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A set of cross sections for the formation of a pair of 2p atoms on an absolute scale is determined against
the incident photon energy in the double photoexcitation of the isotopomers H2, HD, and D2, incorporating the
same cross sections of H2 and D2 obtained in our recent experiments [K. Hosaka et al., Phys. Rev. A 93, 063423
(2016)], and the oscillator strengths for the formation of a pair of 2p atoms from the precursor Q2

1�u(1) state,
f H2/HD/D2
2p2p (Q2

1�u(1)), are determined from the cross sections. The oscillator strength of HD, f HD
2p2p(Q2

1�u(1)),

is found to be larger than the value expected from f H2/D2
2p2p (Q2

1�u(1)), considering the same decay mechanism
for H2, HD, and D2 molecules photoexcited to the Q2

1�u(1) state, a mechanism which was revealed in our
recent experiments for H2 and D2 mentioned above. The origin of the enhancement in the oscillator strength for
HD is discussed and we show that the enhancement is attributed to nonadiabatic transitions between a gerade
electronic state and an ungerade one through a term neglected in the Born-Oppenheimer approximation that
vanishes in the homonuclear isotopomers (H2 and D2) but does not vanish in the heteronuclear isotopomer (HD).
It turns out that approximately 10–20 % of f HD

2p2p(Q2
1�u(1)) originates from such nonadiabatic transitions due

to the breaking of the space-inversion symmetry for electrons.

DOI: 10.1103/PhysRevA.99.033423

I. INTRODUCTION

Doubly excited states of atoms and molecules are embed-
ded in ionization continua and superposed with the continuous
electronic states with nearly the same energy [1], in con-
trast to excited electronic states below the ionization energy.
The superposition of a discrete electronic state and nearby
continuous electronic states results in the autoionization of
atoms and molecules. As for molecular doubly excited states,
another point should be noted: They are not separated into
electronic and nuclear parts due to this superposition, i.e., they
are not described with the Born-Oppenheimer products [2,3].
The dynamics of doubly excited molecules have thus been an
attractive subject for research for these aspects, in particular,
for hydrogen molecules [4–20], which have the advantage that
the repulsive potential energy curves and resonance widths of
doubly excited states, fundamental quantities in the investi-
gation of their dynamics, have been intensively calculated, in
contrast to other molecules [21–28]. The dynamics of doubly
excited hydrogen molecules, however, have not been fully un-
derstood. The dynamics of the forbidden doubly excited states
have been less studied than the allowed ones, e.g., the origin of
a forbidden peak found in the electron energy loss spectra of
H2 [29] and D2 [30] tagged with 2p atom formation remains
unidentified [12]. Another issue is related to the breaking of
the space-inversion symmetry, which is an interesting and
important phenomenon in atomic and molecular physics [31].
Although the breaking of the space-inversion symmetry is
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expected to be observed in the dynamics of the doubly excited
HD molecules, as discussed in the following, the breaking has
not been substantiated.

In H2 and D2 as well as HD molecules, the nuclear charges
are the same and the electronic states are hence labeled
gerade or ungerade according to the eigenvalues of the space-
inversion operator for electrons within the Born-Oppenheimer
approximation. The interaction between a gerade state and
an ungerade state of diatomic molecules, abbreviated as the
g-u interaction, is forbidden (see, e.g., Table 3.2 on p. 97
in Ref. [32]) within the Born-Oppenheimer approximation,
but in fact the weak g-u interaction occurs because, as dis-
cussed in Sec. III C, a term that does not commute with
the space-inversion operator for electrons is added to the
total Hamiltonian of a diatomic molecule of interest to the
higher-order approximation, a term which does not vanish
for HD but vanishes for H2 and D2. The g-u interaction, a
result of the breaking of the space-inversion symmetry, is
hence characteristic of the heteronuclear isotopomer HD and
is forbidden in the homonuclear isotopomers H2 and D2.
Based on the discussion above, it becomes a significant sub-
ject to experimentally separate one doubly excited state from
among various doubly excited states of these isotopomers
and determine the role of the breaking of the space-inversion
symmetry in the dynamics of the doubly excited state through
a comparison among H2, HD, and D2 based on the fact that
the breaking of the space-inversion symmetry occurs for HD
but does not occur for H2 and D2.

From the experimental side, the key to observing the
doubly excited states is extracting the discrete electronic states
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from the superposition with continuous electronic states [33].
We have hence determined cross sections for the emission of
fluorescence from neutral fragments as functions of excitation
energy [5,6,12,20] since the detection of such fluorescence
photons, in contrast to the detection of charged species, ex-
cludes the contribution of the continuous electronic states and
the contribution of the discrete electronic state is naturally
extracted as a result. Following this line, we investigated the
dynamics of the doubly excited Q2

1�u(1) state by determin-
ing the cross sections for the formation of a pair of 2p atoms
against the incident photon energy in the range 30–40 eV in
the photoexcitation of H2 and D2 [5,20]; this formation is
abbreviated to 2p + 2p pair formation in the present paper.
Only the Q2

1�u(1) state was observed in the cross-section
curve, taking advantage of the coincidence detection of two
Lyman-α photons, in contrast to the detection of a single
Lyman-α photon [7,13], and the decay mechanism of the state
was identified (see the blue arrows in Fig. 3). A clear isotope
effect was seen, i.e., the oscillator strength for 2p + 2p pair
formation in D2 is 0.69 times that in H2, which was explained
by the competition around the Franck-Condon region between
the mass-independent autoionization rate and mass-dependent
neutral-dissociation rate for hydrogen molecules dissociating
down the repulsive potential energy curve of the Q2

1�u(1)
state [20].

In the present experiment we determine the cross sections
for 2p + 2p pair formation against the incident photon energy
in the photoexcitation of HD and compare the cross sections
with those in the photoexcitation of H2 and D2 [20] to study
the role of nonadiabatic transitions between gerade and unger-
ade electronic states in the oscillator strength for 2p + 2p
pair formation from the photoexcited Q2

1�u(1) state of HD.
Those transitions are brought about by the breaking of the
space-inversion symmetry and are abbreviated as g-u nona-
diabatic transitions.

The g-u interaction was extensively studied in rovibrational
levels of singly excited states of HD by means of high-
resolution spectroscopy as reviewed in [31]. The interaction
was also found in the study of predissociation rates in 7Li7Li,
6Li6Li, and 6Li7Li dimers [34,35] and the study of the intensi-
ties in the high-resolution inner-shell photoelectron spectra of
14N14N, 15N15N, and 14N15N molecules [36]. Here we study
the dynamical effect of the breaking of the space-inversion
symmetry due to the isotope substitution for the doubly ex-
cited states.

II. EXPERIMENT

Cross sections for 2p + 2p pair formation in the photoex-
citation of HD have been measured at the bending beamline
BL-20A of the Photon Factory, KEK, equipped with a 3-m
normal-incidence monochromator [37]. The experimental ap-
paratus is the same as that used to measure the same cross
sections for H2 and D2 in our recent experiments [20] and is
hence discussed briefly below.

A. Outline of the apparatus

Linearly polarized light was introduced into a gas cell
filled with the sample gas. The HD gas was purchased from

Cambridge Isotope Laboratories, Inc. and its chemical and
isotope purities were 98% and 97%, respectively. A pair
of Lyman-α photons was detected in coincidence by two
detectors, which were fitted to the gas cell and placed on the
plane perpendicular to the incident light beam. The detectors
on the plane were positioned to face in opposite directions
and aligned on the line perpendicular to the unit polarization
vector of the linearly polarized incident light. The coincidence
measurement was carried out at a given energy (ranging from
30 to 40 eV) of the incident photon with the coincidence
system shown in Ref. [20]. The bandpass of the wavelength of
the incident light was 0.14 nm (an energy width of 140 meV at
an incident photon energy of 35 eV). The flux of the incident
photons was measured at the exit of the gas cell by measuring
the photocurrent of an Au plate. The sensitivity of the Au
plate was obtained against the incident photon energy with
successive measurements of photocurrents of the Au plate
and silicon photodiode (model AXUV-100G, IRD Inc.). The
sensitivity of the latter was provided by NIST.

B. Photon detectors

Each photon detector for the vacuum ultraviolet radiation is
comprised of a 1-mm-thick MgF2 window and microchannel
plate (F4655-10, Hamamatsu photonics) coated with CsI,
which provides a filter range of approximately 115–200 nm in
wavelength. Only the Lyman-α fluorescence, with a 121.6-nm
wavelength for H atoms, is detected in the present range of
incident photon energy, 30–40 eV, for the following reason:
Since doubly excited hydrogen molecules produced with pho-
toexcitation decay through autoionization and neutral disso-
ciation and excited H2

+ (HD+ and D2
+) ions decay through

dissociation with the contribution of the fluorescent process
from both species being negligible, fluorescence is emitted
by excited hydrogen atoms alone. The Lyman-α fluorescence
penetrates the 1-mm-thick MgF2 window while the Lyman-β
fluorescence, with a 102.6-nm wavelength for H atoms, does
not penetrate as well as other Lyman fluorescences. Other
fluorescence of atomic hydrogen besides the Lyman series
does not lie in the vacuum ultraviolet range.

C. Determination of the cross sections
for 2p + 2p pair formation

The procedure for determining the absolute values of the
cross sections for 2p + 2p pair formation in the photoex-
citation of HD is the same as that in the photoexcitation
of H2 and D2 discussed in detail in Ref. [20] and only
the outline is given here. A two-photon coincidence time
spectrum was recorded at a given energy of the incident
photon E with the coincidence system shown in Ref. [20],
from which spectrum a two-photon coincidence count rate
Ṅcd (E ,�c,�d ) was obtained following the manner given in
Ref. [20]. The angles �c and �d express the directions of
the photon detectors c and d , respectively, with respect to the
unit polarization vector of the incident light. It was found in
our recent experiments [20] that the two-photon coincidence
rate is proportional to the D2 gas pressure in the gas cell up
to 2.0 Pa. The HD gas pressure is thus kept lower than ap-
proximately 1 Pa in the present experiments. The two-photon
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coincidence count rate Ṅcd (E ,�c,�d ) in the photoexcitation
of hydrogen molecules in such a pressure range where the
proportional relation with the target gas pressure is seen is
related to the angle-differential cross section for the emission
of a pair of the Lyman-α photons averaged with the angular
resolution 〈q〉(E ,�c,�d ) [20],

Ṅcd (E ,�c,�d ) = 2n

(
I ′(E )Gcd (�c,�d )

A

)
ηcd〈q〉(E ,�c,�d ),

(1)

where n is the number density of target molecules, I ′(E )
the flux of the incident photons, A the cross-section area of
the incident photon beam, Gcd (�c,�d ) the geometric factor,
and ηcd the coincidence detection efficiency of the photon
detectors for the Lyman-α photons. The geometric factor
Gcd (�c,�d ) is in fact independent of (�c,�d ), as discussed
in Ref. [17]. It is also independent of the incident photon
energy E since the position and shape of the incident light
beam do not change quite as much in the present range of
incident photon energy. For the same reason, A is independent
of E . The flux of the incident photons I ′(E ) is related to the
photocurrent of the Au plate iAu(E ) as

I ′(E ) = CK (E )iAu(E ), (2)

where C is a constant independent of E . The function K (E ),
which is related to the sensitivity of the Au plate as a function
of incident photon energy, was obtained with the successive
measurements of photocurrents of the Au plate and silicon
photodiode as discussed in Sec. II A.

According to Eqs. (1) and (2), the coincidence count rate
Ṅcd (E ,�c,�d ) is normalized for the target gas pressure and
flux of incident photons and the normalized rate is denoted by
Scd (E ,�c,�d ),

Scd (E ,�c,�d ) = Ṅcd (E ,�c,�d )

P[K (E )iAu(E )]
, (3)

where P is the pressure of target molecules in the gas cell. The
normalized count rate Scd defined in Eq. (3) is related to the
angle-differential cross sections 〈q〉 by

Scd (E ,�c,�d ) = 2

kBT

CGcd (�c,�d )

A
ηcd〈q〉(E ,�c,�d ),

(4)

where T is the temperature of the target gas, the room tem-
perature in this experiment, and kB is the Boltzmann constant.
The plot of the values of Scd (E ,�c,�d ) against the incident
photon energy E with the angle �c and �d held fixed hence
shows the plot of the cross section 〈q〉(E ,�c,�d ) against E
on a relative scale of the vertical axis.

In fact, however, we carry out the reference measurements
at a constant energy of the incident photon E ref to compensate
for a possible but small and slow change of the geometric fac-
tor Gcd (�c,�d ), the sensitivity of the detectors ηcd , the cross-
section area A, and the factor C in Eq. (4) during the measure-
ment of 〈q〉 against E . Reference measurements are carried
out before and after the measurement of Ṅcd (E ,�c,�d ) so
that Ṅb

cd (E ref,�c,�d ) and Ṅa
cd (E ref,�c,�d ), respectively, are

obtained, and the following relation is derived:

Scd (E ,�c,�d )
1
2

[
Sb

cd (E ref,�c,�d ) + Sa
cd (E ref,�c,�d )

]

= 〈q〉(E ,�c,�d )

〈q〉(E ref,�c,�d )
. (5)

In deriving Eq. (5) the factor CGcd (�c,�d )ηcd

A in Eq. (4) is
considered unchanged during the measurements of Ṅb

cd , Ṅcd ,
and Ṅa

cd . We eventually plot the values on the left-hand side of
Eq. (5) against the incident photon energy E with the angle �c

and �d held fixed at −90◦ and 90◦, respectively, as mentioned
in Sec. II A, so that the relative values of 〈q〉(E ,−90◦, 90◦)
are shown against E . The value of E ref was chosen to be
33.66 eV, as in our recent experiments [20].

The coincidence count rates for H2 and HD at E ref, i.e.,
ṄH2

cd (E ref,−90◦, 90◦) and ṄHD
cd (E ref,−90◦, 90◦), respectively,

have been sequentially measured so that the ratio of 〈qH2〉
(E ref,−90◦, 90◦) and 〈qHD〉(E ref,−90◦, 90◦) has been ob-
tained with the factor CGcd (�c,�d )ηcd

A in Eq. (4) again considered
unchanged during the measurement. We multiply the cross-
section ratio 〈qHD〉(E ,−90◦, 90◦)/〈qHD〉(E ref,−90◦, 90◦),
obtained according to Eq. (5), by the ratio 〈qHD〉
(E ref,−90◦, 90◦)/〈qH2〉(E ref,−90◦, 90◦) to obtain the
values of 〈qHD〉(E ,−90◦, 90◦)/〈qH2〉(E ref,−90◦, 90◦)
against the incident photon energy E . In our recent
experiments for H2 and D2 [20], the values of 〈qH2/D2〉
(E ,−90◦, 90◦)/〈qH2〉(E ref,−90◦, 90◦) were obtained against
E . As seen above, the denominator 〈qH2〉(E ref,−90◦, 90◦) is
common throughout the H2, HD, and D2 experiments.

The values of 〈qM〉(E ,−90◦, 90◦)/〈qH2〉(E ref,−90◦, 90◦)
(M = H2, HD, and D2) are almost equal to those of

σ M
2p2p(E )/σ H2

2p2p(E ref )

where σ M
2p2p(E ) are the cross sections for 2p + 2p pair forma-

tion to be determined in the photoexcitation of M (=H2, HD,
and D2), because of the following reason. Angular correlation
functions of a pair of Lyman-α photons were measured at
33.66-eV incident photon energy for H2 [17], HD [38], and
D2 [38] and it was found that the isotope effect on the angular
correlation function is negligible and the angular correlation
is not so strong for each molecule. The angular correlation
function in the photoexcitation of H2 and D2 is likely to
be independent of the incident photon energy in the range
30–40 eV since only the Q2

1�u(1) state is involved in
2p + 2p pair formation [20]. The energy-independent angular
correlation also seems to be the case for HD because of the
dominant contribution of the Q2

1�u(1) state in HD, which
is discussed in Sec. III. It hence follows that the values of
〈qM〉(E ,−90◦, 90◦)/〈qH2〉(E ref,−90◦, 90◦) are almost equal
to those of σ M

2p2p(E )/σ H2
2p2p(E ref ). By simply obtaining the

absolute value of σ
H2
2p2p(E ref ), we are hence able to determine

the absolute values of σ M
2p2p(E ) for M (=H2, HD, and D2). The

method for obtaining the absolute value of σ
H2
2p2p(E ref ) was

described in detail in Ref. [20] and is based on the quantum
yields of H(2s) formation and H(2p) formation from the
Q2

1�u(1) state of H2 [7] and the oscillator strength for H(2s)
formation from the Q2

1�u(1) state of H2 [14]. The absolute
values of σ HD

2p2p(E ) are thereby determined against the incident
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FIG. 1. Plot of cross sections for 2p + 2p pair formation in the
photoexcitation of H2 (�), HD (◦), and D2 (♦) against the incident
photon energy.

photon energy in this experiment. The values of σ
H2
2p2p(E )

and σ
D2
2p2p(E ) have also been determined at many energies of

the incident photon in addition to those energies where the
cross sections were determined in our recent experiments [20]
because more data points enable us to obtain a more accurate
value of the oscillator strength for 2p + 2p pair formation. We
note that the validity of the present procedure for obtaining the
absolute values of σ2p2p(E ) was substantiated through com-
paring the experimental S(E ref,−90◦, 90◦) for D2 in Eq. (3)
and that calculated following Eq. (4) from the simulated value
of Gcd/A, expected values of ηcd and C, and the value of
σ

D2
2p2p(E ref ) determined in the present way [the approximate

relation σ
D2
2p2p(E ref )/(4π )2 = 〈qD2〉(E ref,−90◦, 90◦) was used

because of the weak angular anisotropy in the emission of
Lyman-α photon pairs [38] mentioned before] [20].

III. RESULTS AND DISCUSSION

In Fig. 1 the absolute values of the cross sections
for 2p + 2p pair formation in the photoexcitation of HD,
σ HD

2p2p(E ), are plotted against the incident photon energy E .

Those in H2, σ
H2
2p2p(E ), and D2, σ

D2
2p2p(E ), are also plotted

(many points for H2 and D2 have been added to those
obtained in our recent experiments [20]). The error bar is
attributed to the statistical uncertainty of the two-photon co-
incidence count rates involved in the procedure discussed in
Sec. II C.

As mentioned in Ref. [20], the precursor doubly excited
state of the 2p + 2p pair is the Q2

1�u(1) state for H2

and D2, and the decay mechanism of H2 and D2 molecules
photoexcited to the Q2

1�u(1) state has been identified as
shown with the blue arrows in Fig. 3: (i) H2 (D2) molecules
photoexcited to the Q2

1�u(1) state in the Franck-Condon
region dissociate down its repulsive potential curve (the blue
horizontal solid arrow) and (ii) a proportion of the molecules
transfer to the Q2

1�u(2) state around the internuclear dis-
tance of 5.6a0 through the nonadiabatic radial coupling (the
blue vertical arrow) and then dissociate down the repulsive po-
tential curve of the Q2

1�u(2) state into the 2s + 2p pairs (the
blue horizontal dashed arrow) while the rest of the molecules

TABLE I. Experimental oscillator strengths of 2p + 2p pair
formation from the Q2

1�u(1) state, f2p2p(Q2
1�u(1)), in the pho-

toexcitation of H2, HD, and D2. They have been obtained through
integrating the cross-section curves in Fig. 1 over the incident photon
energy [20]. The ratio of the relative velocities of the two nuclei is
shown for the discussion in Sec. III A.

Ratio of nuclear
Isotopomer f2p2p(Q2

1�u(1)) relative velocities

H2 (3.5 ± 0.1) × 10−4 1
HD (3.8 ± 0.1) × 10−4 0.87
D2 (2.5 ± 0.1) × 10−4 0.71

remain dissociating down the repulsive potential curve of the
Q2

1�u(1) state into the 2p + 2p pairs (the blue horizontal
solid arrow again). The shape of the cross-section curve for
HD is similar to those of H2 and D2, hence we conclude that
the cross-section curve for HD is again attributed to the doubly
excited Q2

1�u(1) state. The peak energy for HD is higher
than that for H2 by 350 meV and the peak energy for D2 is
higher than that for HD by 450 meV. The ascending order of
the peak energies is in reasonable accord with the descending
order of the zero-point energies in the ground electronic state
of hydrogen molecules, but the magnitude of the difference
in the peak energies is not accounted for by the difference in
the zero-point energies alone: The zero-point energy in HD is
lower than that in H2 by 36 meV and the zero-point energy in
D2 is lower than that in HD by 43 meV [39].

A. General discussion about the isotope effect on the oscillator
strengths for 2p + 2p pair formation

The oscillator strengths of 2p + 2p pair formation from
the Q2

1�u(1) state, f2p2p(Q2
1�u(1)), have been obtained

through integrating the cross-section curves in Fig. 1 over
the incident photon energy E (see Ref. [20] for details) and
are summarized in Table I. The clear isotope effect between
H2 and D2 in Table I is explained as a consequence of the
competition between the electronic autoionization and neutral
dissociation from the Q2

1�u(1) state as discussed below
[20]. The potential energy curve and resonance width of a
doubly excited state have no isotope effects and the latter gives
the rate of electronic autoionization. On the other hand, the
relative velocity of two nuclei separating down the potential
energy curve in D2 is 1/

√
2 (=0.71) times that in H2 (see

Table I) and D2 thus needs more time to reach the region of
the internuclear distance of zero or a small resonance width
than H2. As a result, D2 has a lower probability of escaping
from the autoionization than H2. The oscillator strength of an
electronic excitation has just a small isotope effect since the
sum of the Franck-Condon factors of the electronic excitation
is equal to unity, as discussed in Ref. [20]. In general, the
heavier isotope substitution thus makes the state-resolved os-
cillator strength of neutral dissociation smaller and makes the
state-resolved oscillator strength of autoionization larger. The
isotope effect between H2 and D2 in Table I is qualitatively
explained in this way. Based on this discussion and the fact
that the relative velocity of the two nuclei in HD is

√
3/2 =

0.87 times that in H2 (see Table I), the oscillator strength for
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FIG. 2. Correlation between the experimental oscillator
strengths of 2p + 2p pair formation from the Q2

1�u(1) state,
f2p2p(Q2

1�u(1)), and those of neutral dissociation from the
Q2

1�u(1) state, fND(Q2
1�u(1)), calculated in the quantal manner

[40–42] (open symbols) and the semiclassical manner in this study
(closed symbols). The dotted line is the best result of fitting the
proportional relation to the two open symbols. Red squares are for
H2, green circles for HD, and blue diamonds for D2 (the symbols are
the same as in Fig. 1). The plus shows the value of f2p2p(Q2

1�u(1))
for HD expected from those for H2 and D2 based on the assumption
that the decay mechanisms of hydrogen molecules photoexcited to
the Q2

1�u(1) state are the same for H2, HD, and D2.

HD seems larger than the value expected from H2 and D2,
which is substantiated in the following section.

B. Enhanced oscillator strength for
2p + 2p pair formation in HD

Figure 2 shows a correlation between the experimen-
tal values of f2p2p(Q2

1�u(1)) and the theoretical oscillator
strengths of the neutral dissociation from the Q2

1�u(1)
state, fND(Q2

1�u(1)). The neutral dissociation means es-
caping from the autoionization in the Q2

1�u(1) state and
the theoretical fND(Q2

1�u(1)) hence reflects the competi-
tion between the mass-independent autoionization rate and
the mass-dependent neutral dissociation rate, which is the
origin of the isotope effect as discussed in Sec. III A. The
values of fND(Q2

1�u(1)) were calculated by solving the
time-dependent Schrödinger equation of H2 and D2 under a
photon field [40–42], with nonadiabatic transitions not being
taken into account. The correlation between the experimental
f2p2p(Q2

1�u(1)) and the theoretical fND(Q2
1�u(1)) [40–42]

is shown for H2 and D2 in Fig. 2 (open symbols), where
both open symbols align well on a line passing through the
origin (dotted line). A good correlation has been found for
H2 and D2, which is likely to be attributed to the fact that
the decay mechanisms of hydrogen molecules photoexcited
to the Q2

1�u(1) state are the same for H2 and D2, as shown
with the blue arrows in Fig. 3 [20]; the autoionization rates
of the Q2

1�u(1) state are also the same, but the relative
velocities of two nuclei down the repulsive potential curve of
the Q2

1�u(1) state are different because of the difference in
the nuclear masses in H2 and D2 (see Table I). The slope of

Π

Π

Σ

Π

Π

Δ

Σ

FIG. 3. Schematic diagram showing the possible doubly excited
states and nonadiabatic transitions that may influence the values
of f2p2p(Q2

1�u(1)) in the photoexcitation of H2, HD, and D2 to
the Q2

1�u(1) state. The potential energy curves of the doubly
excited states are repulsive and the horizontal arrows denote the
adiabatic dissociation channels [26], while the vertical arrows denote
the nonadiabatic transitions at the indicated internuclear distances
R. The red vertical arrows show the g-u nonadiabatic transitions
due to the Ĥg-u term and the blue vertical arrows the nonadiabatic
transitions due to the radial coupling. The blue channels starting from
the Q2

1�u(1) state, shown by the blue horizontal and blue vertical
arrows, have been substantiated for H2 and D2 [20]. The resonance
width 	 at the internuclear distance of 6a0 is shown for each doubly
excited state [23].

the dotted line is much less than unity, which is consistent
with our result that the oscillator strengths for 2s + 2p pair
formation from the Q2

1�u(1) state of H2 and D2 are about
6 times those for 2p + 2p pair formation from the same state
of H2 and D2, respectively [20].

Unfortunately, fND(Q2
1�u(1)) has not been calculated

for HD with the method like the quantal one described in
Refs. [40–42]. We hence use a semiclassical manner for cal-
culating the values of fND(Q2

1�u(1)) for H2, HD, and D2, as
discussed below. The probability that hydrogen molecules in
the Q2

1�u(1) state escape from the autoionization during the
classical motion of the separating nuclei from the equilibrium
internuclear distance 1.4a0 to the internuclear distance of
5.6a0 [20] has been calculated for H2, HD, and D2 in the
present study following the way given in Refs. [30,43,44];
these probabilities are referred to as the survival probabilities
and are denoted by s(Q2

1�u(1)),

s(Q2
1�u(1)) = exp

(
−

∫ R=5.6a0

R=1.4a0

	(R)

h̄v′(R)
dR

)
, (6)

v′(R) =
(((

1

2

{
[v(R)]2 +

[
[v(R)]4 +

(
	(R)

μ

)2]1/2})))1/2

,

(7)

where 	(R) is the resonance width of the Q2
1�u(1) state

against the internuclear distance R [23], v(R) is the radial
velocity of the relative motion of the two nuclei, and μ is the
reduced mass of the two nuclei. The radial velocity v(R) is
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related to the potential energy curve V (R) of the Q2
1�u(1)

state [23] as

v(R) =
(

2[V (1.4a0) − V (R)]

μ

)1/2

. (8)

As mentioned in Ref. [20], the ratio of the survival probabili-
ties sD2 (Q2

1�u(1))/sH2 (Q2
1�u(1)) accounts for the isotope

effect of the experimental oscillator strengths of 2p + 2p
pair formation in Table I, f D2

2p2p(Q2
1�u(1))/ f H2

2p2p(Q2
1�u(1)).

The photoabsorption cross section for the excitation to the
Q2

1�u(1) state of H2 was calculated [45] and the oscillator
strength for the excitation in H2, fex(Q2

1�u(1)), has been eas-
ily obtained by integrating the photoabsorption cross section
over the incident photon energy. As mentioned in Sec. III A,
the excitation oscillator strength has just a small isotope effect.
Eventually, the values of fex(Q2

1�u(1))sH2/HD/D2 (Q2
1�u(1))

are calculated, which give the theoretical fND(Q2
1�u(1)) for

H2, HD, and D2, respectively.
It has been found that the values of

fex(Q2
1�u(1))s(Q2

1�u(1)) for H2 and D2 calculated in
this study in the semiclassical manner are not in agreement
with those of fND(Q2

1�u(1)) for H2 and D2 calculated in the
quantal manner [40–42], respectively; this disagreement is
probably due to the semiclassical treatment of the decay of
the Q2

1�u(1) state in calculating the survival probabilities
s(Q2

1�u(1)). The values of fex(Q2
1�u(1))s(Q2

1�u(1)) for
H2 and D2 multiplied by a common factor 1.82, however,
almost equal those of fND(Q2

1�u(1)) for H2 and D2

calculated in the quantal manner [40–42], respectively, and
hence we conclude that 1.82 fex(Q2

1�u(1))s(Q2
1�u(1))

calculated in this study for HD is a good approximation of
the fND(Q2

1�u(1)) for HD, which have not been calculated
in the same quantal manner as in Refs. [40–42].

The correlation between the experimental values of
f2p2p(Q2

1�u(1)) and 1.82 fex(Q2
1�u(1))s(Q2

1�u(1)) calcu-
lated in this study is also shown in Fig. 2 for H2, HD, and D2

(closed symbols) in addition to the correlation between the
experimental results and the theoretical fND(Q2

1�u(1)) for
H2 and D2 calculated in the quantal manner [40–42] (open
symbols). While the points for H2 and D2 (the closed red and
closed blue symbols) almost align on the dotted line, the point
for HD (the closed green circle) deviates much more from the
dotted line along the vertical axis than the H2 point (the closed
red square) and the D2 point (the closed blue diamond) do. As
mentioned before, the good correlation for H2 and D2 (the red
and blue symbols) is likely to be attributed to the fact that
the decay mechanisms of hydrogen molecules photoexcited
to the Q2

1�u(1) state are the same for H2 and D2, as shown
with the blue arrows in Fig. 3 [20]; the autoionization rates
of the Q2

1�u(1) state are also the same, but the relative
velocities of two nuclei down the repulsive potential curve of
the Q2

1�u(1) state are different (see Table I). Assuming that
the decay mechanism of HD molecules photoexcited to the
Q2

1�u(1) state is the same as that for H2 and D2 (the blue
arrows in Fig. 3), the correlation that is the same as the good
correlation for H2 and D2 is expected for H2, HD, and D2

as well, and the value of f2p2p(Q2
1�u(1)) for HD is hence

expected to be nearly 3.1 × 10−4, as shown by the plus in
Fig. 2. In fact, however, the experimental f2p2p(Q2

1�u(1)) is

clearly larger than that value, a result that is referred to as the
enhancement in the oscillator strength, and it is reasonable
that the enhancement in the oscillator strength for HD is
attributed to the appearance of new dissociation channels
other than the blue arrows in Fig. 3, channels which contribute
to 2p + 2p pair formation and can be accessed from the
Q2

1�u(1) state only for HD. As mentioned at the beginning
of this section, the appearance of new precursor states other
than the Q2

1�u(1) state in the photoexcitation of HD has
been ruled out. In the following section we identify the new
dissociation channels, which occur in HD but do not occur in
H2 and D2.

C. Origin of the enhancement in the oscillator strength for
2p + 2p pair formation in HD

In the Born-Oppenheimer approximation the mass of elec-
trons in a molecule is considered negligible in comparison
with those of nuclei and we hence neglect the small deviation
between the center of mass of the molecule composed of
electrons and nuclei and that of the nuclei alone (see Ref. [32],
p. 89, and Refs. [46,47]). In fact, this deviation gives the
total Hamiltonian for molecules additional terms that are
neglected in the Born-Oppenheimer approximation [46,47].
To see the additional terms in brief, we consider a diatomic
molecule composed of nuclei a and b, of masses Ma and Mb,
respectively, together with N electrons, labeled 1, 2, . . . , N .
Following Refs. [46,47], the term Ĥ ′ to be added to the non-
relativistic total Hamiltonian under the Born-Oppenheimer
approximation is expressed as

Ĥ ′ = − h̄2

2μα

∇R ·
N∑

i=1

∇ri − h̄2

8μ

N∑
i, j=1

∇ri · ∇r j , (9)

μα = MbMa

Mb − Ma
, (10)

μ = MbMa

Mb + Ma
. (11)

In Eq. (9), the origin is taken at the midpoint between the
nuclei, R denotes the relative position vector of the nuclei,
and ri denotes the position vector of the ith electron. The
nonrelativistic total Hamiltonian H is thus written as

Ĥ = − h̄2

2me

N∑
i=1

∇2
ri

+ V (R, r1, . . . , rN ) − h̄2

2μ
∇2

R + Ĥ ′,

(12)

where me is the electron mass and V (R, r1, . . . , rN ) is the
Coulomb potential energy for the nuclei and electrons, which
includes the electron-nucleus, electron-electron, and nucleus-
nucleus interactions. The sum of the first two terms is the
electronic Hamiltonian and the last term Ĥ ′ is neglected in
the Born-Oppenheimer approximation. Only the first term in
Ĥ ′ [Eq. (9)],

Ĥg-u = − h̄2

2μα

∇R ·
N∑

i=1

∇ri , (13)

does not commute with the space-inversion operator for elec-
trons in the nonrelativistic total Hamiltonian Ĥ [Eq. (12)]
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[31]. The term Ĥg-u hence brings about the g-u interac-
tion, which is well known to be forbidden under the Born-
Oppenheimer approximation that the electron mass is neg-
ligible against nuclear masses (see Table 3.2 on p. 97 in
Ref. [32]) and the Ĥg-u term is the origin of the breaking of the
space-inversion symmetry for electrons. We note that the term
Ĥg-u vanishes for H2 and D2 because of the fact that Ma = Mb,
but does not vanish for HD. The g-u interactions consequently
occur in HD through the Ĥg-u term in contrast to H2 and D2,
and it is reasonable to assign the origin of the new dissociation
channels responsible for the enhancement in f2p2p(Q2

1�u(1))
for HD to the g-u interactions.

We first consider the g-u interactions at an infinite internu-
clear distance because they were discussed for HD [31] and
6Li7Li [34,35] by means of the two-state problem, where one
atom is in the ground electronic state and the other atom is
in an excited state and the resultant potential energy curves
hence split at the infinite internuclear distance depending on
which one of the two atoms is in the excited state. In the
present experiment, however, both the H and D atoms are
in the n = 2 level and the resultant potential energy curves
do not split at the infinite internuclear distance. According
to the two-state problem, no energy splitting results in the
vanishing of the coupling term; see, e.g., Eqs. (21) and (22)
in Ref. [31]. The superposition between a gerade state and
an ungerade state is not consequently brought about at an
infinite internuclear distance for doubly excited states of HD
correlating with (n = 2) + (n = 2) pair states. We thus con-
sider the g-u nonadiabatic transitions that are responsible for
the enhancement in f2p2p(Q2

1�u(1)) for HD and take place
around the crossing point of the gerade and ungerade potential
energy curves of HD.

We take account of the homogeneous (
� = 0) and het-
erogeneous (
� = ±1) g-u nonadiabatic transitions because
the g-u interaction due to the Ĥg-u term was reported between
the nearly coincident rotational levels of the EF 1�g

+ state
and the B 1�u

+ state and between those of the EF 1�g
+ state

and the C 1�u state [48,49]. They are all singly excited states
of HD molecules, and the magnitudes of the coupling matrix
elements are on the order of cm−1 [49].

The g-u nonadiabatic transitions responsible for the enhancement
in the oscillator strength for 2p + 2p pair formation in HD

The potential energy curves of the doubly excited Q2

states of H2 converging to the H(n = 2) + H(n = 2) limit
were studied in the range of internuclear distance longer
than 3a0 up to the asymptotic van der Waals regime together
with their dissociation limits [26]. The repulsive potential
energy curves and resonance widths of the doubly excited
Q2 states were extensively calculated in the range of inter-
nuclear distance shorter than 6a0 [23]. Based upon the com-
prehensive discussion of the crossings and pseudocrossings of
the potential energy curves of the doubly excited Q2 states
converging to the H(n = 2) + H(n = 2) limit, we obtain a
schematic diagram showing the possible doubly excited states
and nonadiabatic transitions that may influence the values of
f2p2p(Q2

1�u(1)) in the photoexcitation of H2, HD, and D2

to the Q2
1�u(1) state (see Fig. 3). The horizontal arrows

FIG. 4. Plot of electronic energies of the doubly excited states of
H2 in Fig. 3 against the internuclear distance [23,26]; the energies do
not include the repulsive Coulomb potential energy between the two
nuclei. The circles A–E show points of crossings or pseudocrossings
between two curves (see the text for details). The nonadiabatic
transitions A–E in Fig. 3 take place at the points labeled with the
same letters. The origin of the energy is taken at an energy of
H+ + H+ + e− + e− and the electronic energies have no isotope
effect.

in Fig. 3 represent both the adiabatic correlation between
the doubly excited states and atom pair states [26] and the
corresponding dissociation channels. The vertical arrows in
Fig. 3 denote the nonadiabatic transitions occurring at the
indicated internuclear distances R, with the red ones denoting
the g-u nonadiabatic transitions due to the Ĥg-u term and
the blue ones denoting the nonadiabatic transitions due to
the radial coupling. The nonadiabatic transitions due to the
rotational coupling are unlikely in the present study since
the potential energy curves of the doubly excited states of
hydrogen molecules are repulsive [21–28] and hence the
axial recoil approximation [50] holds well. The blue channels
starting from the Q2

1�u(1) state (the blue horizontal and blue
vertical arrows) have been substantiated for H2 and D2 [20],
but the adiabatic correlations of the Q2

1�u(1) and Q2
1�u(2)

states have been reversed to those in Refs. [14,20] following
Ref. [26]. In Fig. 3 the resonance width 	 at an internuclear
distance of 6a0 is shown for each doubly excited state [23].

The electronic energies of the doubly excited states in
Fig. 3 are displayed against the internuclear distance in
Fig. 4 (those in Refs. [23,26] for each state are smoothly
connected, so a single curve is obtained for each state).
We note that the electronic energies, which do not include
the repulsive Coulomb interaction between the two nuclei,
are plotted against the internuclear distance instead of the
potential energy curves because the latter, which are the sum
of the electronic energies and the repulsive Coulomb term, are
repulsive and the energy range of the vertical axis becomes
so wide that the details of the crossings and pseudocross-
ings between the curves become unclear. The dotted circles
labeled B–E show crossing points between two curves and the
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nonadiabatic transitions labeled B–E in Fig. 3 take place at
the crossing points labeled the same letters. The closed circle
labeled A shows the point of the pseudocrossing between
the Q2

1�u(1) and Q2
1�u(2) curves and the nonadiabatic

transition labeled A in Fig. 3 takes place there. This nona-
diabatic transition from the Q2

1�u(1) state to the Q2
1�u(2)

state plays a significant role in the decay dynamics of H2 and
D2 molecules photoexcited to the Q2

1�u(1) state [20] (as
mentioned at the beginning of Sec. III) and this is also the
case for HD.

We specify the g-u nonadiabatic transitions responsible for
the enhancement in f2p2p(Q2

1�u(1)) for HD seen in Fig. 2
from among possible ones in Figs. 3 and 4. It is noted that
only transitions B and D are the g-u nonadiabatic transitions
that convert the 2s + 2p pairs to the 2p + 2p pairs when
HD molecules are photoexcited to the Q2

1�u(1) state in
the Franck-Condon region. We may hence show that the
g-u nonadiabatic transition B or D, or both, following the
nonadiabatic transition A from the Q2

1�u(1) state to the
Q2

1�u(2) state, makes a major contribution to the enhance-
ment in f2p2p(Q2

1�u(1)) for HD from the value expected
from f2p2p(Q2

1�u(1)) for H2 and D2 (the plus on the dotted
line in Fig. 2); this expectation is based on the assumption
that the decay mechanisms of hydrogen molecules photoex-
cited to the Q2

1�u(1) state are the same for H2, HD, and
D2 (the blue arrows in Fig. 3). It was found in our recent
experiment [20] that the oscillator strengths for 2s + 2p pair
formation from the Q2

1�u(1) state of H2 and D2 are almost
6 times those for 2p + 2p pair formation from the same state
of H2 and D2, respectively. The populations of H2 and D2

in the Q2
1�u(2) state (the blue horizontal dashed arrow in

Fig. 3) are hence about 6 times the populations of H2 and
D2 in the Q2

1�u(1) state (the blue horizontal solid arrow
in Fig. 3) at the infinite internuclear distance, respectively,
which fact supports the present scenario just mentioned. It
follows, according to Fig. 2 and the present scenario, that
approximately 10–20 % of f2p2p(Q2

1�u(1)) obtained in this
study for HD arises from the g-u nonadiabatic transition B or
D, or both, in Fig. 3 due to the Ĥg-u term.

IV. CONCLUSION

We have determined a set of cross sections for 2p + 2p
pair formation on an absolute scale against the incident pho-
ton energy in the range 30–40 eV in the photoexcitation of
isotopomers H2, HD, and D2, incorporating the present cross
sections with those of H2 and D2 obtained in our previous
experiments [20], and the oscillator strengths of 2p + 2p pair
formation from the precursor doubly excited Q2

1�u(1) state,
f2p2p(Q2

1�u(1)), have been determined from the cross sec-
tions. It is remarkable that f2p2p(Q2

1�u(1)) for HD is larger
than the value expected from f2p2p(Q2

1�u(1)) for H2 and D2

(the plus on the dotted line in Fig. 2), which is based on the
assumption that the decay mechanisms of hydrogen molecules
photoexcited to the Q2

1�u(1) state are the same for H2, HD,
and D2 (the blue arrows in Fig. 3). We have discussed the
origin of the enhancement in the oscillator strength for HD
and shown that the enhancement in f2p2p(Q2

1�u(1)) for HD
is mainly attributed to the g-u nonadiabatic transitions from
the Q2

1�u(2) state correlating with the 2s + 2p pair state
to the gerade states correlating with the 2p + 2p pair state,
transitions which follow the nonadiabatic transition from the
photoexcited Q2

1�u(1) state to the Q2
1�u(2) state. We

note that those g-u nonadiabatic transitions do not occur in
H2 and D2. It follows, according to Fig. 2 and the present
scenario, that approximately 10–20 % of f2p2p(Q2

1�u(1))
for HD originates from those g-u nonadiabatic transitions.
The role of the g-u nonadiabatic transitions, i.e., the role of
the breaking of the space-inversion symmetry for electrons,
has been substantiated in the dynamics of HD molecules
photoexcited to the doubly excited Q2

1�u(1) state.
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