hamil-
tonian (1), we obtain for each lattice site the single-site
Hamiltonian

Ĥi = Ĥg
i + Ĥe

i + Ĥg,e
i (8)

with
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where ξi = ∑
j.n.n.i〈b̂ j〉 (with j.n.n.i denoting j next neighbor

to fixed i) and ηi = ∑
j �=i 2〈n̂ j〉/|xi − x j |6 are arising from the

mean-field approximation.
Solving the Schrödinger equation for the above single-site

Hamiltonians involves a greatly reduced Hilbert space. How-
ever, nonlocal expectation values of the observables appear in
each Hamiltonian via ξν

i and ηi, effectively coupling different
lattice sites.

III. GUTZWILLER GROUND-STATE PHASE DIAGRAM

With the product ansatz (5), the many-body ground state
is given by the ground-state wave functions of all sites. Due
to the coupling of the single-site Hamiltonians to the states
of all the other sites, the single-site ground states have to
be obtained self-consistently. We assign initial states |�〉i

to each site and calculate the expectation values φ
g
i , φe

i , ng
i ,

and ne
i (where φν

i = 〈�|ib̂ν
i |�〉i is the local ν-state conden-

sate parameter of site i and nν
i = 〈�|in̂ν

i |�〉i is the local
ν-state occupation number of site i). By performing updates
on randomly selected sites, which consist of constructing
the Hamiltonian of the selected site through the expectation
values of all other sites and replacing the current state with
the new eigenstate obtained via subsequent diagonalization,
the single-site states converge to their respective ground states
and yield the self-consistent many-body ground state of the
whole system.

In the presence of periodic boundaries on a finite system,
the spatial distribution of the Rydberg excitations is limited to
certain crystalline structures compatible with the geometry of
the periodic cell. Therefore, various primitive cells have to be
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(a) Checkerboard-structured primitive cell

(b) Triangle-structured primitive cell

(c) Arbitrarily structured primitive cell

FIG. 1. Various primitive cells, corresponding to different or-
dered structures: The spanning vectors A and B starting at an
arbitrary site i point to the next equivalent site, thus creating the
boundaries of the primitive cell (colored in orange). The sites within
are labeled by increasing numbers, going from left to right, up to
down.

tested in order to find the structure corresponding to the true
ground state. We perform the above mentioned iterative pro-
cedure on a number of primitive cells with varying structures
and compare the resulting ground-state energies. The area of
each primitive cell is given by the number of individual sites
N . After a single iteration step, not only the randomly chosen
site is updated, but also all equivalent sites labeled by the
same number (see Fig. 1). Primitive cells are characterized
by two spanning vectors, A and B, whose variation leads to
different primitive structures, e.g., square or quasi-triangular
or -hexagonal. Note that those primitive cells are created on
a square 2D optical lattice, in which many regular nonsquare
structures can only be approximated. For the true ground state,
we select the primitive cell yielding the lowest ground-state
energy.

In total, we consider 50 different structures of increasing
primitive cell size. By varying the detuning �/� and the
ground-state hopping rate tg/� with all other parameters
of the Hamiltonian Ĥ fixed, we obtain a rich phase dia-
gram from the Gutzwiller calculations. We plot the inverse
total density of the system 1/n̄ with n̄ = ∑

i,ν〈n̂ν
i 〉/N in

Fig. 2(a). Combined with the mean condensate order parame-
ter φ̄ν = ∑

i |〈b̂ν
i 〉|/N and the mean occupation number n̄ν =∑

i〈n̂ν
i 〉/N depicted in Figs. 2(b)–2(e), we are able to identify
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FIG. 2. Gutzwiller ground-state phase diagram: (a) the inverse
density 1/n̄ of the many-body ground state; (b)–(e) mean expectation
values of the observables φ̄ν and n̄ν for varying detuning �/� and
ground-state hopping tg/�, and the drawn white phase boundaries act
as rough guides to the eye. The fixed parameters for the calculations
are Ug = 0.1,Uge = 5, Ue = 100, V = 10 000, μ = 0.25, te = 0 with
� as scale.

different regimes of the phase diagram. In the “frozen” limit
case, i.e., for vanishing hopping (tg/� = 0), the condensate
order parameter of both states vanishes. Within this limit,
variation of the detuning leads to a staircase-like modulation
in particle density. High positive detuning favors a denser
structure and a high Rydberg fraction ne. Reducing the detun-
ing results in narrow plateaus, terminating in a transition to
the empty vacuum state. This transition can be traced back to
the Hartree approximation, used to decouple the Hamiltonian
[35]. Within the approximation, the relation between the
chemical potential μ, the detuning � and the Rabi frequency
� at the transition reads

μ = � + √
�2 + �2

2
. (12)

For the chosen chemical potential μ/� = 0.25, the detuning
at which the vacuum transition occurs is �/� = −0.75 and
perfectly matches the numerical prediction. Approaching this
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FIG. 3. Devil’s staircase of the primitive cell size Vprim (blue crosses) and the Rydberg fraction on the occupied site ne
1 (orange diamonds)

in the “frozen” limit (tg/� = 0). Additionally, the real-space distributions of Rydberg excitations of various representative quantum phases are
displayed in the x and y directions in units of the lattice spacing a.

transition from �/� > −0.75 leads to the so-called devil’s
staircase of lattice fillings [36,37]. Decreasing the detuning
does not increase the volume of the primitive cell gradually
but rather in steps. We plot the staircase of the primitive cell
size Vprim and the Rydberg fraction ne

1 on the occupied sites
with higher resolution and a broader range of the detuning
in Fig. 3. The steps become narrower as the transition to the
vacuum state is approached. By including primitive cells of
larger size, even narrower steps near the transition would be
observed. This effect caused by the variation of the detuning is
easily understandable from the Hamiltonian: Due to the RWA,
the detuning acts as a chemical potential for Rydberg excita-
tions and competes with the van der Waals interaction, causing
dense structures with high Rydberg fractions for high positive
detuning and sparse distribution of the Rydberg excitations
for low or negative detuning. The drop of the Rydberg density
through the reduction of the detuning can be achieved in two
ways: By increasing the distance between nearby Rydberg
excitations or by decreasing the on-site Rydberg fraction, the
system is less subject to the long-range repulsion, as shown in
Fig. 3.

Beyond the “frozen” limit, at finite hopping tg/� > 0, we
find a variety of different quantum phases [see Fig. 2(c)].
The fluctuations induced by the hopping processes cause the
narrow plateaus of quantum phases with low density near the
transition to vanish, while the previously obtained staircase-
like distribution of quantum phases further away from the vac-
uum transition remains unaffected. At a detuning-dependent
critical hopping rate (for positive detuning around tg/� ≈
0.6), ground- and excited-state condensation emerges in the
system. Since the system is completely localized below this
critical hopping rate and at positive detunings, we can describe
the quantum phases within this regime by particle density
waves (DWs). It is characterized by φ̄ν = φν

i = 0, meaning
vanishing local condensate order parameters. Above the crit-
ical hopping rate the particles start to delocalize. Further-
more, the staircase-like distribution of crystalline structures
is shifted to larger values of the detuning. In this regime, both

the long-range order and the finite condensate order parameter
indicate a variety of supersolid (SS) quantum phases, charac-
terized by φ̄ν �= φν

i , indicating an inhomogeneous distribution
of local condensate order parameters.

Around (tg/� ≈ 0.075,�/� ≈ 0) lies a regime in which
small unit cell states with high mean condensate order param-
eter of the Rydberg state φ̄e exist. We find that the system
favors a checkerboard distribution of the Rydberg excitations.
Due to the additional presence of a finite condensate order
parameter, we conclude the presence of a checkerboard-
supersolid quantum phase (CB-SS) in this regime. Sufficiently
high hopping rates cause the system to become homogeneous
and shift the phase boundary between supersolid and super-
fluid regime to higher positive detunings, rendering Rydberg
excitations at any low or negative detunings unfavorable.
Therefore, the system possesses a strongly reduced Rydberg
fraction ne, which leads to the loss of crystalline structures
and hereby the homogenization of the system. The finite local
ground-state condensate order parameter and the homogeneity
imply a superfluid quantum phase in this regime (SF), charac-
terized by φ̄ν = φν

i �= 0, meaning a homogeneous distribution
of nonzero local condensate order parameters. The striped
area in the lower right corner of the phase diagrams represents
the vacuum state regime.

Overall, these results well match the results previously
obtained with real-space bosonic dynamical mean-field theory
(RB-DMFT) [5].

IV. DECAY-DEPHASING-INDUCED STEADY STATES

We proceed to dynamical time evolution simulations
within the GA. The inclusion of nonunitary channels in open
quantum systems can be described with the master equation
in Lindblad form (LB), a first-order differential equation

d ρ̂(t )

dt
= − i

h̄
[Ĥ , ρ̂(t )] +

∑
k

{
L̂k ρ̂(t )L̂†

k − 1

2
[L̂†

k L̂k, ρ̂(t )]

}
.

(13)
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The Lindblad operator L̂k describes the kth nonunitary chan-
nel, which couples the system to its environment. In our case
Ĥ corresponds to the full Hamiltonian (1), and the time-
dependent density matrix ρ̂(t ) is that of the whole system.
Motivated by the previous calculations of the nondissipative
Gutzwiller ground states, we solve the Lindblad equation
(13) approximately by decoupling the lattice sites [38]. Ap-
plying the Gutzwiller ansatz to the density matrix ρ̂(t ) =⊗

i ρ̂i(t ), initially consisting of the single-site terms ρ̂i(0) =
|�(0)〉i〈�(0)|i, and using the single-site Hamiltonian Ĥi, a
decoupled Lindblad equation can be derived:

d ρ̂i(t )

dt
= − i

h̄
[Ĥi, ρ̂i(t )]

+
∑

k

{
PL̂i,k ρ̂i(t )L̂†

i,k − 1

2
[L̂†

i,kL̂i,k, ρ̂i(t )]

}
. (14)

We consider two nonunitary channels L̂i,k , the first one being
the decay of the Rydberg state to the ground state due to the
finite lifetime of the excited state. The photon emitted during
the decay leaves the system and hereby entangles it to the
environment. The corresponding Lindblad operator

L̂i,dec =
√

�
(
b̂g

i

)†
b̂e

i (15)

annihilates a particle in the Rydberg state and creates one in
the ground state with rate �. This corresponds to deexcitation
through spontaneous emission and is the first nonunitary
contribution.

Note that a decaying atom acquires a momentum kick
through emission of a photon and hereby gains energy given
by the recoil energy ER. Since we consider only the lowest
Bloch band, the optical lattice has to be sufficiently deep in
order to guarantee that the band gap is bigger than the energy
gained through the momentum kick, thus preventing possible
transitions of the atom to the second band. Optical lattice
depths above V0 = 5ER ensure the required band gap [39].

Two-photon excitation schemes are commonly used to
reach a Rydberg state with isotropic interaction in this field.
Despite the considered incoherent effects, these schemes may
cause additional complications such as atom loss from the
optical trap and population of degenerate ground states not
considered in the model. While leakage from the considered
internal degrees of freedom can be kept under control by a
depumping and repumping scheme [40–43], control of the
trap loss is a more demanding task and beyond the scope of
the present paper. A possible method to get rid of both effects
is to switch to a single-photon excitation scheme instead.
Even though the adressed Rydberg state possesses a nonzero
angular momentum quantum number the interaction can be
made isotropic in 2D by application of an external magnetic
field [44,45].

Additionally, a collective dephasing of particles in the Ry-
dberg state has been observed in several experiments [17–19].
There are several sources for this effect, one being the line
width of the excitation laser. Due to the finite line width
different Rydberg states are coherently addressed, which
quickly dephase before and after going back to the ground
state [20]. Theoretically, the dephasing can be explained by
means of the Hamiltonian. Since solely the interaction of one

Rydberg state is included in the description of the system,
the interaction with the nonincluded Rydberg states causes
an effective dephasing that scales, similar to an interaction,
with the Rydberg density of the system. The corresponding
Lindblad operator best modeling this effect reads

L̂i,deph = √
κ n̂e

i , (16)

where κ is the dephasing rate. We do not consider here
the avalanche-like atom and condensate loss caused by the
broadening, which has been observed and discussed in var-
ious works [46–48]. The branching of the Rydberg state to
contaminant states can be limited in a cryogenic environment
[49].

Solving the decoupled Lindblad equation (14) can be
approached in several ways. By setting d ρ̂(t )/dt = 0 one
can obtain an implicit function containing the density ma-
trix of the steady states of the system. Subsequent cal-
culations of the mean condensate order parameters φ̄ν

ss =
limt→∞

∑N
i=1 tr(ρ̂(t )b̂ν

i )/N indicate that the steady state is
always fully localized and does not possess any condensate
for finite nonunitary rates (φ̄ν

ss = 0). However, in doing so, we
lose valuable information about the dynamical evolution into
this steady state. Since we primarily focus on experimentally
states that are long-lived, meaning nearly constant behavior
of all considered observables, a time evolution simulation is
necessary.

Using the fourth-order Runge-Kutta method, we obtain the
discretized dynamics of the density matrices

ρ̂t+�t = ρ̂t + �t
4∑

i=1

biki,

ki = f

⎛
⎝t + ci�t, ρ̂t + �t

4∑
j=1

ai jk j

⎞
⎠

with f (·, ·) = d ρ̂(t )/dt given by the right-hand side of the
Lindblad equation (14). Note that time is discretized into time
steps ti of length �t . Furthermore, we choose the Runge-Kutta
coefficients ai j and bi in such a way that the quadratic first in-
tegrals of the density matrices are conserved [I (ρ̂ti ) = I (ρ̂t j ),
where I (ρ̂t ) = ρ̂T

t Cρ̂t with an arbitrary symmetric matrix C],
and the method hereby becomes symplectic. This ensures the
numerical conservation of all physically conserved quantities,
such as the total particle number, throughout the simulation
[50–52]. In the fourth-order Runge-Kutta method, this is
equivalent to the relation (bib j − biai j − b ja ji ) = 0.

We use the Gutzwiller ground states |�i〉 calculated for the
phase diagram in Fig. 2 as initial pure-state density matrices
ρ̂i(0) = |�〉i〈�|i of each site, perform the time evolution
simulations, and analyze the dynamics in terms of φν

i (t ) =
tr(ρ̂i(t )b̂ν

i ) and nν
i (t ) = tr(ρ̂i(t )n̂ν

i ).
In what follows, we focus on two specific supersolid

phases: a checkerboard-structured supersolid and a supersolid
with a more complex crystalline structure. We set the Rabi
frequency to � = 1MHz and use the natural units, hence
h̄ = 1.
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FIG. 4. Initial CB-SS quantum phase with average filling n̄ = 1.
The primitive cell of the system consists of two sites. The parameters
for the Gutzwiller calculations are Ug = 0.1,Uge = 5, Ue = 100,
V = 10 000, μ = 0.1, tg = 0.0414, te = 0, � = 0.069 with � as
scale.

A. Decay-dephasing-quench time evolution

We choose as an initial state a CB-SS with average filling
of n̄ = 1, as depicted in Fig. 4. We vary the rates of both
nonunitary processes, the spontaneous emission rate �/� ∈
[0, 5], and the dephasing rate κ/� ∈ [0, 20]. Those parameter
ranges serve only the purpose of identifying the influence
of both nonunitary processes. Values close to experimentally
relevant rates will be used later.

The time evolution begins with the sudden enabling of the
nonunitary channels, starting with the Gutzwiller ground state
of the CB-SS phase. Since the checkerboard structure is the
simplest crystalline one on the square lattice and we expect
the nonunitary processes to destroy long-range order and thus
reduce the crystalline order, this implies a transition into a
homogeneous system. In order to understand whether the CB-
SS can be preserved or is always unstable under the influence
of those processes, we perform time evolution up to a final
time t f = 100 μs and determine the observables 〈n̂ν

i (t f )〉 and
〈b̂ν

i (t f )〉 with ν ∈ {g, e} on both sublattices i ∈ {1, 2}.
We visualize whether the system is homogeneous or not

by plotting the imbalance �n = |n1(t f ) − n2(t f )| with ni =∑
ν〈n̂ν

i (t f )〉, which is the difference between the total occu-
pation numbers per site of both sublattices, for various decay
and dephasing rates. Plotted in Fig. 5(a) is the imbalance of
the checkerboard. Obviously, high decay and dephasing rates
lead to homogeneity, which confirms our expectations. For
intermediate rates, the imbalance is enhanced and increases
even further for lower rates, peaking around (�/�, κ/�) =
(0.5, 6).

We perform an exponential fit φ̄g(t ) = φ0eγ t of the mean
condensate order parameter of the ground state with φ0 =
φ̄g(t = 0), since we assume its behavior to be exponential for
now. In Fig. 5(b), the exponential decay constant γ is mapped
versus the decay and the dephasing rate. A loss of condensate
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FIG. 5. (a) imbalance �n(t f ) as a function of the decay and
dephasing rates; (b) the exponential decay constant of the mean
condensate order parameter of the ground state γ as a function of
the decay and dephasing rates (t f = 100 μs).

order parameter is observable for any nonunitary channel
enabled. The exponential decay constant grows by increasing
the decay and dephasing rates to intermediate values, but
decreases for even higher rates. We are able to quantitatively
discuss the dependence of the speed of the condensate loss to
the decay and dephasing rates: Reminiscent of the QZE, high
rates would imply a strong and continuous measurement of the
system, which effectively freezes the system. As a result, the
exponential decay constant, i.e., the speed of the condensate
loss, eventually becomes smaller for further increasing rates
of the nonunitary processes. The exponential decay constant
is maximal at about (�/�, κ/�) = (2.5, 15).

In order to better understand the effect of the decay and
dephasing, we perform and depict the dynamics for a few
representative decay and dephasing rate pairs (�/�, κ/�) at
particular parameter values previously mentioned (see Fig. 6).
First, we see in all cases the previously assumed exponential
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FIG. 6. Time evolution of relevant observables for an initial CB-
SS state shown in Fig. 4 for different decay and dephasing rates
�/� and κ/�. Low rates cause a slow decay of the condensate and
increase the imbalance �n of the system, moderate rates enhance
the speed with which the condensate drops, and high rates lead to
homogeneity.

decay behavior of the ground-state condensate order param-
eter φg, confirming our expectations. We begin with the time
evolution of the CB-SS quantum phase subject to spontaneous
decay and dephasing with low rates [see Fig. 6(a)]. The
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FIG. 7. Initial SS quantum phase with average filling n̄ ≈ 1.2.
The primitive cell of the system consists of eight sites. The parame-
ters for the Gutzwiller calculations are Ug = 0.1,Uge = 5, Ue = 100,
V = 10 000, μ = 0.25, tg = 0.099, te = 0, � = 2.18 with � as scale.

difference in the occupation numbers, e.g., the imbalance �n
increases steadily, while all local condensate order parameters
φg and φe slowly decay. Moving into the regime where the
imbalance �n peaks, we observe a transition to a state where
all considered observables tend to constant values, thus we
consider it a long-lived state [see Fig. 6(b)]. Compared to
the time evolution with lower nonunitary rates in Fig. 6(a),
an earlier and faster decay of all local condensate order pa-
rameters φg and φe at intermediate times can be seen. At later
times the system lost all its condensate and hereby becomes
a inhomogeneous DW quantum phase. We continue with the
regime of high decay and dephasing rates [see Fig. 6(c)].
The nonunitary processes cause a drop of the Rydberg state
population ne within a short time, which leads to a loss of
crystalline structure. The ground-state occupation number ng

oscillates around its average due to the quench of the decay
and dephasing rates and relaxes after approximately 150 μs.
Paired with the loss of condensate, we observe the dynamical
phase crossover to a homogeneous DW quantum phase.

We observe a decay of all local condensate order pa-
rameters induced by either nonunitary channel. Additionally,
we observe that the spatial distribution of particles remains
unaffected in the case of low rates of the nonunitary processes,
while high rates cause a rapid drop of the Rydberg fraction ne,
ultimately leading to the loss of long-range order.

We now focus on one representative SS with a more
complex structure, the geometry of which is described by four
sublattices, as depicted in Fig. 7. In contrast to the CB-SS,
where the transition into a homogeneous system has been
investigated through the calculation of the imbalance, here the
best way to analyze the effects of the nonunitary channels is
through the depiction of the dynamics.

We simulate the time evolution of the SS state depicted in
Fig. 7 for various sets of decay and dephasing rates. Plotting
the dynamics of the observables of each sublattice is not

033602-7



BARBIER, GEIßLER, AND HOFSTETTER PHYSICAL REVIEW A 99, 033602 (2019)

0.5

1

1.5

2

t = 0µs

0.5

1

1.5

2

t = 20µs

0.5

1

1.5

2

t = 50µs

0.5

1

1.5

2

t = 100µs

0.5

1

1.5

2

t = 200µs

0.5

1

1.5

2

t = 1000µs

FIG. 8. Time evolution of ng up to 1000 μs starting with the SS
configuration shown in Fig. 7 for �/� = 1 and κ/� = 0. Starting
with an initial SS, the spontaneous emission process drives the
system into a new SS quantum phase with a checkerboard-like long-
range order.

favorable, since their number and shape may vary along time.
Instead we plot the dynamics of each site of the primitive cell,
which consists of eight sites in total. First, we consider only
spontaneous emission (�/� �= 0, κ/� = 0). For small �/�

[see Fig. 9(a)], a finite loss of condensate order of both atomic
states is observed. Even though the spontaneous emission
rate is small, the Rydberg fraction ne of the system drops
fast. After approximately 150 μs, the attribution of sublattices
of the system changes to five and then relaxes into a new
crystalline order characterized by three new sublattices.

In order to gain insight into the time evolution, we depict
the real-space distribution of the observable ng at various
times and observe the dynamical phase crossover in Fig. 8.
The system relaxes into a quantum phase with crystalline
structure resembling a checkerboard-configuration. The oc-
cupation number of the ground and Rydberg state ng and ne

are seemingly constant in time, and both condensate order
parameters φg and φe decay at a low rate, rendering the newly
obtained checkerboard-like SS quantum phase a long-lived
one. On the other hand, high spontaneous emission rates [see
Fig. 9(b)] cause a relaxation into a homogeneous state. The
rapid decay of all observables persists up to approximately
200 μs. Afterwards, the ground-state occupation number ng

remains steady at a finite value, while the condensate order
parameter of both states φg and φe further decays slowly. The
system loses a significant amount of the Rydberg fraction ne

after a short time due to the high spontaneous emission rate.
The vanishing population of the Rydberg state is responsible
for the transition into homogeneity, as the system no longer is
subject to long-range interaction. Furthermore the attribution
of sublattices stays the same in comparison to the case of low
spontaneous emission rate.

The case of no spontaneous emission and only dephasing
(�/� = 0, κ/� �= 0) is depicted in Fig. 9(c). The expectation
values initially strongly fluctuate, while all observables show a
slow relaxation. Although the system retains the identical four
sublattices, their observables evolve over time: The overall
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FIG. 9. Time evolution of relevant observables for an initial SS
state shown in Fig. 7 for different decay and dephasing rates �/�

and κ/�. A low spontaneous emission rate induces a transition
into a SS with new crystalline structure, while strong decay leads
to the homogenization of the system. Dephasing does not destroy
long-range order.

condensate order parameter decays, and the Rydberg fraction
ne of the system grows after an initial drop.

Compared to the case of spontaneous emission only, even
high dephasing rates do not seem to lead to homogenization
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FIG. 10. Time evolution of relevant observables for an initial SS
state shown in Fig. 7 for fixed rates �/� = 0.1 and κ/� = 0.1.
Fluctuations are strong, but the depletion of the condensate is slow
and the system remains a SS for long times.

of the system, whereas high spontaneous emission rates do,
since dephasing does not induce a loss of Rydberg excitations
in the system.

The time evolution with low but finite decay and dephasing
rates (�/� �= 0, κ/� �= 0) is shown in Fig. 10. On top of the
evolution of the observables on each of the four sublattices,
strong fluctuations emerge. By performing a Fourier trans-
formation of the time evolution, we clarify the origin of the
dynamics. We consider the evolution of the ground-state oc-
cupation number ng of Fig. 10 and perform a Fourier transfor-
mation for several time windows. In Fig. 11, we plot the power
of the signal versus frequency for different time windows.
Two prominent peaks are seen around 0.5� and �. While the
last one remains fixed throughout the time evolution, the first

0.5 1 1.5 2

0

100

200

300

400

500

600

700

800 0

1

2

3

4

5

6

7

8

9
10-3

FIG. 11. Frequency spectrum of the site-averaged time evolution
of the ground state occupation number ng depicted in Fig. 10 for
various time windows of length 200 μs with varying starting time
t . Dominant frequencies are found around 0.5� and �, and a small
peak is hinted at around 2�.

slightly varies in frequency. Comparing the parameters of the
Hamiltonian (8), we determine that the first peak belongs to
the tunneling process of the ground-state atoms. Within the
mean-field apprximations used in the derivation of the Hamil-
tonian, the tunneling rate tg is scaled with the condensate order
parameter of surrounding sites through ξ

g
i . Due to the loss of

coherence in the system, the condensate order parameter of
the ground state φg decays and the effective tunneling rate tgξ

g
i

along with it. The peak at � represents the Rabi oscillation. A
small peak is hinted at around 2�; however, its origin is yet
unknown. Furthermore, by looking at the time dependence
of the frequency spectrum, we see that the early dynamics
arise from the hopping mechanism, whereas late dynamics are
determined by the Rabi oscillations.

A Fourier transformation of the dynamics depicted in
Figs. 9(a)–9(c) yields a highly similar frequency spectrum,
although the small 2�-peak does not appear. Although those
fluctuations are present, the evolution of the SS configuration
at later times is slow, which renders the observed quantum
phase long-lived.

We conclude that each dynamical phase crossover is pre-
ceded by an initial strong fluctuation of all observables, caused
by the sudden enabling of the decay and dephasing processes,
inducing a initial perturbation before going into a smooth
relaxation. In the presence of low decay or dephasing rates,
we observe a crossover into a long-lived transient SS, which is
approximately checkerboard-ordered, while high rates of the
nonunitary processes lead to a dominant loss of condensate
and homogeneity in the case of the spontaneous emission.

B. Detuning-quench time evolution

We now investigate whether the long-lived SS quantum
phases discussed previously are dependent on the initial state.
If not, we are able to truly refer to those phases as decay-
dephasing-induced states, since their dependence on the rates
of the nonunitary channels can be considered a generic prop-
erty. For that purpose, we perform detuning-quench-type time
evolution simulations: We start with a homogeneous configu-
ration corresponding to far-negative detuning (�/� → −∞),
which results in a homogeneous system without Rydberg
excitations, and then perform a time evolution after a quantum
quench to a suddenly enabled transition to the Rydberg state
with finite �/�.

Using the same parameters as in Fig. 4 and Fig. 7, we
start with an initial homogeneous state and simulate the time
evolution for different decay and dephasing rates. We set the
single-site filling of the system to be equal to the average
filling of the respective SSs, which we used as initial states in
Sec. IV A. Since the time evolution preserves the total particle
number of the system, we expect that for equal initial average
occupation number n̄ and equal parameters the homogeneous
state might converge to the dynamics previously observed for
the decay-dephasing quenches.

First, we perform the time evolution of the homogeneous
initial state with the average filling and parameters refer-
enced in Fig. 4 and the decay and dephasing rates used in
Fig. 6. For low rates [see Fig. 12(a)], the detuning quench
of the system induces strong initial fluctuations, which even-
tually relax to the dynamics of the time evolution of the
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FIG. 12. Comparison between the decay-dephasing-quench time
evolution of the CB-SS [dashed blue and red lines from Figs. 6(a)–
6(c)] and the detuning-quench time evolution of an initially homoge-
neous system (solid green and orange lines) for different decay and
dephasing rates �/� and κ/�.

decay-dephasing quench. We observe that not only the final
state, but also the dynamics are primarily determined by the
decay and dephasing rates. Intermediate rates suppress the
initial fluctuations and delay the formation of a checkerboard
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FIG. 13. Time evolution of relevant observables for an initial
homogeneous state with the parameters used in Fig. 7 for fixed rates
�/� = 0.1 and κ/� = 0.1. The system goes through two symmetry
breakings and converges to the evolution of the initial quantum phase
with initial supersolid configuration (compare with Fig. 10).

[see Fig. 12(b)]. Despite the convergence of the ground-state
occupation number ng of the initially homogeneous system to
different values, the dynamics of all other observables closely
resemble the dynamics with initial CB-SS configuration, es-
pecially the Rydberg state occupation number ne. In the case
of high rates of the nonunitary processes [see Fig. 12(c)],
the symmetry-breaking is prevented and the system stays ho-
mogeneous. This also indicates that the previously discussed
nonvanishing imbalance observed in Fig. 6(c) is indeed an
artifact of the mean-field approximation and should vanish
for the parameters, decay and dephasing rates used. The other
observables, however, show striking similarities to the decay-
dephasing-quench time evolution simulations.

We then perform the detuning-quench-type time evolution
with the average filling and parameters referenced in Fig. 7.
We depict the dynamics at low decay and dephasing rates
�/� = 0.1, κ/� = 0.1 for an initially homogeneous system
(see Fig. 13). After a few microseconds, the system goes
through its first symmetry breaking and develops a checker-
board configuration with two sublattices. Around 250 μs, the
system breaks its symmetry a second time and converges to
the time evolution of the decay-dephasing-quench (shown in
Fig. 10).

We conclude that the long-time dynamics and long-lived
states of the system are not dependent on the initial state in
the case of low decay and dephasing rates, whereas they may
vary for higher rates. Since realistic experimental values of the
nonunitary rates are at most �max/� = 0.5 and κmax/� = 0.1
[15,53], it is safe to assume that the experimental observation
of such long-lived SS states is possible.

V. CONCLUSIONS AND OUTLOOK

Through the treatment of the many-body Hamiltonian
within the Gutzwiller approximation, a variety of equilibrium
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quantum phases, in particular SSs, have been obtained in
experimentally feasible regimes. The successful application of
the master equation in Lindblad form allowed us to include the
effects of decay and dephasing of the Rydberg state, and lead
us to interesting dynamical crossovers in the time evolution.
For the studied CB-SS quantum phase, high rates of decay or
dephasing result in the homogenization of the system, while
low rates preserve the checkerboard structure of the system.
Furthermore, the condensate order parameter decreases at a
speed that depends on the rates of the spontaneous emission
and dephasing. In the case of either slow or high nonunitary
rates, the condensate order parameter depletes slowly while
the decrease is fastest at intermediate rates. For the considered
noncheckerboard SS quantum phase, in the presence of decay
and dephasing, the initial SS state is not stable. However,
a transition into a long-lived transient checkerboard-like SS
phase was observed for experimentally realistic decay and
dephasing rates. Similar to the results obtained from the time
evolution of an initial CB-SS phase, strong dissipation leads
to a loss of long-range order and homogenizes the system.
Finally, we have verified that the long-lived SS quantum phase

is only weakly dependent on the initial state, and should
therefore be realizable in experiments.

The branching mechanism to contaminant states briefly
mentioned in the theoretical part of Sec. IV could be a good
addition in subsequent investigations. Additionally the gen-
eralization of the theoretical decay process description with
regard to additional loss processes in two-photon excitation
schemes would help to enable more experimental setups to
study these systems and therefore presents another future line
of work.

Nonetheless, our results provide a possible avenue towards
the observation of interaction-driven supersolid order.
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